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Abstract
We show the details of certain computations that are used in [BMW24].

Contents
1 Overview 2
2 Some restrictions of the natural character of M 3
3 The permutation character (133)25 5
4 The conjugacy classes of M 9
4.1 Our strategy to describe the conjugacy classesof M . . . . .. .. ... ... ... .. 9
4.2 Utility functions . . . . . . . . . e e e 10
4.3 Classes of elements of even order . . . . . . .. . ... . L Lo 12
4.4 Classes of elements of order divisible by 3 . . . . . ... ... ... o000 13
4.5 Classes of elements of order divisible by 5 . . . . . . . ... ... oL 14
4.6 Classes of elements of order divisible by 11 . . . . . . .. . ... ... ... ... .. 15
4.7 Classes of elements of the orders 17,19,23,31,47 . . . . . . .. . ... ... .. ... 15
4.8 Classes of elements of order 13 . . . . . . . . ... L Lo 17
4.9 Classes of elements of order divisible by 29 . . . . . . . .. ... .. o000 17
4.10 Classes of elements of order divisible by 41 . . . . . . ... ... ... ... ... 18
4.11 Classes of elements of order divisible by 59 . . . . . . . . ... ... ... ... ..., 19
4.12 Classes of elements of order divisible by 71 . . . . . . .. . ... ... ... ... 19
4.13 Classes of elements of order divisible by 7 . . . . . . . ... ... oo 20
5 The power maps of M 21
6 The degree 196 883 character x of M 29
7 The irreducible characters of M 32
8 Appendix: The character table of 21++24.Col 37



9 Appendix: The character table of 33_'*'12 : 6.5uz.2 39

9.1 OVErVIEW . . . o . e e e e 39
9.2 A permutation representation of H/X . . . . . .. ... 40
9.3 A permutation representation of H . . . . . . ... ... 41
9.4 Compute the character table of H . . . . . . .. . ... .. ... ... 42
10 Appendix: The character table of 53_*6.4.(]2,2 42

1 Overview

The aim of [BMW24] is to verify the ordinary character table of the Monster group M. Here we collect,
in the form of an explicit and reproducible GAP [GAP24] session protocol, the relevant computations
that are needed in that paper.

We proceed as follows.

Section 2 verifies the decomposition of the restrictions of the ordinary irreducible character of degree
196 883 of M to the subgroups 2.B and 3.Fiy, (and 3.Fiz4), as stated in [BMW24, Lemma 1].

Section 3 verifies the decompositions of the transitive constituents of the permutation character of
the action of Cu(a) 22 2.B on the conjugacy class a™, where a is a 2A involution in M.

Sections 4 and 5 construct the character table head of M, that is, the lists of conjugacy class lengths,
element orders, and power maps.

Section 6 constructs the values of the irreducible degree 196 883 character of M and decides the
isomorphism type of the 3B normalizer in M.

With this information and with the (already verified) character tables of the subgroups 2.B, 2?24.001,
3.Fia4, and 3}‘_“2.2.Suz.2 of M, computing the irreducible characters of M is then easy; this corre-
sponds to [BMW24, Section 5] and is done in Section 7.

The final sections 8, 9, 10 document the constructions of three character tables of subgroups of M.

We will use the GAP Character Table Library and the interface to the ATLAS of Group Representa-
tions [WWT™], thus we load these GAP packages.

gap> LoadPackage( "ctbllib", false );
true
gap> LoadPackage( "atlasrep", false );
true

The MAGMA system [BCP97] will be needed for computing some character tables and for many
conjugacy tests. If the following command returns false then these steps will not work.

gap> CTblLib.IsMagmaAvailable();
true

We set the line length to 72, like in other standard testfiles.

gap> SizeScreen( [ 72 1 );;



2 Some restrictions of the natural character of M

We assume the existence of an ordinary irreducible character x of degree 196 883 of the Monster
group M, and that M has only two conjugacy classes of involutions.

First we compute the restriction of x to 2.B.

The only faithful degree 196 883 character of 2.B that has at most two different values on involutions
is la 4+ 4371a + 96255a + 962564, as claimed in [BMW24, Lemma 1]. This follows from the following
data about 2.B.

gap> table2B:= CharacterTable( "2.B" );;

gap> cand:= Filtered( Irr( table2B ), x -> x[1] <= 196883 );;

gap> List( cand, x -> x[1] );

[ 1, 4371, 96255, 96256 ]

gap> inv:= Positions( OrdersClassRepresentatives( table2B ), 2 );
[2,3,4,5,7]

gap> PrintArray( List( cand, x -> x{ Concatenation( [ 1 ], inv ) } ) );

[[ 1, 1, 1, 1, 1, 11,
L 4371, 4371, -493, 275, 275, 19 1,
[ 96255, 96255, 4863, 2047, 2047, 255 1],
[ 96256, -96256, 0, 2048, -2048, 011

Note that 96256a must occur as a constituent because it is the only faithful candidate, and it can
occur only once because otherwise only 4371a + 2 - 96256a or 4371 - la + 2 - 96256a would be possible
decompositions, which have more than two values on involution classes. Thus the values of y2.3 on
the classes 4 and 5 differ by 4096.

If 96255a would not occur then the values of x2. on the classes 3 and 7 would differ by 512 times
the multiplicity of 4371, but 65659 - 1a 4 8 - 4371a + 96256a is not a solution. Thus 96255a must occur
exactly once.

The sum of 96255a and 96256a has four different values on involutions, hence also 4371a must occur.

We see that the values of x on the classes of involutions are 4371 and 275, respectively.

gap> Sum( cand ){ inv };
[ 4371, 4371, 4371, 275, 275 1]

The restriction of x to 3.Fib, is computed similarly, as follows.

Exactly seven irreducible characters of 3.Fi5, can occur as constituents of the restriction of .

gap> table3Fi24prime:= CharacterTable( "3.Fi24’" );;

gap> cand:= Filtered( Irr( table3Fi24prime ), x -> x[1] <= 196883 );;
gap> inv:= Positions( OrdersClassRepresentatives( table3Fi24prime ), 2 );
[ 4, 7]

gap> mat:= List( cand, x -> x{ Concatenation([1], inv)});;

gap> PrintArray( mat );

[[ 1, 1, 11,
[ 8671, 351, -33 1,
[ 57477, 1157, 133 ],
L 783, 79, 15 1,
L 783, 79, 15 7,
[ 64584, 1352, 72 1,
[ 64584, 1352, 72 11

Since x is rational, we need to consider only rationally irreducible characters, that is, the possible
constituents are la, 8671a, 57377a, 783ab, and 64584ab.



gap> List( cand, x -> x[2] );
[ 1, 8671, 57477, 783*E(3), 783+E(3)"2, 64584*E(3), 64584*E(3)"2 ]

We see that the value on the first class of involutions must be 4371, since all values of the possible
constituents are positive and too large for the other possible value 275.

Since the values of all possible constituents on the second class of involutions are at most equal to
the values on the first class, and equal only for 1a, we conclude that the value on the second class of
involutions is 275.

We see from the ratio of the value on the identity element and on the first class of involutions that
constituents of degree 57477 or 2 - 64584 exist.

gap> Float( 196883 / 4371 );

45.043

gap> List( mat, v -> Float( v[1] / v[2] ) );

[ 1., 24.7037, 49.6776, 9.91139, 9.91139, 47.7692, 47.7692 ]
gap> Float( ( 196883 - 2 * 64584 ) / ( 4371 - 2 * 1352 ) );
40.6209

gap> Float( ( 196883 - 57477 ) / ( 4371 - 1157 ) );

43.3746

gap> Float( ( 196883 - 2%57477 ) / ( 4371 - 2%1157 ) );
39.8294

gap> Float( ( 196883 - 3x57477 ) / ( 4371 - 3%1157 ) );
27.1689

First suppose that 64584ab is not a constituent. The above ratios imply that (at least) three con-
stituents of degree 57477 must occur.

However, then the degree admits at most two constituents of degree 8671, hence the value on the
second class of involutions cannot be 275, a contradiction.

This means that both 64584ab and 57477a occur with multiplicity one.

gap> mat[3] + mat[6] + mat([7];
[ 186645, 3861, 277 ]

The second involution class forces one constituent of degree 8671 (which is the only candidate that
can contribute a negative value), and then a character of degree 1567 remains to be decomposed. The
only solution for the degrees of its constituents is 1 + 1566. We get the decomposition la + 8671a +
57477a + 783ab + 64584ab, as claimed in [BMW24, Lemma 2].

gap> Sum( mat ) ;
[ 196883, 4371, 275 ]

The characters of the degrees 1, 8671, and 57477 extend two-fold from 3.Fi5, to 3.Fias. In order to
decompose the restriction of x to 3.Fiz4, we have to determine which extensions from 3.Fi5, occur.
The following irreducible characters of 3.Fia4 can occur as constituents of the restriction of x.

gap> table3Fi24:= CharacterTable( "3.Fi24" );;

gap> cand:= Filtered( Irr( table3Fi24 ), x -> x[1] <= 196883 );;
gap> inv:= Positions( OrdersClassRepresentatives( table3Fi24 ), 2 );
[ 3,5, 172, 173 ]

gap> mat:= List( cand, x -> x{ Concatenation([1], inv)});;

gap> PrintArray( mat );

L[ 1, 1, 1, 1, 11,
L 1, 1, 1, -1, -1 ]:
[ 8671, 351, -33, 1495, -41 1,



Table 1: Suborbit information

ac € | Ggpc |cGal
1A 2.B 1
2A 22.2E¢4(2) 27143910000
2B 22122 Co, 11707448673375
3A Figg 2031941058560000
3C Th 91569524834304000
4A 21422 McL 1102935324621312000
4B 2.F4(2) 1254793905192960000
5A HN 30434513446055706624
6A 2.Figo 64353605265653760000

L 8671, 351, -33, -1495, 41 1,

[ 57477, 1157, 133, 5865, 233 1,

[ 57477, 1157, 133, -5865, -233 1,

[ 1566, 158, 30, 0, 01,

[ 129168, 2704, 144, 0, 011

We get the decomposition la 4+ 8671b + 57477a 4+ 1566a + 129168a claimed in [BMW24, Lemma 2].

gap> Sum( mat{ [ 1, 4, 5, 7, 81 } );
[ 196883, 4371, 275, 4371, 275 1]

3 The permutation character (15%)s5

According to [GMS89, Tables VII, IX], the restriction of the permutation character 13 to 2.B
decomposes into nine transitive permutation characters 1%%, with the point stabilizers U listed in
Table 1.

Here a denotes the central involution in 2.B, the action is that on the M-conjugacy class of a, and
¢ € a™ is a representative of the orbit in question.

In this section, we compute the nine characters 1%, where U is one of the above point stabilizers
Ga,c. Note that a € G4, holds (and thus the character is an inflated character of B) if and only if a

and ¢ commute; this happens exactly for the first three orbits.

All subgroups U except 22722.Coq and 2'122 McL are ATLAS groups whose character tables have been
verified. The subgroup 22+22.Coy is the preimage of a maximal subgroup 2'722.Cos of B under the
natural epimorphism from 2.B, and the computation /verification of the character table of 2'722.Coq
has been described in [BMW20]. It will turn out that we do not need the character table of 2' 722 McL.

The nine characters will be stored in the variables pil, pi2, ..., pi9.

For U = 2.B, we have 1%]'13 = 1s3.
gap> pil:= TrivialCharacter( table2B );;

For U = 2%.2Eg(2), the character 13® is the inflation of 11% from B to 2.B, for U = U/{a) = 2.2E¢(2).
(Note that the class fusion from U to B is not uniquely determined by the character tables of the two
groups, but the permutation character is unique.)



gap> tableB:= CharacterTable( "B" );;

gap> tableUbar:= CharacterTable( "2.2E6(2)" );;

gap> fus:= PossibleClassFusions( tableUbar, tableB );;
gap> pi:= Set( fus,

> map -> InducedClassFunctionsByFusionMap( tableUbar, tableB,
> [ TrivialCharacter( tableUbar ) ], map )I[1] );;
gap> Length( pi );

1

gap> pi2:= Inflated( tableB, table2B, pi )[1];;
gap> mult:= List( Irr( table2B ),

> chi -> ScalarProduct( table2B, chi, pi2 ) );;
gap> Maximum( mult );
1

gap> Positions( mult, 1 );
[1, 2, 3, 5, 7, 13, 15, 17 ]

For U = 2%%22 Co,, the character 1% is the inflation of 1]% from B to 2.B, for U = U/(a) = 2'7?2.Co,,
a maximal subgroup of B.

gap> tableUbar:= CharacterTable( "BN2B" );
CharacterTable( "2~ (1+22).Co2" )

gap> fus:= PossibleClassFusions( tableUbar, tableB );;
gap> pi:= Set( fus,

> map -> InducedClassFunctionsByFusionMap( tableUbar, tableB,
> [ TrivialCharacter( tableUbar ) ], map )I[1] );;
gap> Length( pi );

1

gap> pi3:= Inflated( tableB, table2B, pi )[1];;
gap> mult:= List( Irr( table2B ),

> chi -> ScalarProduct( table2B, chi, pi3 ) );;
gap> Maximum( mult );
1

gap> Positions( mult, 1 );
[1, 3, 5, 8, 13, 15, 28, 30, 37, 40 ]

Next we consider U = Fias.

gap> tableU:= CharacterTable( "Fi23" );;
gap> fus:= PossibleClassFusions( tableU, table2B );;
gap> pi:= Set( fus,

> map —-> InducedClassFunctionsByFusionMap( tableU, table2B,
> [ TrivialCharacter( tableU ) ], map )[1] );;
gap> Length( pi );

1

gap> pid:= pil[ll;;
gap> mult:= List( Irr( table2B ),

> chi -> ScalarProduct( table2B, chi, pid ) );;
gap> Maximum( mult );
1

gap> Positions( mult, 1 );

[1, 2, 3, 5,7, 8,9, 12, 13, 15, 17, 23, 27, 30, 32, 40, 41, 54,
63, 68, 77, 81, 83, 185, 186, 187, 188, 189, 194, 195, 196, 203,
208, 220 ]

Next we consider U = Th.



gap> tableU:= CharacterTable( "Th" );;
gap> fus:= PossibleClassFusions( tableU, table2B );;
gap> pi:= Set( fus,

> map -> InducedClassFunctionsByFusionMap( tableU, table2B,
> [ TrivialCharacter( tableU ) 1, map )[1] );;
gap> Length( pi );

1

gap> pib:= pil1l;;
gap> mult:= List( Irr( table2B ),

> chi -> ScalarProduct( table2B, chi, pib5 ) );;
gap> Maximum( mult );
2

gap> Positions( mult, 1 );

[, 3,7, 8, 12, 13, 16, 19, 27, 28, 34, 38, 41, 57, 68, 70, 77, 78,
85, 89, 113, 114, 116, 129, 133, 142, 143, 145, 155, 156, 185, 187,
188, 193, 195, 196, 201, 208, 216, 219, 225, 232, 233, 235, 236,
237, 242 1]

gap> Positions( mult, 2 );

[ 62 1]

For U = 2722 McL, we carry out the computations described in [Breb, Section “A permutation
character of 2.B”]. We know that U is a subgroup of 22*22.Co., and that (U, a) has the structure
2%%22 McL.

As a first step, we induce the trivial character of (U, a) to 2.B, which can be performed by inducing
the trivial character of McL to Coz, then to inflate this character to 21+22.C02, then to induce this
character to B, and then to inflate this character to 2.B,

gap> mcl:= CharacterTable( "McL" );;

gap> co2:= CharacterTable( "Co2" );;

gap> fus:= PossibleClassFusions( mcl, co2 );;

gap> Length( fus );

4

gap> ind:= Set( fus, map -> InducedClassFunctionsByFusionMap( mcl, co2,
> [ TrivialCharacter( mcl ) 1, map )[1] );;
gap> Length( ind );

1

gap> bm2:= CharacterTable( "BM2" );
CharacterTable( "2~ (1+22).Co2" )

gap> infl:= Inflated( co2, bm2, ind );;

gap> ind:= Induced( bm2, tableB, infl );;

gap> infl:= Inflated( tableB, table2B, ind )[1];;

As a second step, we compute 1%® with the GAP function PermChars, using that we can speed up
these computations by prescribing the permutation character induced from the closure of U with the
normal subgroup (a) of 2.B.

(We are lucky: There is a unique solution, and its computation is quite fast.)

gap> centre:= ClassPositionsOfCentre( table2B );

[1, 2]

gap> pi:= PermChars( table2B, rec( torso:= [ 2 * infl[1], 0 ],
> normalsubgroup:= centre,

> nonfaithful:= infl ) );;

gap> Length( pi );

1



pil1l;;
gap> List( Irr( table2B ), chi -> ScalarProduct( table2B, chi, pi6 ) );

(11,2,1,2,0,2,3,2,0,0,1,4,1,2,0,3,2,0,2,0,0,

gap> pi6:

>

1

1:
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1, 2,
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1, 1, 4, 5, 1,

1, 2, 5, 3,
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1, 3,0, 1, 3, 0, 2, 2,

o0, 0, 3, 0, 3, 3, 3,

i, 4, 0, 3, 2, 3,
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i, 0, 0, 2, 0, 0, 2, O, O,

1, 0, 3, 0, 4, 0,
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1, 0, 2, 1,
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Next we consider U = 2.F4(2). We know that U does not contain the central involution of 2.B.

CharacterTable( "2.F4(2)" );;

PossibleClassFusions( tableU, table2B );;
Set( fus, map -> InducedClassFunctionsByFusionMap( tableU, table2B,

gap> tableU:

gap> fus:

gap> pi:

[ TrivialCharacter( tableU ) 1, map )[1] );;

gap> Length( pi );

2

pilil;;
gap> List( Irr( table2B ), chi -> ScalarProduct( table2B, chi, pi7 ) );

Filtered( pi, x -> ClassPositionsOfKernel( x ) = [ 1] );;

gap> Length( pi );

1

gap> pi:
gap> pi7:
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= HN.

Next we consider U

CharacterTable( "HN" );;

PossibleClassFusions( tableU, table2B );;
Set( fus, map -> InducedClassFunctionsByFusionMap( tableU, table2B,

gap> tableU:
gap> fus:

gap> pi:

[ TrivialCharacter( tableU ) ], map )[1] );;

gap> Length( pi );

1

pil1l;;
gap> List( Irr( table2B ), chi -> ScalarProduct( table2B, chi, pi8 ) );

(1,1,2,1,2,0,3,4,2,1,1, 4,4, 2,1, 1, 3,3,1,3,0,0,

gap> pi8:

11, 2, 5, 5,

i, 7, 4, 7, 0, 0, 3, 8, 2, 6,

5, 3, 0, 0, 6, 4, 5, 6,

13, 6, 0, 4,

13,

13 3’ 4) 7) 07 0’ 73 3’ 9) 5) 07 0’ 63 4, 2)

11,

0) 07 2’

4:

11, 13, 12, 20, 5, 10, 6, 11, 17, 4,

16, 9, 7, 3,

12,



10, 7, 19, 7, 7, 8, 10, 14, 18, 19, 5, 10, 12, 23, 7, 12, 6, 24, 6,

4, 17, 16, 8, 9, 17, 11, 12, 23, 8, 24, 18, 26, 21, 29, 10, 18, 31,

10, 24, 21, 17, 27, 35, 13, 14, 29, 19, 12, 7, 18, 26, 15, 34, 34,

35, 20, 14, 36, 14, 39, 8, 29, 24, 15, 40, 13, 9, 38, 24, 17, 35,

32, 26, 26, 24, 22, 17, 31, 39, 29, 30, 30, 19, 44, 37, 37, 28, 30,

31, 29, 42, 40, 40, 56, 56, 30, 30, 42, 50, 47, 2, 2, 4, 6, 4, 0,

o, 4, 6, 10, 10, 12, 8, 12, 0, 0, 2, 4, 16, 10, 0, O, 2, 12, 10, O,

o, o, 0, 0, 0, 28, 0, O, 14, 34, 40, 2, 10, 10, 22, 40, 44, 44, 8,

8, 36, 14, 14, 16, 8, 8, 46, 28, 28, 58, 90, 72, 70, 92, 104, 56,

90 ]
Finally, we consider U = 2.Fizo. There are two candidates for the permutation character (17)*®
according to the possible class fusions. One of the two characters is zero on the class of the central
involution of 2.B, the other is not. We know that U does not contain the central involution of 2.B,
hence we can decide which character is correct.

)

gap> tableU:= CharacterTable( "2.Fi22" );;
gap> fus:= PossibleClassFusions( tableU, table2B );;
gap> pi:= Set( fus, map -> InducedClassFunctionsByFusionMap( tableU, table2B,

> [ TrivialCharacter( tableU ) 1, map )[1] );;
gap> Length( pi );
2

gap> pi:= Filtered( pi, x -> ClassPositionsOfKernel( x ) = [ 1 ] );;

gap> Length( pi );

1

gap> pi9:= pilll;;

gap> List( Irr( table2B ), chi -> ScalarProduct( table2B, chi, pi9 ) );

[+, 2,3,1, 4,1,5,5,5,1,1,5,8, 4, 4, 1,7, 6, 0,5, 0, 0,
10, 7, o, o0, 10, 6, 6, 13, 3, 14, 10, 11, 0, O, 5, 11, 2, 14, 19,
6, 6, 5, 0, 0, 0, 3, 6, 7, 11, O, O, 17, 2, 20, 9, O, O, 12, 8, 1,
23, 11, 1, 8, 7, 23, 18, 27, 18, 12, 7, 22, 29, 21, 34, 6, 22, 7,
22, 18, 33, 3, 19, 10, 34, 12, 12, 15, 17, 28, 34, 34, 7, 20, 26,
40, 15, 25, 3, 40, 9, 6, 34, 25, 18, 21, 30, 21, 18, 43, 12, 45,
39, 49, 38, 51, 18, 32, 63, 19, 42, 41, 33, 48, 64, 27, 29, 52, 38,
29, 19, 40, 47, 31, 69, 69, 65, 42, 35, 68, 27, 73, 20, 53, 46, 38,
75, 29, 24, 72, 50, 41, 72, 68, 58, 52, 54, 50, 44, 64, 75, 58, 69,
65, 49, 85, 75, 75, 63, 68, 65, 63, 90, 87, 83, 118, 118, 74, 71,
90, 109, 109, 2, 3, 6, 9, 8, 0, O, 7, 10, 18, 16, 22, 12, 23, 0, O,
2, 6, 28, 19, 0, 0, 5, 16, 18, 0, 0, O, O, O, O, 52, 1, 1, 26, 59,
76, 11, 18, 18, 39, 77, 80, 77, 22, 22, 66, 27, 27, 33, 20, 20, 87,
60, 60, 103, 175, 148, 152, 187, 215, 140, 201 ]

Now we can form the restriction of (12_B)M to 2.B.

gap> constit:= [ pil, pi2, pi3, pi4, pib, pi6, pi7, pi8, pi9 1;;
gap> pi:= Sum( comnstit );;

4 The conjugacy classes of M

4.1 Our strategy to describe the conjugacy classes of M

We know the order of M and its prime divisors. Let us check whether this fits to our data computed
up to now.



gap> sizeM:= pi[l1] * Size( table2B );
808017424794512875886459904961710757005754368000000000
gap> StringPP( sizeM );
"2746%3720*%579%776%117 2% 137 3% 17*19%23%29%31%41%47*59%71"
gap> sizeM = Size( CharacterTable( "M" ) );

true

For each prime p dividing |M|, we classify the conjugacy classes of elements of order p in M and use the
facts that for each such class representative x, the classes of roots of z in the centralizer/normalizer
of x are in bijection with the corresponding classes in M, and that this bijection respects centralizer
orders.

For each element x € M of order p € {2,3,5}, we will use the character table of Ny ((z)) to establish
M-conjugacy classes of roots of z. In order not to count the same class several times, we proceed by
increasing p, and collect only those classes of roots of x for which p is the smallest prime divisor of
the element order.

For elements x € M of prime order p > 5, it is not necessary to use the character table of Ny ((x));
we will use the permutation character values (12.5)"(x) and ad hoc arguments.

4.2 Utility functions

During the process of finding the conjugacy classes of M, we record our knowledge about the character
table of M in a global GAP variable head, which is a record with the following components.

Size
the group order |M|,

SizesCentralizers
the list of centralizer orders of the conjugacy classes established up to now,

OrdersClassRepresentatives
the list of corresponding representative orders,

fusions
a list that collects the currently known partial class fusions into M each entry is a record with
the components subtable (the character table of the subgroup) and map (the list of known
images; unknown positions are unbound).

‘We initialize this variable, using the group order M and that there is an identity element.

gap> head:= rec( Size:= sizel,

> SizesCentralizers:= [ sizeM ],

> OrdersClassRepresentatives:= [ 1 ],
> fusions:= [],

> )

The function ExtendTableHeadByRootClasses takes the object head, the character table s of a sub-
group H of M, and an integer pos as its arguments, where it is assumed that the pos-th class of s
contains an element x of prime order p such that Ny ({z)) = H holds and such that head contains
information only about those classes of M whose elements have order divisible by a prime that is
smaller than p.

gap> ExtendTableHeadByRootClasses:= function( head, s, pos )

> local fus, orders, p, cents, oldnumber, i, ord;
>

> # Initialize the fusion information.

> fus:= rec( subtable:= s, map:= [ 1 ] );
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Add( head.fusions, fus );

# Compute the positions of root classes of ’pos’.
orders:= OrdersClassRepresentatives( s );

p:= orders[ pos 1;

cents:= SizesCentralizers( s );

oldnumber:= Length( head.OrdersClassRepresentatives );

# Run over the classes of ’s’
# are already contained in head
for i in [ 1 .. NrConjugacyClasses( s ) ] do
ord:= orders[i];
if ord mod p = 0 and
Minimum( PrimeDivisors( ord ) ) = p and
PowerMap( s, ord / p, i ) = pos then
# Class ’i’ is a root class of ’pos’ and is new in ’head’.
Add( head.SizesCentralizers, cents[i] );
Add( head.OrdersClassRepresentatives, orders[i] );
fus.map[i] := Length( head.SizesCentralizers );

VVVVVVVVVVVVVVVVVVVVVVVVYVYVYV

fi;
od;
Print( "#I after ", Identifier( s ), ": found ",
Length( head.OrdersClassRepresentatives ) - oldnumber,
" classes, now have ",
Length( head.OrdersClassRepresentatives ), "\n" );
end;;

In several cases, we will establish a conjugacy class g™ without knowing the character table of a
suitable subgroup of M to which ExtendTableHeadByRootClasses can be applied, where g is among
the root classes. That is, we may know just element order s and centralizer order cent.

We are a bit better off if we know the character table s of a subgroup of M and the list poss of all
those classes in this table which fuse to the class g™, because then we can store this information in
the partial class fusion from s that is stored in head.

gap> ExtendTableHeadByCentralizerOrder:= function( head, s, cent, poss )

Add( head.SizesCentralizers, cent );
Add( head.OrdersClassRepresentatives, ord );

Print( "#I after order ", ord, " element" );
if IsCharacterTable( s ) then

# extend the stored fusion from s

fus:= First( head.fusions,

> local ord, fus, ij;

>

> if IsCharacterTable( s ) then

> ord:= Set( OrdersClassRepresentatives( s ){ poss } );
> if Length( ord ) <> 1 then

> Error( "classes cannot fuse" );
> fi;

> ord:= ord[1];

> elif IsInt( s ) then

> ord:= s;

> fi;

>

>

>

>

>

>

>
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> r -> Identifier( r.subtable ) = Identifier( s ) );
> for i in poss do

> fus.map[i] := Length( head.SizesCentralizers );

> od;

> Print( " from ", Identifier( s ) );

> fi;

> Print( ": have ",

> Length( head.OrdersClassRepresentatives ), " classes\n" );
> end;;

The permutation character 1%, where H < G are two groups, has the property 1%(g) = |Cca(g)| -
l[g° NH|/|H|. For g € H, this implies that |Ca(g)| = 1%(g) - |H|/|9% N H| can be computed from the
character (1%) u and the class lengths in H, provided that we know which classes of H fuse into ¢©.
The function ExtendTableHeadByPermCharValue extends the information in head by the data for the
class ¢*, where s is the character table of H, pi_rest_to_s is (1§)x, and poss is the list of positions
of those classes in s that fuse to g™.

ap> ExtendTableHeadByPermCharValue:= function( head, s, pi_rest_to_s, poss )
local pival, cent;

g
>
>
> pival:= Set( pi_rest_to_s{ poss } );
> if Length( pival ) <> 1 then

> Error( "classes cannot fuse" );

> fi;

>

>

>

>

cent:= pival[1] * Size( s ) / Sum( SizesConjugacyClasses( s ){ poss } );
ExtendTableHeadByCentralizerOrder( head, s, cent, poss );
end;;

4.3 Classes of elements of even order

By [BMW24], we know that M has exactly two conjugacy classes of involutions, and that the in-
volution centralizers have the structures 2.B (for the class 2A) and 27>*.Co; (for the class 2B),
respectively.

Moreover, the character tables of these subgroups that are stored in the GAP Character Table Library
are correct. For 2.B, this follows from the correctness of the character table of B as shown in [BMW20]
and the computations in [Brea]. For 2?24.001, the recomputation of the character table is described
in Section 8.

Thus we can determine the M-conjugacy classes of elements of even order as follows.

gap> s:= CharacterTable( "2.B" );;

gap> ClassPositionsOfCentre( s );

[1, 2]

gap> ExtendTableHeadByRootClasses( head, s, 2 );

#I after 2.B: found 42 classes, now have 43

gap> s:= CharacterTable( "MN2B" );;

gap> ClassPositionsOfCentre( s );

[1, 2]

gap> ExtendTableHeadByRootClasses( head, s, 2 );

#I after 271+24.Col: found 91 classes, now have 134
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4.4 Classes of elements of order divisible by 3

We know that M has exactly three conjugacy classes of elements of order 3, and that their normalizers
have the structures 3.Fias (for the class 34), 37'2.2.Suz.2 (for the class 3B), and S3 x Th (for the
class 3C), respectively.

Moreover, the GAP character tables of 3.Fizs and Th are ATLAS tables and have been verified,
see [BMO17].

We determine the M-conjugacy classes of elements of odd order that are roots of 3A or 3C elements,
as follows.

gap> s:= CharacterTable( "3.Fi24" );;

gap> ClassPositions0fPCore( s, 3 );

[1, 2]

gap> ExtendTableHeadByRootClasses( head, s, 2 );

#I after 3.F3+.2: found 12 classes, now have 146

gap> s:= CharacterTableDirectProduct( CharacterTable( "Th" ),
> CharacterTable( "Symmetric", 3 ) );;
gap> ClassPositions0fPCore( s, 3 );

[1, 3]

gap> ExtendTableHeadByRootClasses( head, s, 3 );

#I after ThxSym(3): found 7 classes, now have 153

The situation with the 3B normalizer is more involved. Section 9 documents the construction of the
character table of a downward extension of the structure 3_1~_+12 : 6.5uz.2 of the 3B normalizer, and
gives two candidates for the character table of the 3B normalizer.

It will turn out that each of these candidates leads to “the same” root classes, in the sense that the
number of these classes, their element orders, and their centralizer orders are equal. Note that the
3-core of H = 3}["12 : 6.Suz.2 has the structure X x N, where X has order 3 and N & 3?‘12 such
that H/N 22 6.Suz.2 holds. We are interested in the two “diagonal” factors, that is, the factors of H
by the one of the two normal subgroups of order 3 in H that are not equal to X or Z(N). (See the
picture in Section 9 for the details.)

First we exclude the normal subgroup of order 3 that is contained in the unique normal subgroup N
of order 3'3.

gap> exts:= CharacterTable( "3 (1+12):6.Suz.2" );;

gap> kernels:= Positions( SizesConjugacyClasses( exts ), 2 );

(2, 18, 19, 20 ]

gap> order3_13:= Filtered( ClassPositionsOfNormalSubgroups( exts ),
> 1 -> Sum( SizesConjugacyClasses( exts ){ 1 } ) = 3713 );
[[1..41]1

gap> kernels:= Difference( kernels, order3_13[1] );

[ 18, 19, 20 ]

The classes in the subgroup X can be identified by the fact that exactly one factor of H by a normal
subgroup of order 3 admits a class fusion from 2.Suz.2, and hence this must be the split extension of
3471? with 2.Suz.2.

gap> facts:= List( kernels, i -> exts / [ 1, i ] );

[ CharacterTable( "3 (1+12):6.Suz.2/[ 1, 18 1" ),
CharacterTable( "3 (1+12):6.Suz.2/[ 1, 19 1" ),
CharacterTable( "3~ (1+12):6.Suz.2/[ 1, 20 1" )

gap> f:= CharacterTable( "2.Suz.2" );;

gap> facts:= Filtered( facts,

> x -> Length( PossibleClassFusions( £, x ) ) = 0 );

[ CharacterTable( "3 (1+12):6.Suz.2/[ 1, 19 1" ),
CharacterTable( "3 (1+12):6.Suz.2/[ 1, 20 1" ) ]
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We compute the root classes for both candidates. For that, we first create a copy head2 of the
information in head.

gap> kernels:= List( facts,

> f -> Positions( SizesConjugacyClasses( f ), 2 ) );

[C21, 0211

gap> head2:= StructuralCopy( head );;

gap> ExtendTableHeadByRootClasses( head, facts[1], 2 );

#I after 37 (1+12):6.Suz.2/[ 1, 19 ]: found 12 classes, now have 165
gap> ExtendTableHeadByRootClasses( head2, facts[2], 2 );

#I after 37 (1+12):6.Suz.2/[ 1, 20 ]: found 12 classes, now have 165

We observe that head and head?2 differ only by the two character tables in the last fusion record.

gap> nams:= RecNames( head );

[ "Size", "OrdersClassRepresentatives", "SizesCentralizers",
"fusions" ]

gap> ForAll( Difference( nams, [ "fusions" ] ),

> nam -> head.( nam ) = head2.( nam ) );

true

gap> Length( head.fusions );

5

gap> ForA11( [ 1 .. 41, i -> head.fusions[i] = head2.fusions[i] );
true

gap> head.fusions[5] .map = head2.fusions[5] .map;

true

We continue with establishing the conjugacy classes of M. The question which of the two above
candidate tables belongs to a subgroup of M will be answered in Section 6.

4.5 Classes of elements of order divisible by 5

The group 2.B contains two rational conjugacy classes of elements of order 5, with different values in
the permutation character (12A]B)M

gap> s:= CharacterTable( "2.B" );;

gap> pos:= Positions( OrdersClassRepresentatives( s ), 5 );
[ 23, 25 ]

gap> pi{ pos };

[ 15639000, 7875 ]

This establishes two classes 5A, 5B of conjugacy classes of elements of order 5 in M, with centralizer
orders 5|HN| and 57|2.J2], respectively.

gap> cents:= List( pos,

> i -> pi[i] * Size( s ) / SizesConjugacyClasses( s )[i] );
[ 1365154560000000, 94500000000 ]

gap> cents = [ 5 * Size( CharacterTable( "HN" ) ),

> 57 * Size( CharacterTable( "2.J2" ) ) 1;

true

By [BMW24], we know that M contains exactly two conjugacy classes of elements of order 5, 54 with
centralizer 5 x HN and normalizer (D19 x HN).2, and 5B with centralizer 5?’6.2.‘12 and normalizer
5176.4.5.2.

+

The two classes are rational because this is the case already for their intersections with 2.B.
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gap> s:= CharacterTable( "MN5A" );

CharacterTable( "(D10xHN).2" )

gap> ClassPositionsO0fPCore( s, 5 );

[ 1, 45 1]

gap> ExtendTableHeadByRootClasses( head, s, 45 );
#I after (D10xHN).2: found 5 classes, now have 170

The character table of 51++6.4.J242 has been recomputed with MAGMA, see Section 10, thus we are
allowed to use the character table from the GAP character table library.

gap> s:= CharacterTable( "MN5B" );

CharacterTable( "5 (1+6):2.J2.4" )

gap> bcore:= ClassPositions0fPCore( s, 5 );

[1..4]

gap> SizesConjugacyClasses( s ){ 5core };

[ 1, 4, 37800, 40320 ]

gap> ExtendTableHeadByRootClasses( head, s, 2 );

#I after 5°(1+6):2.J2.4: found 3 classes, now have 173

4.6 Classes of elements of order divisible by 11

The group 2.B contains a rational class of elements of order 11. The permutation character (1%)2,3
yields a class of elements of order 11 with centralizer order 11|Miz| in M.

gap> s:= CharacterTable( "2.B" );;
gap> pos:= Positions( OrdersClassRepresentatives( s ), 11 );
(711

By the arguments in [BMW24], M has no other classes of element order 11.

gap> ExtendTableHeadByPermCharValue( head, s, pi, pos );
#I after order 11 element from 2.B: have 174 classes

4.7 Classes of elements of the orders 17,19, 23, 31,47

The elements of the orders 17,19,23,31,47 in M lie in cyclic Sylow subgroups that appear already in
2.B.

The elements of order 17 and 19 are rational in 2.B and hence also in M.

gap> s:= CharacterTable( "2.B" );;

gap> pos:= Positions( OrdersClassRepresentatives( s ), 17 );
[ 118 ]

gap> ExtendTableHeadByPermCharValue( head, s, pi, pos );

#I after order 17 element from 2.B: have 175 classes

gap> pos:= Positions( OrdersClassRepresentatives( s ), 19 );
[ 128 ]

gap> ExtendTableHeadByPermCharValue( head, s, pi, pos );

#I after order 19 element from 2.B: have 176 classes

For elements g of order p € {23,31,47}, the group 2.B contains exactly two Galois conjugate classes
that contain the nonidentity powers of g, which means that [N2g({g)) : C2.8(g)] = (p — 1)/2 holds.
The equation |Cu(g)| = [2.B| - 7(g)/|¢g"" N 2.B| implies

[N ({9))] = [Nis((9)) = Cua(9)] - 2B - w(9) /19" | = (p — 1)/2 - [2.B] - w(g) /g™ |-
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Note that either the two classes of elements of order p in 2.B fuse in M or not; in the former case, we
have [Nu({g)) : Cu(g)] = p—1 and |g"N2.B| = 2|g>B|, whereas we have [Nu((g)) : Cm(g)] = (p—1)/2
and |g™ N 2.B| = |g*®| in the latter case. Thus we can compute |Nu({g))| in each case, and we can
then find arguments why the two Galois conjugate classes do not fuse.

First we deal with p = 23.

gap> s:= CharacterTable( "2.B" );
CharacterTable( "2.B" )

gap> ord:= OrdersClassRepresentatives( s );;
gap> classes:= SizesConjugacyClasses( s );;
gap> p:= 23;;

gap> pos:= Positions( ord, p );

[ 147, 149 ]

gap> n:= (p-1)/2 * Size( s ) * pi[ pos[1] ] / classes[ pos[1] 1;
6072

gap> Collected( Factors( n ) );

(2,31, 038,11, [11, 11,023,111

In order to prove that the two classes of elements of order 23 in 2.B do not fuse in M, it suffices
to show that the centralizer order is divisible by 23. We see that this is the case already in the 2B
centralizer in M.

gap> u:= CharacterTable( "MN2B" );

CharacterTable( "271+24.Col" )

gap> upos:= Positions( OrdersClassRepresentatives( u ), p );
[ 289, 294 ]

gap> SizesCentralizers( u ){ upos } / 273;

[ 23, 23]

Thus we have established two classes of element order 23 in M.

gap> ExtendTableHeadByPermCharValue( head, s, pi, pos{ [1] } );
#I after order 23 element from 2.B: have 177 classes
gap> ExtendTableHeadByPermCharValue( head, s, pi, pos{ [2] } );
#I after order 23 element from 2.B: have 178 classes

The case p = 31 is done analogously. Here the necessary 2-part of the centralizer occurs already in
2.B.

gap> p:= 31;;

gap> pos:= Positions( OrdersClassRepresentatives( s ), p );

[ 190, 192 1]

gap> n:= (p-1)/2 * Size( s ) * pi[ pos[1] ] / classes[ pos[1] 1;
2790

gap> Collected( Factors( n ) );

(ft2,11, 038,21, 5,11, [31,11]

gap> SizesCentralizers( s ){ pos };

[ 62, 621

gap> ExtendTableHeadByPermCharValue( head, s, pi, pos{ [1] } );
#I after order 31 element from 2.B: have 179 classes

gap> ExtendTableHeadByPermCharValue( head, s, pi, pos{ [2] } );
#I after order 31 element from 2.B: have 180 classes

Finally, we deal with p = 47.
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gap> p:= 47;;
gap> pos:= Positions( OrdersClassRepresentatives( s ), p );

[ 228, 230 ]
gap> n:= (p-1)/2 * Size( s ) * pil[ pos[1] ] / classes[ pos[1] 1;
2162

gap> Collected( Factors( n ) );

[[2,11, [23, 11, [47, 111

gap> SizesCentralizers( s ){ pos };

[ 94, 94 ]

gap> ExtendTableHeadByPermCharValue( head, s, pi, pos{ [1] } );
#I after order 47 element from 2.B: have 181 classes

gap> ExtendTableHeadByPermCharValue( head, s, pi, pos{ [2] } );
#I after order 47 element from 2.B: have 182 classes

4.8 Classes of elements of order 13

The class 13A of M arises from the rational class of elements of order 13 in 2.B. We use the permutation
character to enter the information about the class 13A.

gap> p:= 13;;

gap> pos:= Positions( OrdersClassRepresentatives( s ), p );
[ 97 ]

gap> c:= Size( s ) * pil pos[1] ] / classes[ pos[1] 1;
73008

gap> Factors( ¢ );

[2, 2,2, 2,3, 3, 3, 13, 13 ]

gap> ExtendTableHeadByPermCharValue( head, s, pi, pos );
#I after order 13 element from 2.B: have 183 classes

The class 13B intersects the 2B centralizer. Here we just know the centralizer order 13% - 23 . 3.

gap> c2b:= CharacterTable( "MN2B" );;

gap> pos:= Positions( OrdersClassRepresentatives( c2b ), 13 );

[ 220 ]

gap> ExtendTableHeadByCentralizerOrder( head, c2b, 1373 * 24, pos );
#I after order 13 element from 271+24.Col: have 184 classes

4.9 Classes of elements of order divisible by 29
The group 3.Fizs4 contains a rational class of elements of order 29, with centralizer order 3 - 29.

gap> u:= CharacterTable( "3.Fi24" );;

gap> pos:= Positions( OrdersClassRepresentatives( u ), 29 );
[ 142 1]

gap> SizesCentralizers( u ){ pos };

[ 87 1]

The list of classes of M collected up to now covers all roots of elements of the orders 2, 3,5,11, 13,17, 19, 23, 31,47,
and 29 occurs as a factor of the centralizer order only for the classes 1A, 3A, 87A, and 87B.

gap> poss:= PositionsProperty( head.SizesCentralizers,
> x -> xmod 29 = 0 );

[ 1, 135, 144, 145 ]

gap> head.OrdersClassRepresentatives{ poss };
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[1, 3, 87, 87 1

gap> head.SizesCentralizers{ poss };

[ 808017424794512875886459904961710757005754368000000000,
3765617127571985163878400, 87, 87 ]

Thus the only possible additional prime divisors of the centralizer order in M of an element x of order
29 are 7,41,59, and 71.

gap> candprimes:= Difference( PrimeDivisors( head.Size ),
> [ 2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 47 1 );
[ 7, 41, 59, 71 ]

The centralizer order of z has the form 3-29 - 7% - 417 - 59 . 71!, with 0 < i < 6 and j, k,l € {0,1}.

gap> parts:= Filtered( Collected( Factors( head.Size ) ),

> x -> x[1] in candprimes );

[f7,61, 041,11, 059,11, [71,17]1

gap> poss:= List( parts, 1 -> List( [ 0 .. 1[2] 1, i -> 1[1]171i ) );;
gap> cart:= Cartesian( poss );;

gap> possord:= 3 * 29 *x List( cart, Product );;

Only 329 and 3 - 29 - 59 satisfy Sylow’s theorem, that is, |M|/|Nu({z))| =1 (mod 29). Note that
we have [Ny ((z)) : Cu(z)] = 28.

gap> good:= Filtered( possord,

> x -> ( head.Size / (28 * x ) ) mod 29 =1 );
[ 87, 5133 ]

gap> List( good, Factors );

(03 207, [3,29,591]1]

Now we can exclude the possible centralizer order 3 - 29 - 59 by the fact that the Sylow 59 subgroup
would be normal and thus would be normalized and hence centralized by an element of order 3, a
contradiction.

gap> Filtered( DivisorsInt( 5133 ), x -> x mod 59 = 1 );
[1]

Thus we have established a rational class of elements of order 29, with centralizer of order 3 - 29.
gap> ExtendTableHeadByCentralizerOrder( head, u, 3 * 29, pos );
#I after order 29 element from 3.F3+.2: have 185 classes

4.10 Classes of elements of order divisible by 41

We assume that M contains a subgroup of the structure 3%.0g (3). The fact that an element = of
order 41 in M is normalized by an element of order 4 can be read off from the factor group Og (3).

gap> t:= CharacterTable( "08-(3)" );

CharacterTable( "08-(3)" )

gap> Length( Positions( OrdersClassRepresentatives( t ), 41 ) );
10

By the above arguments, the only possible odd prime divisors of |Nm({x))|/41 are 5,7,59, 71, where

5 cannot divide the centralizer order. As in the case of p = 29, we apply Sylow’s theorem, and get
[Nu({z))] € {2%-5-41,2%.7.41-71}.
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gap> possord:= 272 * 41 x DivisorsInt( 2 * 5 *x 776 * 59 * 71 );;
gap> good:= Filtered( possord,

> x > ( head.Size / x ) mod 41 =1 );
[ 1640, 163016 ]

gap> List( good, Factors );
(02, 2,2,5,411,[2,2,2,7,41, 71 1]

Suppose that 71 divides | Ny ({z))|. Then the 71 Sylow subgroup of Ny ({z)) is normal thus normalized
by an element of order 8, and thus centralized by an involution, a contradiction.

gap> Filtered( DivisorsInt( good[2] ), x -> x mod 71 = 1 );
[11]

Thus we have established a rational class of self-centralizing elements of order 41.

gap> ExtendTableHeadByCentralizerOrder( head, 41, 41, fail );
#I after order 41 element: have 186 classes

4.11 Classes of elements of order divisible by 59

By the above arguments, the normalizer order of an element of order 59 divides 58-7%-59-71. Sylow’s
theorem admits just the normalizer order 59 - 29.

gap> possord:= 59 * DivisorsInt( 58*%776x71 );;

gap> good:= Filtered( possord,

> x > ( head.Size / x ) mod 59 =1 );
[ 1711 ]

gap> List( good, Factors );

[ [29, 5911

Thus we have established a pair of Galois conjugate classes of self-centralizing elements of order 59.

gap> ExtendTableHeadByCentralizerOrder( head, 59, 59, fail );
#I after order 59 element: have 187 classes
gap> ExtendTableHeadByCentralizerOrder( head, 59, 59, fail );
#I after order 59 element: have 188 classes

4.12 Classes of elements of order divisible by 71

By the above arguments, the normalizer order of an element of order 71 divides 70 - 7° - 71. Sylow’s
theorem admits just the normalizer order 71 - 35.

gap> possord:= 71 * DivisorsInt( 70775 );;

gap> good:= Filtered( possord,

> x => ( head.Size / x ) mod 71 =1 );
[ 2485 ]

gap> List( good, Factors );

[[s5, 7, 7111

Thus we have established a pair of Galois conjugate classes of self-centralizing elements of order 71.

gap> ExtendTableHeadByCentralizerOrder( head, 71, 71, fail );
#I after order 71 element: have 189 classes
gap> ExtendTableHeadByCentralizerOrder( head, 71, 71, fail );
#I after order 71 element: have 190 classes
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4.13 Classes of elements of order divisible by 7
The subgroup 2.B yields a rational class 7A with centralizer order 7 - |He|.

gap> s:= CharacterTable( "2.B" );;

gap> pos:= Positions( OrdersClassRepresentatives( s ), 7 );

[ 411]

gap> ExtendTableHeadByPermCharValue( head, s, pi, pos );

#I after order 7 element from 2.B: have 191 classes

gap> Last( head.SizesCentralizers ) = 7 * Size( CharacterTable( "He" ) );
true

By additional arguments, we find that the 7A centralizer has the structure 7 x He, and the normalizer
has the structure (7 : 3 x He).2, a subdirect product of 7 : 6 and He.2.

Since He has a pair of Galois conjugate classes of element order 17, we get also a pair of Galois
conjugate classes of element order 7-17 = 119.

gap> ExtendTableHeadByCentralizerOrder( head, 119, 119, fail );
#I after order 119 element: have 192 classes
gap> ExtendTableHeadByCentralizerOrder( head, 119, 119, fail );
#I after order 119 element: have 193 classes

The second class of elements of order 7, 7B, is established by the fact that the subgroup 3.Fiz4 contains
two classes of elements of order 7, with different values of the degreee 196 883 character x of M.

gap> u:= CharacterTable( "3.Fi24" );;

gap> cand:= Filtered( Irr( u ), x -> x[1] <= 196883 );;
gap> rest:= Sum( cand{ [ 1, 4, 5, 7, 81 } );;

gap> pos:= Positions( OrdersClassRepresentatives( u ), 7 );
[ 41, 43 ]

gap> rest{ pos };

[ 50, 11

Note that class 43 fuses to 7B because the restriction of x to 2.B has the value 50 on 7A.

gap> ExtendTableHeadByCentralizerOrder( head, u, 775 * Factorial(7), [ 431 );
#I after order 7 element from 3.F3+.2: have 194 classes

Now the sum of class lengths in head is equal to the order of M.

gap> Sum( head.SizesCentralizers, x -> head.Size / x ) = head.Size;
true

We initialize the character table head of M.

gap> m:= ConvertToCharacterTableNC( rec(

> UnderlyingCharacteristic:= O,

Size:= head.Size,

SizesCentralizers:= head.SizesCentralizers,
OrdersClassRepresentatives:= head.0OrdersClassRepresentatives,

) )i

vV V Vv VvV

20



5 The power maps of M

Using the element orders of the class representatives of the table head of M, and the partial class
fusions from the subgroups used in the previous sections, we compute approximations of the p-th
power maps, for primes p up to the maximal element order in M.

Note that we have not yet determined which of the two possible character tables of the 3B normalizer
belongs to a subgroup of M, thus we exclude the corresponding partial fusion.

gap> safe_fusions:= Filtered( head.fusions,

> r -> not IsIdenticalObj( r.subtable, facts[1] ) );;
gap> Length( safe_fusions );
6

First we initialize the class fusions, compatible with the definitions of the classes as given by the
partial fusions which we have stored.

gap> for r in safe_fusions do
fus:= InitFusion( r.subtable, m );
for i in [ 1 .. Length( r.map ) ] do
if IsBound( r.map[i] ) then
if IsInt( fus[i] ) then
if fus[i] <> r.map[i] then
Error( "fusion problem" );
fi;
elif IsInt( r.map[i] ) then
if not r.map[i] in fus[i] then
Error( "fusion problem" );
fi;
else
if not IsSubset( fus[i], r.map[i] ) then
Error( "fusion problem" );
fi;
fi;
fus[i]:= r.map[il;
fi;
od;
r.fus:= fus;
od;

VVVVVVVVVVVVVVVVVVYVVYV

Next we initialize approximations of the power maps of the table of M, and improve them using the
compatibility of these maps with the power maps of the subgroups w. r. t. the current knowledge of
the class fusions. Note that also the knowledge about the class fusions increases this way.

gap> maxorder:= Maximum( head.OrdersClassRepresentatives );

119

gap> powermaps:= [];;

gap> primes:= Filtered( [ 1 .. maxorder ], IsPrimeInt );;
gap> for p in primes do

> powermaps [p] := InitPowerMap( m, p );

> for r in safe_fusions do

> subpowermap:= PowerMap( r.subtable, p );

> if TransferDiagram( subpowermap, r.fus, powermaps[p] ) = fail then
> Error( "inconsistency" );

> fi;

> od;

> od;
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We repeat applying the compatibility conditions until no further improvements are found.

gap> found:= true;;

gap> res:= "dummy";; # avoid a syntax warning

gap> while found do

> Print( "#I start a round\n" );

> found:= false;

> for p in primes do

> for r in safe_fusions do

> subpowermap:= PowerMap( r.subtable, p );

> res:= TransferDiagram( subpowermap, r.fus, powermaps[p] );
> if res = fail then

> Error( "inconsistency" );

> elif ForAny( RecNames( res ), nam -> res.( nam ) <> [] ) then
> found:= true;

> fi;

> od;

> od;

> od;

#I start a round

#I start a round

#I start a round

#I start a round

Let us see where the power maps are still not determined uniquely, starting with the 5-th power map.

gap> pos:= PositionsProperty( powermaps[5], IsList );
[ 157, 158, 163, 164, 187, 188, 189, 190, 192, 193 ]
gap> head.OrdersClassRepresentatives{ pos };
[ 15, 15, 39, 39, 59, 69, 71, 71, 119, 119 ]

The ambiguities for the classes of the element orders 59, 71, and 119 are understandable: For each
of these element orders, there is a pair of Galois conjugate classes, and the subgroups whose class
fusions we have used do not contain these elements.

For each of the primes [ € {59, 71}, the field of I-th roots of unity contains a unique quadratic subfield,
which is Q(v/—1), and the p-th power map, for p coprime to [, fixes a class of element order [ if and
only if the Galois automorphism that raises I-th roots of unity to the p-th power fixes v/ —I.

In the case of element order [ = 119 = 7-17, the field of I-th roots of unity contains the three quadratic
subfields, Q(v/—=7), Q(v/17), and Q(v/—119). In order to decide which of them actually occurs, we
look at a subgroup that contains elements of order 119. The 7A centralizer in M has the structure
7 x He, and the normalizer has the structure (7 : 3 X He).2, a subdirect product of 7 : 6 and He.2, see
Section 4.13.

The classes of element order 119 in the normalizer correspond to the classes of this element order in
M, and the character values in the subgroup lie in the field Q(1/—119).

gap> u:= CharacterTable( "(7:3xHe):2" );;

gap> ConstructionInfoCharacterTable( u );

[ "ConstructIndexTwoSubdirectProduct", "7:3", "7:6", "He", "He.2",

[ 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,

130, 131, 132, 133, 134, 135, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224,
225, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307,
308, 309, 310, 311, 312, 313, 314, 3151, O, O 1]

gap> pos:= Positions( OrdersClassRepresentatives( u ), 119 );
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[ 52, 63 ]

gap> f:= Field( Rationals, List( Irr( u ), x -> x[pos[11] ) );;
gap> Sqrt(-119) in f;

true

We insert the relevant power map values.

gap> for 1 in [ 59, 71, 119 ] do

> val:= Sqrt( -1 );

> poss:= Positions( head.OrdersClassRepresentatives, 1 );
> for p in primes do

> if Ged( 1, p ) = 1 then

> if GaloisCyc( val, p ) = val then

> powermaps [p]{ poss }:= poss;

> else

> powermaps [p]{ poss }:= Reversed( poss );
> fi;

> fi;

> od;

> od;

Now p-th power maps, for p > 17, are determined uniquely except for the images of two classes of
element order 39. These classes had been found as roots of 3B elements.

gap> PositionsProperty( powermaps[17], IsList );

[ 163, 164 ]

gap> head.OrdersClassRepresentatives{ [ 163, 164 ] };

[ 39, 39 1]

gap> List( Filtered( head.fusions,

> r -> IsSubset( r.map, [ 163, 1641 ) ),
> r -> r.subtable );

[ CharacterTable( "3 (1+12):6.Suz.2/[ 1, 19 1" ) ]

In order to decide whether the p-th power map fixes or swaps the two classes, we consider elements
of order 78, which are the square roots of the order 39 elements. There are three classes of element
order 78 in M, a rational class that powers to 2A and a pair of Galois conjugate classes that power to
2B.

gap> 78pos:= Positions( head.OrdersClassRepresentatives, 78 );
[ 37, 132, 133 ]

gap> head.fusions[1].subtable;

CharacterTable( "2.B" )

gap> Intersection( 78pos, head.fusions[1].map );

[ 371

gap> s:= head.fusions[2].subtable;

CharacterTable( "271+24.Col" )

gap> Intersection( 78pos, head.fusions[2].map );

[ 132, 133 ]

gap> Positions( head.fusions[2].map, 132 );
[ 342 ]

gap> Positions( head.fusions[2] .map, 133 );
[ 344 ]

gap> PowerMap( s, 7 )[342];

344
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Since the 3B normalizer in M contains a pair of Galois conjugate classes of element order 78 which
power to the generators of the normal subgroup of order 3, these two classes fuse to the non-rational
M-classes of elements of order 78, and their squares are the classes of element order 39 we are interested
in.

gap> poss:= Filtered( head.fusions, r -> IsSubset( r.map, [ 163, 164 1 ) );;
gap> List( poss, r -> r.subtable );

[ CharacterTable( "37(1+12):6.Suz.2/[ 1, 19 1" ) 1]

gap> Position( poss[1].map, 163 );

173

gap> Position( poss[1].map, 164 );

174

gap> List( facts, s -> Positions( OrdersClassRepresentatives( s ), 39 ) );
[ 0173, 1741, [ 173, 1741 1]

gap> List( facts, s -> PowerMap( s, 7 )[173] );

[ 174, 174 ]

The field of character values on the two classes of M is equal to the corresponding field of character
values in the 3B normalizer, which is Q(v/—39). (Note that we have not yet decided which of the two
candidate tables belong to the 3B normalizer, but we get the same result for both candidates.)

gap> fields:= List( facts,

> s -> Field( Rationals, List( Irr( s ),

> x => x[1731 ) ) )3,
gap> Length( Set( fields ) );

1

gap> Sqrt(-39) in fields[1];

true

Now we can set the power map values on the two classes.

gap> val:= Sqrt( -39 );;

gap> poss:= [ 163, 164 ];;

gap> for p in primes do

> if Ged( 39, p ) = 1 then

> if GaloisCyc( val, p ) = val then

> powermaps [p]{ poss }:= poss;

> else

> powermaps [p]{ poss }:= Reversed( poss );

> fi;

> fi;

> od;

gap> List( powermaps, Indeterminateness );

[, 2048, 1536,, 4,, 2,,,, 2,5, 9,55, 1,5 1,,,, 1,,,,,5 1,, 1,,,,,, 1,,

3 17: 1:73: 173::5) 173:::7 1)5 1:7:::: 1:)5) 17; 1:73:15 1:7:) 173
EEIE 1::,:,,)’ 1,:,: 1:, 1,:3, 1:: 1,:y; 1]

In the following, we use the two candidates for the 3B normalizer table for answering most of the
remaining questions about the power maps. Again, the answers are equal for both candidate tables.

First we initialize the class fusion from the first candidate table ...

gap> r:= First( head.fusions, r -> IsIdenticalObj( r.subtable, facts[1] ) );;
gap> fus:= InitFusion( r.subtable, m );;

gap> for i in [ 1 .. Length( r.map ) ] do

> if IsBound( r.map[i] ) then
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> if IsInt( fus[i] ) then

> if fus[i] <> r.map[i] then

> Error( "fusion problem" );

> fi;

> elif IsInt( r.map[i] ) then

> if not r.map([i] in fus[i] then
> Error( "fusion problem" );

> fi;

> else

> if not IsSubset( fus[i], r.map[i] ) then
> Error( "fusion problem" );

> fi;

> fi;

> fus[il:= r.map[i];

> fi;

> od;

gap> r.fus:= fus;;
...and the class fusion from the second candidate table, ...

gap> r2:= First( head2.fusions, r -> IsIdenticalObj( r.subtable, facts[2] ) );;
gap> fus2:= InitFusion( r2.subtable, m );;

gap> for i in [ 1 .. Length( r2.map ) ] do

> if IsBound( r2.map[i] ) then

> if IsInt( fus2[i] ) then

> if fus2[i] <> r2.map[i] then

> Error( "fusion problem" );

> fi;

> elif IsInt( r2.map[i] ) then

> if not r2.map[i] in fus2[i] then
> Error( "fusion problem" );

> fi;

> else

> if not IsSubset( fus2[i], r2.map[i] ) then
> Error( "fusion problem" );

> fi;

> fi;

> fus2[i] := r2.map[i];

> fi;

> od;

gap> r2.fus:= fus2;;

...then we create an independent copy of the current approximations of power maps, and apply the
consistency conditions for class fusion and power maps in the two cases.

gap> powermaps2:= StructuralCopy( powermaps );;
gap> s:= r.subtable;

CharacterTable( "37(1+12):6.Suz.2/[ 1, 19 1" )
gap> for p in primes do

> if TransferDiagram( PowerMap( s, p ), fus, powermaps[p] ) = fail then
> Error( "inconsistency" );

> fi;

> od;

gap> s2:= r2.subtable;
CharacterTable( "3 (1+12):6.Suz.2/[ 1, 20 1" )
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gap> for p in primes do

> if TransferDiagram( PowerMap( s2, p ), fus2, powermaps2[p] ) = fail then
> Error( "inconsistency" );

> fi;

> od;

gap> powermaps = powermaps2;

true

gap> List( powermaps, Indeterminateness );

[5 32’ 64” 175 1)75) 1’} 1”}) 1,, 1})1’ 1)75,,) 1)1 1})75” 15),’
1’3 1,7’) 1’)”3’ 17’)’5’ 1’5 1’7’)!9 1”5’ 17’ 197”’5 1”3) 17’)’5
R TN N I N T R A

One open question is about the squares of the non-rational classes of element order 78.

gap> powermaps[2]{ [ 132, 133 ] };

[ [ 163, 164 1, [ 163, 164 ] ]

gap> pos78:= List( facts,

> s —> Positions( OrdersClassRepresentatives( s ), 78 ) );
[ [ 235, 236 ], [ 235, 236 ] 1]

gap> fus{ [ 235, 236 1 };

[ [ 132, 1331, [ 132, 1331 ]

gap> fus2{ [ 235, 236 ] };

[ [ 132, 133 ], [ 132, 133 ] ]

We may identify one class of element order 78 in the 3B normalizer with the corresponding class of
M, and then draw conclusions.

gap> fus[235]:= 132;;

gap> fus2[235]:= 132;;

gap> TransferDiagram( PowerMap( s, 2 ), fus, powermaps[2] ) <> fail;
true

gap> TransferDiagram( PowerMap( s2, 2 ), fus2, powermaps2[2] ) <> fail;
true

gap> powermaps = powermaps2;

true

gap> List( powermaps{ [ 2, 3 ] }, Indeterminateness );

(8, 64]

Since also the cubes of the concerned classes of element order 39 are still not determined, this question
is now decided using that the 2nd and the 3rd power map commute.

gap> powermaps[3]{ [ 163, 164 ] };

[ [ 183, 1841, [ 183, 184 ] 1]

gap> TransferDiagram( powermaps[2], powermaps[3], powermaps[2] ) <> fail;
true

gap> List( powermaps{ [ 2, 3 ] }, Indeterminateness );

(8, 161

The next open question is about the cubes of elements of order 93. The classes of element order 93
—a pair of Galois conjugate classes— have been found inside subgroups of the type Ss x Th, and they
do not occur in other subgroups we have considered. Thus we may choose which of them cubes to
the first class of element order 31.

gap> poss:= Filtered( head.fusions,
> r -> 93 in OrdersClassRepresentatives( r.subtable ) );;
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gap> List( poss, r -> r.subtable );
[ CharacterTable( "ThxSym(3)" ) ]

gap> pos93:= Positions( head.OrdersClassRepresentatives, 93 );
[ 152, 153 ]

gap> powermaps [3]1{ pos93 };

[ [179, 180 1, [ 179, 180 ] ]

gap> powermaps[3] [152] := 179;;

gap> TransferDiagram( PowerMap( poss[1].subtable, 3 ), poss[1].fus,

> powermaps[3] ) <> fail;

true

gap> List( powermaps{ [ 2, 3 1 }, Indeterminateness );
[8, 4]

The next open question is about the cubes of elements of order 69. The classes of element order 69
—a pair of Galois conjugate classes— have been found inside subgroups of the type 3.Fiz4, and they do

not occur in other subgroups we have considered. Thus we may choose which of them cubes to the
first class of element order 23.

gap> poss:= Filtered( head.fusions,

> r -> 69 in OrdersClassRepresentatives( r.subtable ) );;

gap> List( poss, r -> r.subtable );
[ CharacterTable( "3.F3+.2" ) ]

gap> pos69:= Positions( head.OrdersClassRepresentatives, 69 );
[ 142, 143 ]

gap> powermaps [3]1{ pos69 };

L0177, 178 1, [ 177, 178 1 ]

gap> powermaps[3]{ [ 142, 143 1 }:= [ 177, 178 1;;

gap> TransferDiagram( PowerMap( poss[1].subtable, 3 ), poss[1].fus,

> powermaps [3] ) <> fail;

true

gap> List( powermaps{ [ 2, 3 ] }, Indeterminateness );
[s, 11

The next open question is about the squares of certain elements of order 46. There are two pairs of

Galois conjugate classes of element order 46, and the 2nd power map is not yet determined for those
classes which power to the class 2B.

gap> pos46:= Positions( head.OrdersClassRepresentatives, 46 );
[ 26, 27, 118, 120 ]

gap> powermaps[2]{ pos46 };

[ 177, 178, [ 177, 178 1, [ 177, 178 ] ]

gap> powermaps [23]{ pos46 };

[ 2, 2, 44, 44 1]

We have defined the two classes of element order 23 as squares of those two classes of element order

46 that power to 2A, and we have not yet distinguished the other two classes of element order 46.
Thus we may set the power map values.

gap> powermaps[2]{ [ 118, 120 1 }:= [ 177, 178 1;;

gap> Indeterminateness ( powermaps[2] );
2

Now just one value is left to be determined, the square of a class of element order 18 and centralizer
order 3888.
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gap> powermaps [2] [78];

[ 165, 156 ]

gap> head.OrdersClassRepresentatives[78];
18

gap> head.SizesCentralizers[78];

3888

There are two classes with this property in M, both are roots of the generators of the normal subgroup
of order 3 in 3i+12.2.Suz.2, and the corresponding two classes in this subgroup have the same square.

gap> Filtered( [ 1 .. Length( head.OrdersClassRepresentatives ) ],

> i -> head.OrdersClassRepresentatives[i] = 18 and
> head.SizesCentralizers[i] = 3888 );

[ 78, 79 1]

gap> powermaps[3]{ [ 78, 79 1 };

[ 52, 52 ]

gap> powermaps [2] [52] ;

154

gap> First( head.fusions, r -> 154 in r.map ).subtable;
CharacterTable( "3~ (1+12):6.Suz.2/[ 1, 19 1" )

gap> s:= facts[1];

CharacterTable( "3 (1+12):6.Suz.2/[ 1, 19 1" )

gap> pos18:= Filtered( [ 1 .. NrConjugacyClasses( s ) 1,

> i -> OrdersClassRepresentatives( s )[i] = 18 and
> SizesCentralizers( s )[i] = 3888 );

[ 67, 83 1]

gap> PowerMap( s, 2 ){ posi8 };

[ 24, 24 ]

gap> s:= facts[2];

CharacterTable( "3 (1+12):6.Suz.2/[ 1, 20 1" )

gap> pos18:= Filtered( [ 1 .. NrConjugacyClasses( s ) 1,

> i -> OrdersClassRepresentatives( s )[i] = 18 and
> SizesCentralizers( s )[i] = 3888 );

[ 67, 831

gap> PowerMap( s, 2 ){ posi8 };

[ 24, 24 1]

We set the last missing value, and improve the approximations of the class fusions we have used, by
applying the consistency criteria.

gap> powermaps [2] [78] := powermaps[2] [79];;
gap> for r in safe_fusions do
> if not TestConsistencyMaps( ComputedPowerMaps( r.subtable ), r.fus,
powermaps ) then
Error( "inconsistent!" );
fi;
od;
gap> r:= First( head.fusions, r -> IsIdenticalObj( r.subtable, facts[1] ) );;
gap> TestConsistencyMaps( ComputedPowerMaps( r.subtable ), r.fus,
> powermaps ) ;
true
gap> r2:= First( head2.fusions, r -> IsIdenticalObj( r.subtable, facts[2] ) );;
gap> TestConsistencyMaps( ComputedPowerMaps( r2.subtable ), r2.fus,
> powermaps ) ;
true

vV V V V

gap> SetComputedPowerMaps( m, powermaps );
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6 The degree 196883 character y of M

We know the values of the irreducible degree 196 883 character x of M on the classes of 2.B, by
Section 2.

gap> r:= head.fusions[1];;

gap> s:= r.subtable;

CharacterTable( "2.B" )

gap> cand:= Filtered( Irr( s ), x -> x[1] <= 196883 );;
gap> List( cand, x -> x[1] );

[ 1, 4371, 96255, 96256 ]

gap> rest:= Sum( cand );;

gap> rest[1];

196883

Thus we know the values of x on those classes of Ml that are known as images of the class fusion from
2.B. This yields 111 out of the 194 character values.

gap> chi:= [];;
gap> map:= r.fus;;
gap> for i in [ 1 .. Length( map ) ] do

> if IsInt( map[i] ) then

> chi[ map[i] ]:= rest[i];
> fi;

> od;

gap> Number( chi );

111

Also the restriction of x to 3.Fizs is known, by Section 2. This yields 29 more character values.

gap> r:= head.fusions[3];;

gap> s:= r.subtable;

CharacterTable( "3.F3+.2" )

gap> cand:= Filtered( Irr( s ), x -> x[1] <= 196883 );;
gap> rest:= Sum( cand{ [ 1, 4, 5, 7, 81 } );;

gap> rest[1];

196883

gap> map:= r.fus;;

gap> for i in [ 1 .. Length( map ) ] do

> if IsInt( map[i] ) then

> if IsBound( chil map[i] ] ) and chil map[i] ] <> rest[i] then
> Error( "inconsistency!" );

> fi;

> chil[ map[i] ]:= rest[il;

> fi;

> od;

gap> Number( chi );

140

Now we compute the restriction of x to the 2B normalizer. There are only 13 possible irreducible
constituents of this restriction. We consider the matrix of values of these characters on those classes
for which the class fusion to M is uniquely known and the value of x on the image class is known.
This matrix has full rank, thus we can directly compute the decomposition of the restriction into
irreducibles, and get 41 more character values.
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gap> r:= head.fusions[2];;

gap> s:= r.subtable;

CharacterTable( "271+24.Col" )

gap> cand:= Filtered( Irr( s ), x -> x[1] <= chi[1] );;
gap> map:= r.fus;;

gap> knownpos:= Filtered( [ 1 .. Length( map ) 1],

> i => IsInt( map[i] ) and IsBound( chil map[i]l 1 ) );;
gap> rest:= List( knownpos, i -> chil map[il 1 );;

gap> mat:= List( cand, x -> x{ knownpos } );;

gap> Length( mat );

13

gap> RankMat( mat );

13

gap> sol:= SolutionMat( mat, rest );
to,o0,1,0,0,0,0,0,0,0,0,1, 1]

gap> rest:= sol * cand;;

gap> for i in [ 1 .. Length( map ) ] do

> if IsInt( map[i] ) then chil map[i] ]:= rest[i]; fi;
> od;

gap> Number( chi );

181

Which values are still missing?

gap> missing:= Filtered( [ 1..194 ], i -> not IsBound( chi[i] ) );
[ 151, 152, 153, 160, 169, 170, 186, 187, 188, 189, 190, 192, 193 ]
gap> head.OrdersClassRepresentatives{ missing };

[ 67, 93, 93, 27, 95, 95, 41, 59, 59, 71, 71, 119, 119 ]

gap> head.SizesCentralizers{ missing };

[ 67, 93, 93, 243, 95, 95, 41, 59, 59, 71, 71, 119, 119 ]

For g € M, we have x(g) = x(¢?) (mod p) and |x(g)|> < |Cu(g)|. We apply these conditions. In all
cases except one, the centralizer orders are small enough for determining the character value uniquely.

gap> for i in missing do
ord:= head.OrdersClassRepresentatives[i];
divs:= PrimeDivisors( ord );
if ForAll( divs, p -> IsBound( chil powermaps[p][i] ] ) ) then
congr:= List( divs, p -> chi[ powermaps[p][i] ] mod p );
res:= ChineseRem( divs, congr );
modulus:= Lcm( divs );
c:= head.SizesCentralizers[i];
Print( "#I |gl| = ", head.OrdersClassRepresentatives[i],
",oleM@) |l =, e,
": value ", res, " modulo ", modulus, "\n" );
if ( res + 2 * modulus )"2 >= ¢ and ( res - 2 * modulus )~2 >= c then
cand:= Filtered( res + [ -1 .. 1 ] * modulus, a -> a2 < c );
if Length( cand ) = 1 then
chi[i]:= cand[1];
fi;
fi;
fi;
od;
gl
gl

VVVVVVVVVVVVVVVVYVYV

H
H

57, 1C_M(g) |
93, IC_M(g) |

57: value 56 modulo 57
93: value 92 modulo 93

*
H
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#I Igl = 93, |C_M(g)| = 93: value 92 modulo 93
#I gl = 27, |C_M(g)| = 243: value 2 modulo 3
#I gl = 95, |C_M(g)| = 95: value O modulo 95
#I Igl = 95, |C_M(g)| = 95: value O modulo 95
#I gl = 41, |C_M(g)| = 41: value 1 modulo 41
#I gl = 59, |C_M(g)| = 59: value O modulo 59
#I Igl = 59, |C_M(g)| = 59: value 0 modulo 59

#I gl =71, IC_M(g)| = 71: value 0 modulo 71

#I gl = 71, |C_M(g)| = 71: value O modulo 71

#I Igl = 119, |C_M(g)| = 119: value 118 modulo 119

#I gl = 119, IC_M(g)| = 119: value 118 modulo 119

gap> missing:= Filtered( [ 1..194 ], i -> not IsBound( chi[i] ) );
[ 160 ]

The one missing value can be computed from the scalar product with the trivial character.

gap> diff:= Difference( [ 1 .. NrConjugacyClasses( m ) ], missing );;
gap> classes:= SizesConjugacyClasses( m );;

gap> sum:= Sum( diff, i -> classes[i] * chi[i] );
-6650349175263480459970863415322722279882752000000000

gap> chil missing[1] ]:= - sum / classes[ missing[1] ];

2

Now we decide which of the two candidates for the character table of the 3B normalizer is the correct
one. For the first candidate, the restriction of x cannot be decomposed into irreducibles.

gap> r:= First( head.fusions, r -> IsIdenticalObj( r.subtable, facts[1] ) );;
gap> map:= r.fus;;

gap> knownpos:= Filtered( [ 1 .. Length( map ) 1, i -> IsInt( map[il ) );;
gap> rest:= List( knownpos, i -> chil map[i] 1 );;

gap> cand:= Filtered( Irr( r.subtable ), x -> x[1] <= chi[1] );;

gap> mat:= List( cand, x -> x{ knownpos } );;

gap> Length( mat );

95

gap> RankMat( mat );

88

gap> SolutionMat( mat, rest );

fail

The second candidate admits a decomposition.

gap> r2:= First( head2.fusions, r -> IsIdenticalObj( r.subtable, facts[2] ) );;
gap> map:= r2.fus;;

gap> knownpos:= Filtered( [ 1 .. Length( map ) ], i -> IsInt( map[il ) );;

gap> rest:= List( knownpos, i -> chil map[i] ] );;

gap> cand:= Filtered( Irr( r2.subtable ), x -> x[1] <= chil1] );;

gap> mat:= List( cand, x -> x{ knownpos } );;

gap> Length( mat );

95

gap> RankMat( mat );

88

gap> SolutionMat( mat, rest );

fro,o,o0,1o0,o0,0o0,o0,00,o00,000,00,0,0,0,0,0,
o, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O,
o, o, o0, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O

> > B > > > > >

M
M
-
M
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o’ 0’ O’ O, o’ 0) O’ 0’ 0’ O, O’ OJ 0’ o’ 0’ O’ O, OJ 0’ o’ 0’ O’
0, 0, 0,1, 1,1, 01
gap> Add( safe_fusions, r2 );

The character table of the second candidate is equivalent to the character table that is stored in the
GAP character table library.

gap> TransformingPermutationsCharacterTables( r2.subtable,
> CharacterTable( "MN3B" ) ) <> fail;
true

7 The irreducible characters of M

We will not compute the irreducibles of M from scratch but verify the irreducibles from the ATLAS
character table of M, in the sense that we use the characters printed in the ATLAS as an “oracle”.
For that, we compute first a bijection between the columns of our character table head and those
of the ATLAS character table of M. This is done by using the following invariants: element orders,
centralizer orders, the values of x, and the indirection of x by the 2nd power map.

gap> invs:= TransposedMat( [

> OrdersClassRepresentatives( m ),

> SizesCentralizers( m ),

> chi,

> CompositionMaps( chi, PowerMap( m, 2 ) ) 1 );;

gap> invs_set:= Set( invs );;
gap> Length( invs_set );

gap> atlas_m:= CharacterTable( "M" );;
gap> invs_atlas:= TransposedMat( [

> OrdersClassRepresentatives( atlas_m ),

> SizesCentralizers( atlas_m ),

> Irr( atlas_m )[2],

> CompositionMaps( Irr( atlas_m )[2], PowerMap( atlas_m, 2 ) ) ] );;

gap> invs_atlas_set:= Set( invs_atlas );;
gap> invs_atlas_set = invs_set;
true

In particular, we see that the sets of invariants are equal for the two tables.

Note that we cannot get a better choice of invariants, since there are 22 pairs of Galois conjugate
classes in M, and our current knowledge does not allow us to distinguish the classes of each pair.

Now we compute a permutation that maps the classes of the ATLAS table to suitable classes of our
table head, permute the irreducibles of the ATLAS table accordingly, and create the “oracle” list.

(The explicit permutation (32,33)(179, 180) makes sure that the power maps of the ATLAS table and
of our table are compatible.)

gap> pil:= SortingPerm( invs );;

gap> pi2:= SortingPerm( invs_atlas );;

gap> pi:= pi2 / pil * (32,33)(179,180);;

gap> oracle:= List( Irr( atlas_m ), x -> Permuted( x, pi ) );;

In order to prohibit that GAP tries to compute table automorphisms of our table head of M (which is
impossible without knowing the irreducible characters), we set a trivial group as value of the attribute
Automorphisms0fTable; this will be revised as soon as the irreducibles are known.
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gap> SetAutomorphisms0fTable( m, Group( () ) );

First we compute candidates for the class fusion from 2.B, starting from the approximation we have
already computed. Before we apply GAP’s criteria for computing possible class fusions, we decide
about the images of four classes of element orders 40 and 44.

gap> r:= safe_fusions[1];;

gap> s:= r.subtable;

CharacterTable( "2.B" )

gap> pos:= [ 217, 218, 222, 223 ];;

gap> r.fus{ pos };

[ [110, 1121, [ 110, 111 ], [ 88, 89 1, [ 88, 89 1 1
gap> OrdersClassRepresentatives( s ){ pos };

[ 40, 40, 44, 44 ]

The two classes of element order 40 are a pair of Galois conjugates in both 2.B and M. Note that
their elements are roots of 2B elements in M, and the classes 110 and 111 correspond to non-rational
elements of order 40 in the 2B normalizer.

gap> r.fus[ PowerMap( s, 20 )[217] ];

44

gap> r2:= safe_fusions[2];;

gap> s2:= r2.subtable;

CharacterTable( "2°1+24.Col" )

gap> Position( r2.map, 110 );

273

gap> ForAll( Irr( s2 ), x -> IsInt( x[273] ) );
false

We may freely choose the fusion from the classes 217 and 218 of 2.B because there is a table auto-
morphism of 2.B that swaps exactly these two classes.

gap> (217,218) in Automorphisms0fTable( s );
true
gap> r.fus{ [ 217, 218 ] }:= [ 110, 111 ];;

With the same argument, also the two classes of element order 44 are a pair of Galois conjugates
both in 2.B and M.

gap> r.fus[ PowerMap( s, 22 )[ 222 ] 1;

44

gap> Position( r2.map, 88 );

178

gap> ForAll( Irr( s2 ), x -> IsInt( x[178] ) );
false

There is a table automorphism of 2.B that swaps three pairs of classes, where the classes of element
order 44 form one pair, and each of the other two pairs is fused in M. Thus we may again freely
choose the fusion from 222 and 223.

gap> (143,144) (222,223) (244,245) in AutomorphismsOfTable( s );
true

gap> r.fus{ [ 143, 144, 244, 245 ] };

[ 15, 15, 34, 34 ]

gap> r.fus{ [ 222, 223 ] }:= [ 88, 89 1;;
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Now the remaining open questions about the class fusion from 2.B can be answered by GAP’s function
PossibleClassFusions.

gap> knownirr:= [ TrivialCharacter( m ), chi ];;
gap> poss:= PossibleClassFusions( s, m,

> rec( chars:= knownirr, fusionmap:= r.fus ) )
gap> List( poss, Indeterminateness );
[1]

Now we can induce the irreducibles of 2.B to M.
gap> induced:= InducedClassFunctionsByFusionMap( s, m, Irr( s ), poss[1] );;

Next we compute candidates for the class fusions from the subgroups 21L+24.Col, 3fr+12.2,Suz.2, and
3.Fiz4. Here we enter also the characters of M obtained by induction from 2.B, because their restric-
tions to the subgroups provide additional conditions.

The fusion from 23_'*'24.001 is determined uniquely up to automorphisms of the subgroup table. We
extend the list of known induced characters.

gap> poss:= PossibleClassFusions( s2, m,

> rec( chars:= Concatenation( knownirr, induced ),

> fusionmap:= r2.fus ) );;

gap> List( poss, Indeterminateness );

[1,1,1, 1]

gap> Length( RepresentativesFusions( AutomorphismsOfTable( s2 ), poss,

> Group( O ) ) );

1

gap> Append( induced,

> InducedClassFunctionsByFusionMap( s2, m, Irr( s2 ), poss[1] ) );

In order to compute the fusion from 31++12.2.Suz.2, we have to consider two classes of element order

56 first. They are a pair of Galois conjugates both in 31*12.2.Suz.2 and M, and we may freely choose
their fusion because there is a table automorphism of 3i_+12.2.Suz.2 that swaps exactly these two
classes.

gap> r:= safe_fusions[7];;

gap> s:= r.subtable;

CharacterTable( "3 (1+12):6.Suz.2/[ 1, 20 1" )
gap> pos:= Positions( OrdersClassRepresentatives( s ), 56 );
[ 250, 251 ]

gap> r.fus{ pos };

[ [ 125, 126 1, [ 125, 126 1 ]

gap> r.fus[ PowerMap( s, 28 )[ 250 ] 1;

44

gap> Position( r2.map, 125 );

319

gap> ForAll( Irr( s2 ), x -> IsInt( x[319] ) );
false

gap> (250, 251) in AutomorphismsOfTable( s );
true

gap> r.fus{ [ 250, 251 ] }:= [ 125, 126 1;;

Now the class fusion to M is determined uniquely up to table automorphisms of the subgroup, and
we extend the list of induced characters.
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gap> poss:= PossibleClassFusions( s, m,

> rec( chars:= Concatenation( knownirr, induced ),

> fusionmap:= r.fus ) );;

gap> List( poss, Indeterminateness );

[1, 1]

gap> Length( RepresentativesFusions( Automorphisms0fTable( s ), poss,
> Group( O ) ) );

1

gap> Append( induced,

> InducedClassFunctionsByFusionMap( s, m, Irr( s ), poss[1] ) );

The fusion from 3.Fi24 is determined uniquely up to automorphisms of the subgroup table. We extend
the list of known induced characters.

gap> r:= safe_fusions[3];;

gap> s:= r.subtable;

CharacterTable( "3.F3+.2" )

gap> poss:= PossibleClassFusions( s, m,

> rec( chars:= Concatenation( knownirr, induced ),

> fusionmap:= r.fus ) );;

gap> List( poss, Indeterminateness );

[ 1]

gap> Append( induced,

> InducedClassFunctionsByFusionMap( s, m, Irr( s ), poss[1l] ) );

Next we induce the irreducible characters of cyclic subgroups.

gap> Append( induced,
> InducedCyclic( m, [ 2 .. NrConjugacyClasses( m ) ], "all" ) );

Now we reduce the induced characters with the two known irreducibles of M, and apply the LLL
algorithm to the result of the reduction; this yields four new irreducibles.

gap> red:= Reduced( m, knownirr, induced );;
gap> Length( red.irreducibles );

0

gap> 111:= LLL( m, red.remainders );;

gap> Length( 111.irreducibles );

4

We extend the list of known irreducibles, reduce the induced characters, and apply LLL again.

gap> knownirr:= Union( knownirr, 11l.irreducibles );;
gap> red:= Reduced( m, knownirr, induced );;

gap> Length( red.irreducibles );

0

gap> 111:= LLL( m, red.remainders );;

gap> Length( 11l.irreducibles );

0

Now we use the irreducibles of the ATLAS table of M as an oracle, as follows. Whenever a character
from the oracle list belongs to the Z-lattice that is spanned by 111.remainders then we regard this
character as verified, since we can compute the coefficients of the Z-linear combination, form the
character, and check that it has indeed norm 1.
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gap> mat:= MatScalarProducts( m, oracle, 1lll.remainders );;
gap> norm:= NormalFormIntMat( mat, 4 );;

gap> rowtrans:= norm.rowtrans;;

gap> normal:= norm.normal{ [ 1 .. norm.rank ] };;

gap> one:= IdentityMat( NrConjugacyClasses( m ) );;

gap> for i in [ 2 .. Length( one ) ] do

> extmat:= Concatenation( normal, [ onel[i] ] );

> extlen:= Length( extmat );

> extnorm:= NormalFormIntMat( extmat, 4 );

> if extnorm.rank = Length( extnorm.normal ) or

> extnorm.rowtrans[ extlen ][ extlen ] <> 1 then
> coeffs:= fail;

> else

> coeffs:= - extnorm.rowtrans[ extlen ]{ [ 1 .. extnorm.rank ] }
> * rowtrans{ [ 1 .. extnorm.rank ] };
> fi;

> if coeffs <> fail and ForAll( coeffs, IsInt ) then
> # The vector lies in the lattice.

> chi:= coeffs * 1ll.remainders;

> if not chi in knownirr then

> Add( knownirr, chi );

> fi;

> fi;

> od;

gap> Length( knownirr );

66

gap> Set( knownirr, chi -> ScalarProduct( m, chi, chi ) );
[ 1]

We take the generators of the Z-lattice and some symmetrizations of the known irreducibles, reuce
them with the known irreducibles, and apply LLL again.

gap> red:= Reduced( m, knownirr, 1lll.remainders );;

gap> Length( red.irreducibles );

0

gap> sym:= Symmetrizations( m, knownirr, 2 );;

gap> sym:= Reduced( m, knownirr, sym );;

gap> Length( sym.irreducibles );

0

gap> 111:= LLL( m, Concatenation( red.remainders, sym.remainders ) );;
gap> Length( 111.irreducibles );

0

We use the above oracle again, for the new Z-lattice.

gap> mat:= MatScalarProducts( m, oracle, lll.remainders );;
gap> norm:= NormalFormIntMat( mat, 4 );;

gap> rowtrans:= norm.rowtrans;;

gap> normal:= norm.normal{ [ 1 .. norm.rank ] };;

gap> one:= IdentityMat( NrConjugacyClasses( m ) );;

gap> for i in [ 2 .. Length( one ) ] do

> extmat:= Concatenation( normal, [ onel[i] ] );
> extlen:= Length( extmat );

> extnorm:= NormalFormIntMat( extmat, 4 );

> if extnorm.rank = Length( extnorm.normal ) or
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> extnorm.rowtrans[ extlen ][ extlen ] <> 1 then
> coeffs:= fail;

> else

> coeffs:= - extnorm.rowtrans[ extlen ]{ [ 1 .. extnorm.rank ] }
> * rowtrans{ [ 1 .. extnorm.rank ] };
> fi;

> if coeffs <> fail and ForAll( coeffs, IsInt ) then
> Add( knownirr, coeffs * 1ll.remainders );

> fi;

> od;

gap> Length( knownirr );

194

Now we are done. As stated in the beginning of this section, we unbind the stored trivial value for
AutomorphismsOfTable.

gap> SetIrr( m, List( knownirr, x -> ClassFunction( m, x ) ) );
gap> ResetFilterObj( m, HasAutomorphismsOfTable ) ;

gap> TransformingPermutationsCharacterTables( m, atlas_m ) <> fail;
true

8 Appendix: The character table of 2!%*.Co,

The centralizer C of a 2B element in M has the structure 2?24.001, which can be constructed as
follows.
Consider a subdirect product H of two groups H/X and H/N, where X is a cyclic group of order
two, N is an extraspecial group 2?24, H/N is the double cover of Coi, and H/X is an extension of
gl+24 by Cos.

+

The centre of H is a Klein four group E whose order two subgroups are X, Y = Z(N), and a third
subgroup D. We have C = H/D.

From the 2-local construction of a matrix representation for M, we know the following faithful repre-
sentations, given by generators that are preimages of standard generators of Cos.
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e A monomial permutation representation of H/E = 2**.Co, of degree 98 280 over the field with
three elements,

e a matrix representation of H/X 2 21++24.Co1, of dimension 4096 over the field with three
elements,

e a matrix representation of H/N 22 2.Co1, of dimension 24 over the field with three elements.
We proceed in the following steps.

e First we compute conjugacy class representatives of H/E.

e A faithful permutation representation of H/Y on 2 - 196560 = 393 120 points is obtained by
glueing the permutation generators of H/E (on 2 - 98280 = 196 560 points) and H/N (the
smallest permutation representation of 2.Co1, on 196 560 points) together.

The character table of this permutation group can be computed directly with MAGMA in about
16 hours of CPU time.

e Starting from the character table of the factor group H/E, the 3-modular matrix representation
of dimension 4096 of H/X is used to compute necessary class splittings from H/E to H/X, as
follows.

This representation lifts to characteristic zero because its restriction to the extraspecial group
M/X is the unique faithful irreducible 3-modular representation of M/X, and because this
representation extends to the full automorphism group of the extraspecial group. Thus we can
compute the Brauer character values of the representation on the 3-regular classes of H/X, and
interpret the values as those of an ordinary character 1, say. The tensor square 12 belongs to
the group H/E, and the known values of ¢ suffice to determine the decomposition of ? into
irreducibles of H/E, and thus to compute also the values of 1% on 3-singular classes. Taking
square roots, we get all values of ¥, up to signs. (We cannot distinguish which of the two values
belongs to which of the two preimage classes, which just means that we are defining these classes
by choosing the positive value for one of them, and the negative value for the other one.)

e From now on, we argue character-theoretically.

The missing irreducible characters of H/X are computed as tensor products of ¢ with the
irreducible characters of the factor group H/M = Co.

Note that this procedure yields enough new irreducible characters such that the sum of degree
squares of all known irreducibles of H/X equals the order of this group. This implies that there
are not more class splittings w. r. t. the fusion from H/X to H/E than the splittings forced by
the values of .

e Using the two class splittings from H/X and H/Y to H/E, we compute necessary class splittings
from H to H/E. That is, we create a character table head for H together with class fusions to
H/X and H/Y, assuming that not more columns occur than is forced by H/X and H/Y: For
each class of H/E that splits in both H/X and H/Y, we get four preimage classes in H. For
each class that splits in exactly one of H/X and H/Y, we get two preimage classes in H. For
each class that splits in none of H/X and H/Y, we get one preimage class in H.

Then we take those irreducible characters of H/X and H/Y, respectively, that do not have E/X
or E/Y, respectively, in their kernel; we form tensor products of them, which yields characters
with kernel D, and apply the LLL algorithm to them.

This yields all missing irreducibles of H: The degree squares of all now known irreducibles sum
up to the order of H, which means that no more class splitting occurs.

Finally, we compute the power maps (and thus the element orders) of the character table of
H. The result is a character table that is permutation equivalent to the character table that is
stored in GAP’s table library.
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9 Appendix: The character table of 3&*12 : 6.5uz.2

9.1 Overview

The 3B normalizer in M has the structure 33_+12.2.Suz.2. Its character table has been computed
by Richard Barraclough and Robert A. Wilson, see [BW07]. In order to describe a reproducible
construction of the character table that does not assume the character table of M, we recompute this
table.

Our approach is similar to that in [BWO07]: The subgroup in question is a factor group of the split
extension H of the extraspecial group N = 3?’12 by 6.Suz.2, and we compute the character table of
this bigger group H.

We have H/N 2 6.Suz.2. Let M be the normal subgroup of H above N such that H/M 2 2.Suz.2
holds. Then M = X x N for a normal subgroup X of order 3, where the extension of M/X by
H/M is split. Let N2 be the normal subgroup of H above N such that H/N2 2 3.Suz.2 holds. Then
My = M N> has the property H/M> = Suz.2.

Let Y = Z(N), of order 3. Then £ = X x Y = 32 is elementary abelian, with diagonal normal
subgroups Dy and D». It will turn out that the extensions of M/D; and M/Dy by H/M are non-
split.

H/Y is a subdirect product of H/N and H/E = 3'2.2.Suz.2, we have H/Y = (3 x 3'?).2.Suz.2.
The group H is a subdirect product of H/N and H/X.

The 3B normalizer in M is isomorphic to one of the two factor groups H/D1, H/D>. (The decision
which of the two groups occurs as a subgroup of M appears in Section 6.)

We use the following approach to compute the character table of H.

e Compute permutation generators gensHmodX of H/X, of degree 3'®, see Section 9.2. The first
two generators are standard generators of 2.Suz.2, the third generator lies in M/X.

e Fetch permutation generators gensHmodN of H/Na, of degree 5346, and compute permutation
generators gensH of H, of degree 1599669 = 1594323 + 5346, see Section 9.3. The first two
generators are standard generators of 6.Suz.2, the third generator lies in V.
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e Let MAGMA compute the character table of H from gensH, see Section 9.4.

Remark: In an earlier construction (in September 2020), we asked MAGMA to compute the character
table of H/Y, and then used individual conjugacy tests for first setting up the class fusion from H
to H/Y and then determining the full character table head of H. The computation of the missing
irreducible characters of H was then not difficult, using character theoretic methods. However, trying
the same input files in 2024 showed many cases where some of the required conjugacy tests did not
finish in reasonable time. Luckily, the automatic computation described in Section 9.4 worked.

9.2 A permutation representation of H/X

The ATLAS of Group Representations [WWT™] contains a faithful representation of H, as a group of

38x 38 matrices over the field with three elements. The generating matrices are called M3max7G0-£3r38B0.m1,
..., M3max7G0-f3r38B0.m4. These matrices are block diagonal matrices with blocks of the lengths 24

and 14.

gap> info:= OneAtlasGeneratingSetInfo( "3"(1+12):6.Suz.2", Dimension, 38 );;
gap> gens:= AtlasGenerators( info ).generators;;

gap> Length( gens );

4

gap> ForAll( gens,

> m —> ForA11( [ 25 .. 381,

> i -> ForAll( [ 1 .. 24 1],

> j -> IsZero( m[i,j] ) and

> IsZero( m[i,jl ) ) ) );

true

Here we will use just the lower right 14 x 14 blocks, which generate the factor group H/X 2 3?12 :
2.Suz.2. (Note that the 12-dimensional irreducible representation of 2.Suz.2 over the field with 3
elements respects a symplectic form, and the embedding of 2.Suz.2 into Sp(12,3) —which is the
automorphism group of the extraspecial group 33_“27 yields a construction of the semidirect product

3?’12 : 2.Suz.2 as a group of 14 x 14 matrices.)

Later we will construct a faithful permutation representation of H as a subdirect product of H/X
and H/N 2 6.Suz.2. Let G be the group generated by the 14 x 14 matrices.

When one deals with H/X, the fourth generator is redundant, we will leave it out in the following.

gap> mats:= List( gens, x > x{ [ 25 .. 381 X [ 25 .. 381 } );;
gap> List( mats, ConvertToMatrixRep );;

gap> Comm( mats[3], mats[3] "mats[2] ) = Inverse( mats[4] );

true

gap> mats:=mats{ [ 1 .. 3] };;

We use just the following facts. The G-action on GF(3)* has six orbits, from which we get a faithful
permutation representation of H/E 2 3'2.2.Suz.2 on 196 560 points and a faithful representation
homHtoHmodX of a group of the structure 3}~_+12.2.Suz.2 on 1594 323 points. Since the image contains
a subgroup 2.Suz.2, the image is the split extension H/X of 31+'~'12 by 2.Suz.2.

gap> G:= GroupWithGenerators( mats );;

gap> orbs:= ShallowCopy( OrbitsDomain( G, GF(3)"14 ) );;
gap> Length( orbs );

6

gap> SortBy( orbs, Length );

gap> List( orbs, Length );

[ 1, 2, 196560, 1397760, 1594323, 1594323 ]
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gap> v:= [ 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, 2] * Z(3)70;;
gap> orb_large:= First( orbs, x -> v in x );;

gap> Length( orb_large );

1594323

gap> Length( orb_large ) = 3713;

true

gap> orb_large:= SortedList( orb_large );;

gap> homHtoHmodX:= ActionHomomorphism( G, orb_large );;

gap> represHmodX:= Image( homHtoHmodX );;

gap> Size( represHmodX );

2859230155080499200

gap> Size( represHmodX ) = Size( CharacterTable( "2.Suz.2" ) ) * 3713;
true

We conclude that the action on 196560 points represents the group H/E. As for the action on
1594 323 points, we show that it has a nonabelian normal subgroup of the order 3'2.

gap> gensHmodX:= List( mats, m -> m~homHtoHmodX );;

gap> n:= NormalClosure( represHmodX,

> Subgroup( represHmodX, [ gensHmodX[3] 1 ) );;
gap> Size( n ) = 3713;

true

gap> IsAbelian( n );

false

Next we show that the first two elements from the generating set are standard generators of 2.Suz.2.
For that, we first show that these elements are preimages of standard generators of Suz.2, by com-
puting that the words in question lie in the centre of 2.Suz.2, and then show that the elements satisfy
the conditions of standard generators of 2.Suz.2, that is, the second generator has order 3, see the
page on Suz in the ATLAS of Group Representations [WWT™].

gap> slp:= AtlasProgram( "Suz.2", "check" );;

gap> prog:= StraightLineProgramFromStraightLineDecision( slp.program );;
gap> res:= ResultOfStraightLineProgram( prog, gensHmodX );;

gap> List( res, Order );

(21,2, 1]

gap> ForAll( gensHmodX{ [ 1, 2 ] }, x -> ForAll( res, y —-> x*y = y*x ) );
true

gap> Order ( gensHmodX[2] );

3

9.3 A permutation representation of H

The group H is a subdirect product of H/X and H/N> = 3.Suz.2, w.r.t. the common factor group
H/M> = Suz.2. Since we know that our generators for H/X are compatible with standard generators
of the factor group 2.Suz.2, it is sufficient to form the diagonal product of our representation of H/X
and a representation of 3.Suz.2 on standard generators.

gap> 3suz2:= OneAtlasGeneratingSet( "3.Suz.2", NrMovedPoints, 5346 );;
gap> 3suz2:= 3suz2.generators;;

gap> omega:= [ 1 .. LargestMovedPoint( 3suz2 ) 1;;

gap> shifted:= omega + LargestMovedPoint( gensHmodX );;

gap> pi:= MappingPermListList( omega, shifted );;

gap> shiftedgens:= List( 3suz2, x -> x"pi );;
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gap> Append( shiftedgens, [ O 1 );
gap> gensH:= List( [ 1 .. 3 ], i -> gensHmodX[i] * shiftedgens[i] );;
gap> NrMovedPoints( gensH );

1599669

The first two of the generators are standard generators of 6.Suz.2. Note that we know already that
they are preimages of standard generators of Suz.2, it remains to show that they are elements C, D
where D has order 3 and CDCDD has order 7.

gap> Order( gensH[2] );
3
gap> Order( Product( gensH{ [ 1, 2, 1, 2, 21 } ) );
7
9.4 Compute the character table of H
Now we let MAGMA do the work.

gap> H:= GroupWithGenerators( gensH );;
gap> if CTblLib.IsMagmaAvailable() then

> mgmt := CharacterTableComputedByMagma( H, "H_Magma" );
> else

> mgmt := CharacterTable( "37(1+12):6.Suz.2" );

> fi;

This computation needed about three weeks of CPU time.
The result verifies the character table of H that is available in the library.
gap> IsRecord( TransformingPermutationsCharacterTables( mgnmt,

> CharacterTable( "3~ (1+12):6.Suz.2" ) ) );
true

This character table was used in Section 4.4.

10 Appendix: The character table of 5?6.4.(]2.2

The normalizer of a 5B element in M has the structure 55”3.4.‘]2.2, generators for this group as a
permutation group of degree 78 125 are available in the ATLAS of Group Representations [WWTY].
MAGMA [BCP97] can compute the character table from the group within a few minutes, the result
turns out to be equivalent to the table that is available in GAP’s character table library.

gap> g:= AtlasGroup( "57(1+6):2.J2.4" );;
gap> if CTblLib.IsMagmaAvailable() then

> mgmt := CharacterTableComputedByMagma( g, "MN5B_Magma" ) ;
> else

> mgmt:= CharacterTable( "57(1+6):2.J2.4" );

> fi;

gap> IsRecord( TransformingPermutationsCharacterTables( mgnmt,

> CharacterTable( "57(1+6):2.J2.4" ) ) );

true

This character table was used in Section 4.5.
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