Character Table info for S5
-
Name:
-
A5.2
-
Group order:
-
120 = 23 ⋅ 3 ⋅ 5
-
Number of classes:
-
7
-
InfoText value:
-
origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5],
constructions: Aut(A5)
-
Duplicates:
-
A6.2_1M3,
L2(25)M3
-
Maximal subgroups:
-
|
Order |
Index |
Structure |
Name |
1 |
60 |
2 |
A5 |
A5 |
2 |
24 |
5 |
S4 |
s4 |
3 |
20 |
6 |
5:4 |
5:4 |
4 |
12 |
10 |
S3 × 2 |
S3x2 |
-
Available Brauer tables:
-
-
Atlas representations:
-
9 available
-
Group constructions in GAP:
-
AtlasGroup( "A5.2" )
,
AtlasStabilizer( "A6.2_1", "S6G1-p6aB0" )
,
AtlasStabilizer( "A6.2_1", "S6G1-p6bB0" )
,
AtlasStabilizer( "M11", "M11G1-p66B0" )
,
AtlasSubgroup( "A6.2_1", 2 )
,
AtlasSubgroup( "A6.2_1", 3 )
,
AtlasSubgroup( "J2.2", 10 )
,
AtlasSubgroup( "M11", 4 )
,
AtlasSubgroup( "M12.2", 9 )
,
AtlasSubgroup( "Th", 16 )
,
AutomorphismGroup( AlternatingGroup( 5 ) )
,
PrimitiveGroup( 5, 5 )
,
PrimitiveGroup( 6, 2 )
,
PrimitiveGroup( 10, 2 )
,
SmallGroup( 120, 34 )
,
SymmetricGroup( 5 )
,
TransitiveGroup( 5, 5 )
,
TransitiveGroup( 6, 14 )
,
TransitiveGroup( 10, 12 )
,
TransitiveGroup( 10, 13 )
,
TransitiveGroup( 12, 74 )
,
TransitiveGroup( 15, 10 )
,
TransitiveGroup( 20, 30 )
,
TransitiveGroup( 20, 32 )
,
TransitiveGroup( 20, 35 )
,
TransitiveGroup( 24, 202 )
,
TransitiveGroup( 30, 22 )
,
TransitiveGroup( 30, 25 )
,
TransitiveGroup( 30, 27 )
-
Stored class fusions from this table:
-
24:S5,
34:S5,
S6,
A7,
J2.2,
L2(25),
L3(4).21,
L3(5),
M11,
M12.2,
Th,
24:S5
-
Stored class fusions to this table:
-
2.2.24+6:S5,
2.24+6:S5,
2.A5.2,
2.4.24.S5,
4Y(2 × A5):2,
25:S5,
24:S5,
26:S5,
210:(25:s5),
21+4.S5,
21+6+:S5,
31+4+:21+4−.S5,
34:S5,
3 × Isoclinic(2.A5.2),
4.24.S5,
2.(25:S5),
5:4,
(2.A5 × A5):2,
(22 × A5):2,
(3.A6.22 × A5):2,
(3.A6 × A5):2,
(7:3 × A5):2,
(A4 × A5):2,
(A5 × 3):2,
(A5 × A5):2,
(A5 × A9):2,
(A5 × A12):2,
(A5 × D10).2,
(A5 × J2):2,
(A5 × U3(8):3):2,
(A5 × U4(2)):2,
(A6:22 × A5).2,
(A6 × A5):2,
(A7 × A5):2,
(A8 × A5):2,
(A6 × A5).2,
A5,
Isoclinic(2.A5.2),
25:S5,
22.24.S5,
S3 × 2,
gl25,
24:S5,
25:S5,
S4,
2.(24:S5),
w(d5)