Character Table info for A6
-
Name:
-
A6
-
Group order:
-
360 = 23 ⋅ 32 ⋅ 5
-
Number of classes:
-
7
-
InfoText value:
-
origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5]
-
Duplicates:
-
L3(4)M4,
L3(4)M5
-
Maximal subgroups:
-
|
Order |
Index |
Structure |
Name |
1 |
60 |
6 |
A5 |
A5 |
2 |
60 |
6 |
A5 |
A6M2 |
3 |
36 |
10 |
32:4 |
3^2:4 |
4 |
24 |
15 |
S4 |
s4 |
5 |
24 |
15 |
S4 |
A6M5 |
-
Stored Sylow p normalizers:
-
p |
Order |
Index |
Structure |
Name |
2 |
8 |
45 |
D8 |
D8 |
3 |
36 |
10 |
32:4 |
3^2:4 |
5 |
10 |
36 |
D10 |
D10 |
-
Available Brauer tables:
-
-
Atlas representations:
-
26 available
-
Group constructions in GAP:
-
AlternatingGroup( 6 )
,
AtlasGroup( "A6" )
,
AtlasStabilizer( "A7", "A7G1-p7B0" )
,
AtlasStabilizer( "L3(4)", "L34G1-p56aB0" )
,
AtlasStabilizer( "L3(4)", "L34G1-p56bB0" )
,
AtlasStabilizer( "L3(4)", "L34G1-p56cB0" )
,
AtlasSubgroup( "A6.2_1", 1 )
,
AtlasSubgroup( "A7", 1 )
,
AtlasSubgroup( "L3(4)", 3 )
,
AtlasSubgroup( "L3(4)", 4 )
,
AtlasSubgroup( "L3(4)", 5 )
,
AtlasSubgroup( "S4(5)", 8 )
,
PSL( 2, 9 )
,
PerfectGroup( 360, 1 )
,
PrimitiveGroup( 6, 3 )
,
PrimitiveGroup( 10, 3 )
,
PrimitiveGroup( 15, 2 )
,
SmallGroup( 360, 118 )
,
TransitiveGroup( 6, 15 )
,
TransitiveGroup( 10, 26 )
,
TransitiveGroup( 15, 20 )
,
TransitiveGroup( 20, 89 )
,
TransitiveGroup( 30, 88 )
-
Stored class fusions from this table:
-
24:A6,
34:A6,
S6,
A6.22,
A6.23,
A7,
L3(4),
S4(5),
U3(11)
-
Stored class fusions to this table:
-
2.A6,
25:A6,
24:A6,
25:A6,
3.A6,
32:4,
34:A6,
2.25:A6,
6.A6,
A5,
A5,
S4,
D8,
D10,
25:A6,
P21/G1/L1/V1/ext3,
P21/G1/L1/V1/ext4,
P21/G1/L3/V2/ext3,
P21/G2/L1/V1/ext2,
P21/G2/L1/V2/ext2,
P21/G2/L1/V3/ext2,
P21/G2/L2/V1/ext2,
P21/G2/L2/V2/ext2,
P21/G2/L2/V3/ext2,
P21/G2/L5/V2/ext2,
P21/G3/L2/V1/ext2,
P21/G3/L5/V1/ext2,
S4