
Blocks of Character
Tables

(Version 0.9.5)

Thomas Breuer

Thomas Breuer Email: sam@math.rwth-aachen.de
Homepage: http://www.math.rwth-aachen.de/~Thomas.Breuer

mailto://sam@math.rwth-aachen.de
http://www.math.rwth-aachen.de/~Thomas.Breuer

Blocks of Character Tables 2

Copyright
© 2013–2022

This package may be distributed under the terms and conditions of the GNU Public License Version 3 or
later, see http://www.gnu.org/licenses.

http://www.gnu.org/licenses

Contents

1 Introduction to the CTBlocks Package 4
1.1 Acknowledgements . 4

2 Tutorial for the CTBlocks Package 5
2.1 Block invariants of covers of sporadic simple groups 5
2.2 More about abelian defect groups . 10
2.3 Examples of block induction . 11
2.4 Examples about reality questions . 14
2.5 Examples about the Loewy length of centres of blocks 16

3 Character theoretic functions for p-blocks 28
3.1 The character theoretic setup . 28
3.2 Theoretical background of blocks of character tables 29
3.3 Block objects for character tables . 30
3.4 Defect, defect classes, and defect groups . 36
3.5 Radical p-subgroups . 42
3.6 Chains of radical p-subgroups . 45
3.7 p-weights . 46
3.8 Block induction . 48
3.9 Reality questions about blocks . 50
3.10 Selecting blocks according to their invariants . 52
3.11 Centres of p-blocks as algebras . 58

4 Utilities 61
4.1 Generalized Straight Line Programs . 61
4.2 Miscellaneous . 66

References 69

Index 70

3

Chapter 1

Introduction to the CTBlocks Package

The aims of the GAP 4 package CTBlocks are as follows.

• It provides general character theoretic GAP functions for questions about p-blocks, see Chap-
ter 3.

• It provides special GAP functions whose aim is to check conditions that arise in reduction
theorems in the context of the Alperin-McKay conjecture and of Alperin’s weight conjecture.

If you use this package to solve a problem then please send a short email
to sam@math.rwth-aachen.de about it. You can reference the package as follows.

@misc{ CTBlocks0.9.5,
author = {Breuer, T.},
title = {{CTBlocks}, Blocks of Character Tables,

{V}ersion 0.9.5},
month = {May},
year = {2022},
note = {\textsf{GAP} package},
howpublished = {http://www.math.rwth-aachen.de/\~{}Thomas.Breuer/ctblocks}

}

For referencing the GAP system in general, use the entry [GAP19] in the bibliography of this
manual, see also

http://www.gap-system.org.

1.1 Acknowledgements

The development of the package has been supported by the SFB-TRR 195 “Symbolic Tools in Math-
ematics and their Applications” (Project-ID 286237555, since 2017).

Several GAP functions, in particular those described in Section 3.8, have been written together
with Erzsébet Horváth, and have been used already in the preparation of [BH01].

Thanks to Mohamed Barakat and Gabriel Navarro for discussions and suggestions.

4

mailto://sam@math.rwth-aachen.de
http://www.gap-system.org
https://www.computeralgebra.de/sfb/
https://www.computeralgebra.de/sfb/

Chapter 2

Tutorial for the CTBlocks Package

This chapter shows a few examples how to use the functionality provided by the CTBlocks package.

2.1 Block invariants of covers of sporadic simple groups

The aim of this section is to produce an overview of the non-cyclic, abelian, faithful blocks of
sporadic simple groups and their covers, in a similar format as the tables that are available at
http://www.math.rwth-aachen.de/~Felix.Noeske/tabular.pdf.

The function DisplayBlockInvariants (3.10.4) can be used to show an overview of block in-
variants.

(One short remark is necessary in advance. Depending on the terminal capabilities, the borders of
the table printed by DisplayBlockInvariants (3.10.4) may contain non-ASCII characters. How-
ever, these characters are not supported by the LATEX and HTML versions of GAPDoc documents. For
the examples in this section, we set the user preference DisplayFunction (see Section (AtlasRep:
User preference DisplayFunction)) to the value "Print", in order to produce output consisting only
of ASCII characters.)

Example
gap> origpref:= UserPreference("AtlasRep", "DisplayFunction");;
gap> SetUserPreference("AtlasRep", "DisplayFunction", "Print");

The simplest way to use DisplayBlockInvariants (3.10.4) is to call it with the identifier of an
ordinary character table from GAP’s library of character tables, for example the table of the double
cover of the alternating group A6 on six points.

Example
gap> DisplayBlockInvariants("2.A6");
Block invariants for 2.A6

--
| p | b | d | k | l | c | a | n | f | r | sr |
--
2	1	4	9	3	-	-	-	+	+	+
	2	1	2	1	+	+	+	+	+	-
	3	1	2	1	+	+	+	+	+	-
3	1	2	6	4	-	+	-	-	+	+
	2	0	1	1	+	+	+	-	+	-

5

http://www.math.rwth-aachen.de/~Felix.Noeske/tabular.pdf

Blocks of Character Tables 6

	3	2	6	4	-	+	-	+	+	+
5	1	1	4	2	+	+	-	-	+	+
	2	0	1	1	+	+	+	-	+	-
	3	0	1	1	+	+	+	-	+	-
	4	0	1	1	+	+	+	-	+	-
	5	1	4	2	+	+	-	+	+	+
	6	0	1	1	+	+	+	+	+	-
	7	0	1	1	+	+	+	+	+	-
--

The rows of the table correspond to the p-blocks of the table, for all prime divisors p of the group
order. The columns of the table are labelled by

• p, b, d: the characteristic, the block number, and the defect of the block,

• k and l: the numbers of ordinary and modular irreducibles in the block,

• c, a, n: information whether the defect groups of the block are cyclic, abelian, and normal,
respectively,

• f, r, sr: information whether the block is faithful, real, and strongly real, respectively.

We are interested in an overview that is on the one hand more general in the sense that several
groups at handled at the same time, and which is on the other hand restricted to faithful blocks with
abelian but noncyclic defect groups. As an example, we take the central extensions of the simple
group Fi22. (Here we fetch the character tables in the beginning. As we will see below, we will call
the relevant functions a second time, and if we use the same character table object in the second round,
the values in question are already known and can just be fetched.)

Example
gap> tbls:= List(["Fi22", "2.Fi22", "3.Fi22", "6.Fi22"],
> CharacterTable);;
gap> DisplayBlockInvariants(tbls, IsFaithful, true,
> IsBlockWithCyclicDefectGroup, false,
> IsBlockWithAbelianDefectGroup, [true, fail]);
Block invariants
faithful
noncyclic defect group

| G | p | b | d | k | l | a | n | r | sr |

Fi22	5	1	2	20	16	+	-	+	+
2.Fi22	2	3	2	4	1	+	-	+	+
	5	39	2	20	16	+	-	+	+
3.Fi22	3	2	2	9	2	+	-	+	+
		3	2	9	2	+	-	+	+
	5	39	2	20	16	+	-	-	-
		40	2	20	16	+	-	-	-
6.Fi22	5	107	2	20	16	+	-	-	-
		108	2	20	16	+	-	-	-

Blocks of Character Tables 7

Note that we can in general not decide from the character table whether the defect groups
are abelian, therefore we have to allow for the possible values true and fail as results of
IsBlockWithAbelianDefectGroup (3.4.10).

This result is not yet good enough: We want to show a separate table for each prime p that divides
the order of one of the groups. (And we do not want to print the header information for each prime.)

Example
gap> primes:= Union(List(tbls, t -> Set(Factors(Size(t)))));
[2, 3, 5, 7, 11, 13]
gap> for p in primes do
> DisplayBlockInvariants(tbls, IsFaithful, true,
> IsBlockWithCyclicDefectGroup, false,
> IsBlockWithAbelianDefectGroup, [true, fail],
> UnderlyingCharacteristic, p,
> rec(header:= ["", Concatenation("p = ", String(p))]));
> od;

p = 2

| G | b | d | k | l | a | n | r | sr |

| 2.Fi22 | 3 | 2 | 4 | 1 | + | - | + | + |

p = 3

| G | b | d | k | l | a | n | r | sr |

| 3.Fi22 | 2 | 2 | 9 | 2 | + | - | + | + |
| | 3 | 2 | 9 | 2 | + | - | + | + |

p = 5

| G | b | d | k | l | a | n | r | sr |

Fi22	1	2	20	16	+	-	+	+
2.Fi22	39	2	20	16	+	-	+	+
3.Fi22	39	2	20	16	+	-	-	-
	40	2	20	16	+	-	-	-
6.Fi22	107	2	20	16	+	-	-	-
	108	2	20	16	+	-	-	-

Now we turn to all sporadic simple groups and their central extensions. First we collect the names
of the character tables, in the same order as we need for the overview, that is, according to increasing
order of the simple groups.

Example
gap> names:= ["M11", "M12", "2.M12", "J1", "M22", "2.M22",
> "3.M22", "4.M22", "6.M22", "12.M22", "J2", "2.J2",

Blocks of Character Tables 8

> "M23", "HS", "2.HS", "J3", "3.J3", "M24", "McL", "3.McL",
> "He", "Ru", "2.Ru", "Suz", "2.Suz", "3.Suz", "6.Suz",
> "ON", "3.ON", "Co3", "Co2", "Fi22", "2.Fi22", "3.Fi22",
> "6.Fi22", "HN", "Ly", "Th", "Fi23", "Co1", "2.Co1",
> "J4", "F3+", "3.F3+", "B", "2.B", "M"];;
gap> tbls:= List(names, CharacterTable);;

The overview is printed in the same way as above.
Example

gap> primes:= Union(List(tbls, t -> Set(Factors(Size(t)))));;
gap> for p in primes do
> DisplayBlockInvariants(tbls, IsFaithful, true,
> IsBlockWithCyclicDefectGroup, false,
> IsBlockWithAbelianDefectGroup, [true, fail],
> UnderlyingCharacteristic, p,
> rec(header:= ["", Concatenation("p = ", String(p))]));
> od;

p = 2

| G | b | d | k | l | a | n | r | sr |

M12	2	2	4	3	+	-	+	+
J1	1	3	8	5	+	-	+	+
J2	2	2	4	3	+	-	+	+
HS	2	2	4	3	+	-	+	+
Ru	2	2	4	3	+	-	+	+
Co3	2	3	8	5	+	-	+	+
2.Fi22	3	2	4	1	+	-	+	+
F3+	2	2	4	3	+	-	+	+

p = 3

--
| G | b | d | k | l | a | n | r | sr |
--
M11	1	2	9	7	+	-	+	+
M22	1	2	6	5	+	-	+	+
2.M22	6	2	6	5	+	-	+	+
3.M22	2	2	9	2	+	-	+	+
4.M22	10	2	6	5	+	-	-	-
	11	2	6	5	+	-	-	-
6.M22	7	2	9	2	+	-	+	+
M23	1	2	9	7	+	-	+	+
HS	1	2	9	7	+	-	+	+
	2	2	9	7	+	-	+	+
2.HS	7	2	9	5	+	-	+	+
3.J3	2	2	9	2	+	-	+	+
He	2	2	9	7	+	-	+	+
Suz	2	2	6	5	+	-	+	+

Blocks of Character Tables 9

3.Suz	3	2	9	2	+	-	+	+
ON	1	4	18	14	+	-	+	+
	2	2	6	5	+	-	+	+
3.Fi22	2	2	9	2	+	-	+	+
	3	2	9	2	+	-	+	+
HN	2	2	9	7	+	-	+	+
Co1	3	2	9	5	+	-	+	+
J4	6	2	9	5	+	-	+	+
F3+	2	2	6	4	+	-	+	+
B	2	2	9	7	+	-	+	+
	3	2	9	7	+	-	+	+
	6	2	9	5	+	-	+	+
--

p = 5

| G | b | d | k | l | a | n | r | sr |

J2	1	2	14	6	+	-	+	+
2.J2	6	2	14	6	+	-	+	+
He	1	2	16	14	+	-	+	+
Suz	1	2	16	12	+	-	+	+
2.Suz	19	2	16	12	+	-	+	+
3.Suz	18	2	16	12	+	-	-	-
	19	2	16	12	+	-	-	-
6.Suz	59	2	16	12	+	-	-	-
	60	2	16	12	+	-	-	-
Fi22	1	2	20	16	+	-	+	+
2.Fi22	39	2	20	16	+	-	+	+
3.Fi22	39	2	20	16	+	-	-	-
	40	2	20	16	+	-	-	-
6.Fi22	107	2	20	16	+	-	-	-
	108	2	20	16	+	-	-	-
Fi23	1	2	20	16	+	-	+	+
	2	2	20	16	+	-	+	+
Co1	3	2	16	12	+	-	+	+
F3+	1	2	20	16	+	-	+	+
	2	2	16	14	+	-	+	+
	3	2	20	16	+	-	+	+
3.F3+	45	2	20	16	+	-	-	-
	46	2	20	16	+	-	-	-
	47	2	20	14	+	-	-	-
	48	2	20	14	+	-	-	-
B	2	2	20	16	+	-	+	+
	8	2	20	16	+	-	+	+
M	4	2	20	16	+	-	+	+

p = 7

Blocks of Character Tables 10

| G | b | d | k | l | a | n | r | sr |

Th	1	2	27	24	+	-	+	+
Co1	1	2	27	21	+	-	+	+
2.Co1	46	2	27	21	+	-	+	+
B	1	2	27	24	+	-	+	+
	2	2	27	24	+	-	+	+
	4	2	27	21	+	-	+	+
2.B	73	2	27	24	+	-	+	+
M	2	2	27	24	+	-	+	+

p = 11

--
| G | b | d | k | l | a | n | r | sr |
--
| M | 1 | 2 | 50 | 45 | + | - | + | + |
--

Note:

• The two 2-blocks of defect two for 12.M22 which are listed in
http://www.math.rwth-aachen.de/~Felix.Noeske/tabular.pdf have a cyclic de-
fect group (the central subgroup of order four) and are therefore not contained in the above
output.

• The principal 2-block of J1 which appears in the above output has been deliberately omitted
from the table available in the web.

Finally, we reset the user preference.
Example

gap> SetUserPreference("AtlasRep", "DisplayFunction", origpref);

2.2 More about abelian defect groups

We have seen in Section 2.1 that the character tables of the sporadic simple groups and their central
extensions determine for all their p-blocks whether the defect groups are abelian: Only - entries occur
in the column a of the tables shown in that section.

In general this is not the case. Let us look for an example where
IsBlockWithAbelianDefectGroup (3.4.10) returns fail. (This computation takes several
minutes.)

Example
gap> b:= OnePBlock(AllCharacterTableNames(),
> IsBlockWithAbelianDefectGroup, fail);
Block(CharacterTable("Isoclinic(2x2.F4(2).2)"), 2, 2)
gap> Defect(b);
3
gap> dcl:= ClassPositionsOfDefectGroupOfBlock(b);

http://www.math.rwth-aachen.de/~Felix.Noeske/tabular.pdf

Blocks of Character Tables 11

[1, 2, 3, 4, 215, 216]
gap> t:= UnderlyingCharacterTable(b);;
gap> OrdersClassRepresentatives(t){ dcl };
[1, 4, 2, 4, 2, 4]

In this example, each defect group in question has order eight and contains at least two involutions
and at least three elements of order four. This excludes the two types of nonabelian groups of order
eight, hence the defect groups are abelian.

We see that we could easily extend IsBlockWithAbelianDefectGroup (3.4.10) such that true
is returned in the above situation. Similarly, the lattice of normal subgroups can be used in some cases
to conclude that the defect groups in question are abelian. However, there are also examples of simple
groups for which IsBlockWithAbelianDefectGroup (3.4.10) fails.

Example
gap> b:= OnePBlock(AllCharacterTableNames(IsSimple, true),
> IsBlockWithAbelianDefectGroup, fail);
Block(CharacterTable("L8(2)"), 3, 5)
gap> Defect(b);
3

2.3 Examples of block induction

2.3.1 Examples of block induction: Separating examples

Block induction in the sense of Brauer (see BrauerCorrespondent (3.8.1)) implies p-regular
block induction (see PRegularCorrespondent (3.8.2)), which implies extended block induction
(see WheelerCorrespondent (3.8.4)), and also block induction in the sense of Alperin-Burry (see
AlperinBurryCorrespondent (3.8.3)) implies extended block induction.

We list those examples from [BH01] that separate these concepts of block induction.
A series of examples where block induction in the sense of Brauer is defined but block induction

in the sense of Alperin-Burry is not defined is given in [BH01, Example 2.2]. The smallest member
of this series is the dihedral group G of order 24 and H is its 2-core (a cyclic group of order four).

Example
gap> g:= DihedralGroup(24);;
gap> p:= 2;;
gap> t:= CharacterTable(g);;
gap> h:= PCore(g, 2);;
gap> Size(h);
4
gap> s:= CharacterTable(h);;
gap> AlperinBurryCorrespondent(s, t, p, 1);
fail
gap> BrauerCorrespondent(s, t, p, 1);
1
gap> PRegularCorrespondent(s, t, p, 1);
1
gap> WheelerCorrespondent(s, t, p, 1);
1

Blocks of Character Tables 12

An example where block induction in the sense of Brauer and block induction in the sense of
Alperin-Burry are not defined but p-regular block induction is defined is given by G = S3, the sym-
metric group on three points, and H its trivial subgroup, for p = 2.

Example
gap> g:= SymmetricGroup(3);;
gap> p:= 2;;
gap> t:= CharacterTable(g);;
gap> h:= TrivialSubgroup(g);;
gap> s:= CharacterTable(h);;
gap> AlperinBurryCorrespondent(s, t, p, 1);
fail
gap> BrauerCorrespondent(s, t, p, 1);
fail
gap> PRegularCorrespondent(s, t, p, 1);
1
gap> WheelerCorrespondent(s, t, p, 1);
1

A series of examples where p-regular block induction is not defined but block induction in the
sense of Alperin-Burry is defined is given in [BH01, Example 2.3]. One instance of this series is the
alternating group G on four points where H has order three and p = 2 holds.

Example
gap> g:= AlternatingGroup(4);;
gap> p:= 2;;
gap> t:= CharacterTable(g);;
gap> h:= SylowSubgroup(g, 3);;
gap> s:= CharacterTable(h);;
gap> AlperinBurryCorrespondent(s, t, p, 1);
1
gap> BrauerCorrespondent(s, t, p, 1);
fail
gap> PRegularCorrespondent(s, t, p, 1);
fail
gap> WheelerCorrespondent(s, t, p, 1);
1

An example where p-regular block induction and block induction in the sense of Alperin-Burry
are defined but block induction in the sense of Brauer is not defined is given by the cyclic group G of
order p = 2 and H its trivial subgroup.

Example
gap> g:= CyclicGroup(2);;
gap> p:= 2;;
gap> t:= CharacterTable(g);;
gap> h:= TrivialSubgroup(g);;
gap> s:= CharacterTable(h);;
gap> AlperinBurryCorrespondent(s, t, p, 1);
1
gap> BrauerCorrespondent(s, t, p, 1);
fail
gap> PRegularCorrespondent(s, t, p, 1);

Blocks of Character Tables 13

1
gap> WheelerCorrespondent(s, t, p, 1);
1

An example where extended block induction is defined but neither p-regular block induction nor
block induction in the sense of Alperin-Burry are defined is given by [Whe94, Example 2.10]. We
have G the simple group of order 168, p = 3, and H is a Sylow 2-subgroup of G.

Example
gap> g:= PSL(2,7);;
gap> Size(g); IsSimple(g);
168
true
gap> p:= 3;;
gap> t:= CharacterTable(g);;
gap> h:= SylowSubgroup(g, 2);;
gap> s:= CharacterTable(h);;
gap> AlperinBurryCorrespondent(s, t, p, 1);
fail
gap> BrauerCorrespondent(s, t, p, 1);
fail
gap> PRegularCorrespondent(s, t, p, 1);
fail
gap> WheelerCorrespondent(s, t, p, 1);
4

(The smallest such example is the symmetric group G on three points, its trivial subgroup H, and
p = 2.)

2.3.2 Examples of block induction: The Mathieu groups M11 and M12, for p = 2

We verify the results of [LP10, Example 4.7.8].
First we show that for p = 2, block induction in the sense of Brauer (see BrauerCorrespondent

(3.8.1)) is defined from a p-block b of a proper subgroup H of the Mathieu group M11 if and only if H
has even order and b is the principal block of H.

Example
gap> tom:= TableOfMarks("M11");;
gap> g:= UnderlyingGroup(tom);;
gap> p:= 2;;
gap> good:= [];;
gap> bad:= [];;
gap> for i in [1 .. Length(OrdersTom(tom)) - 1] do
> h:= RepresentativeTom(tom, i);
> tblh:= CharacterTable(h);
> for b in [1 .. Length(PrimeBlocks(tblh, p).defect)] do
> if BrauerCorrespondent(tblh, CharacterTable(g), p, b) <> fail then
> AddSet(good, [Size(h), b]);
> else
> AddSet(bad, [Size(h), b]);
> fi;
> od;

Blocks of Character Tables 14

> od;
gap> good;
[[2, 1], [4, 1], [6, 1], [8, 1], [10, 1], [12, 1],

[16, 1], [18, 1], [20, 1], [24, 1], [36, 1], [48, 1],
[60, 1], [72, 1], [120, 1], [144, 1], [360, 1],
[660, 1], [720, 1]]

gap> bad;
[[1, 1], [3, 1], [3, 2], [3, 3], [5, 1], [5, 2],

[5, 3], [5, 4], [5, 5], [6, 2], [6, 3], [9, 1],
[9, 2], [9, 3], [9, 4], [9, 5], [9, 6], [9, 7],
[9, 8], [9, 9], [10, 2], [10, 3], [11, 1], [11, 2],
[11, 3], [11, 4], [11, 5], [11, 6], [11, 7], [11, 8],
[11, 9], [11, 10], [11, 11], [12, 2], [18, 2], [18, 3],
[18, 4], [18, 5], [18, 6], [20, 2], [36, 2], [36, 3],
[36, 4], [55, 1], [55, 2], [55, 3], [55, 4], [55, 5],
[55, 6], [55, 7], [60, 2], [72, 2], [72, 3], [120, 2],
[144, 2], [360, 2], [360, 3], [660, 2], [660, 3],
[660, 4], [720, 2]]

Next we inspect for which 2-blocks of cyclic subgroups of order six in the Mathieu group M12,
block induction in the sense of Brauer is defined.

Example
gap> tom:= TableOfMarks("M12");;
gap> g:= UnderlyingGroup(tom);;
gap> p:= 2;;
gap> results:= [];;
gap> for i in Positions(OrdersTom(tom), 6) do
> h:= RepresentativeTom(tom, i);
> if IsCyclic(h) then
> tblh:= CharacterTable(h);
> Add(results, List([1 .. Length(PrimeBlocks(tblh, p).defect)],
> b -> BrauerCorrespondent(tblh, CharacterTable(g), p, b)));
> fi;
> od;
gap> results;
[[1, fail, fail], [fail, 2, 2]]

We see that there are two classes of such subgroups in M12, and block induction is defined exactly
for the principal block of the groups in the first class, whereas block induction is defined exactly for
the two non-principal blocks of the groups in the second class.

2.4 Examples about reality questions

2.4.1 Example: Strongly real classes of sporadic simple groups

We compute which real classes of sporadic simple groups are not strongly real.
Example

gap> names:= AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false);
["B", "Co1", "Co2", "Co3", "F3+", "Fi22", "Fi23", "HN", "HS", "He",

Blocks of Character Tables 15

"J1", "J2", "J3", "J4", "Ly", "M", "M11", "M12", "M22", "M23",
"M24", "McL", "ON", "Ru", "Suz", "Th"]

gap> for name in names do
> t:= CharacterTable(name);
> test:= Filtered([1 .. NrConjugacyClasses(t)],
> i -> IsRealClass(t, i)
> and not IsStronglyRealClass(t, i));
> if test <> [] then
> Print(name, ": ", ClassNames(t, "Atlas"){ test }, "\n");
> fi;
> od;
Co2: ["16B"]
HN: ["8A"]
M: ["8C", "8F", "24F", "24G", "24H", "24J", "32A", "32B", "40A",

"48A"]
M22: ["8A"]
M23: ["8A"]
McL: ["3A", "5A", "6A", "8A", "10A", "12A"]
Th: ["8B"]

The article [Sul08] claims to list the real classes in sporadic simple groups that are not strongly
real. However, the classes of element order 8, 10, and 12 in McL are missing in that list, and the
classes 16AB, 22BC, 23AB of Fi23 are erroneously claimed to be real.

Let us look at these cases.
The group McL has a unique class of involutions, and only elements of order up to 6 are products

of at most two involutions. On the other hand, six more classes of McL are real.
Example

gap> t:= CharacterTable("McL");
CharacterTable("McL")
gap> orders:= OrdersClassRepresentatives(t);
[1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 14, 14,

15, 15, 30, 30]
gap> nccl:= Length(orders);
24
gap> Filtered([1 .. nccl],
> i -> ClassMultiplicationCoefficient(t, 2, 2, i) <> 0);
[1, 2, 4, 5, 7, 9]
gap> Filtered([1 .. nccl], i -> PowerMap(t, -1, i) = i);
[1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 18]

The classes 16AB, 22BC, 23AB of Fi23 are not real.
Example

gap> t:= CharacterTable("Fi23");
CharacterTable("Fi23")
gap> orders:= OrdersClassRepresentatives(t);;
gap> filt:= PositionsProperty(orders, x -> x in [16, 22, 23]);
[63, 64, 77, 78, 79, 80, 81]
gap> PowerMap(t, -1){ filt };
[64, 63, 77, 79, 78, 81, 80]
gap> ClassNames(t, "Atlas"){ filt };
["16A", "16B", "22A", "22B", "22C", "23A", "23B"]

Blocks of Character Tables 16

(Note that the irrational values in the six classes lie in quadratic number fields. For the element
orders 22 and 23, it is clear from this fact that the classes cannot be real, because the fields of 11-th
and 23-rd roots of unity do not have a real quadratic subfield.)

2.4.2 Example: Strongly real blocks of sporadic simple groups

We compute which real p-blocks of sporadic simple groups are not strongly real.
Example

gap> names:= AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false);
["B", "Co1", "Co2", "Co3", "F3+", "Fi22", "Fi23", "HN", "HS", "He",

"J1", "J2", "J3", "J4", "Ly", "M", "M11", "M12", "M22", "M23",
"M24", "McL", "ON", "Ru", "Suz", "Th"]

gap> bl:= AllPBlocks(names, IsRealBlock, true,
> IsStronglyRealBlock, false);
[Block(CharacterTable("McL"), 2, 4)]

We get exactly one example, a 2-block of defect one for the McLaughlin group McL.
Example

gap> Defect(bl[1]);
1
gap> dcl:= ClassPositionsOfDefectClasses(bl[1]);
[6, 10, 11, 21, 22]
gap> tbl:= UnderlyingCharacterTable(bl[1]);;
gap> ClassNames(tbl, "Atlas"){ dcl };
["5A", "7A", "7B", "15A", "15B"]
gap> Filtered(dcl, c -> IsRealClass(tbl, c));
[6]
gap> Filtered(dcl, c -> IsStronglyRealClass(tbl, c));
[]

This block has exactly one real defect class, which is not strongly real. (The existence of a real
defect class for each 2-block is guaranteed by [GM00].)

2.5 Examples about the Loewy length of centres of blocks

2.5.1 Example: Loewy lengths of centres of blocks of sporadic simple groups

For an algebra A, let J(A) denote the Jacobson radical of A, that is, the largest nilpotent ideal of A.
We consider the chain A = J(A)0 ⊃ J(A)⊃ J(A)2 ⊃ ·· · ⊃ J(A)n−1 ⊃ J(A)n = {0} of ideals. Then n is
called the Loewy length of A. The factors Ji−1/Ji, for 1≤ i≤ n, are called the Loewy layers of A.

The following functions compute, for a given algebra A and its radical J = J(A), the list of dimen-
sions of the radical powers J(A)i and of the Loewy layers of A, respectively.

Example
gap> DimensionsOfRadicalPowers:= function(A, J)
> local l, Jpower;
>
> l:= [Dimension(J)];
> Jpower:= J;

Blocks of Character Tables 17

> while Dimension(Jpower) <> 0 do
> Jpower:= ProductSpace(Jpower, J);
> Add(l, Dimension(Jpower));
> od;
>
> return l;
> end;;
gap> DimensionsOfLoewyLayers:= function(A, J)
> local dims, l, i;
>
> if Dimension(A) = 0 then
> return [];
> fi;
>
> dims:= DimensionsOfRadicalPowers(A, J);
> l:= [Dimension(A) - dims[1]];
> for i in [2 .. Length(dims)] do
> l[i]:= dims[i-1] - dims[i];
> od;
>
> return l;
> end;;

We are interested in the dimensions of the Loewy layers of the centres of the principal p-blocks
of group algebras FG, where G is a sporadic simple group and F is a field of characteristic p. We are
also interested in the dimensions of the Loewy layers of the centre of (the principal block of) FNG(P),
where P is a Sylow p-subgroup of G.

(Note that these dimensions do not depend on the field F , as long as the structure constants of the
algebras live in F . In our situation, we may choose F as a prime field, since the block idempotent of a
principal block has always rational coefficients.)

Most of the relevant information is available in GAP’s library of character tables, thus we will use
the character theoretic variant of SCAlgebraCentreOfBlock (3.11.3).

Several normalizers of Sylow p-subgroups in sporadic simple groups have hundreds of conju-
gacy classes, and the computation of the radical of an algebra of that dimension is time consuming.
Therefore, we use the fact that the Jacobson radical of the centre Z(FG) of an indecomposable group
algebra FG is equal to the augmentation ideal of Z(FG) and thus has an F-basis consisting of the
elements C+−|C|1, where C runs over the nonidentity conjugacy classes of G, and C+ is the sum of
the elements of C. The following function can be used for that.

Example
gap> RadicalOfIndecomposableGroupAlgebra:= function(A, tbl)
> local radgens, gens, classlengths, i;
>
> radgens:= [];
> gens:= BasisVectors(CanonicalBasis(A));
> classlengths:= SizesConjugacyClasses(tbl);
> for i in [2 .. Length(gens)] do
> Add(radgens, gens[i] - classlengths[i] * gens[1]);
> od;
>

Blocks of Character Tables 18

> return SubalgebraNC(A, radgens, "basis");
> end;;

What we want to compute is done by the following function. It assumes that the (ordinary) char-
acter table of the group G is available as tbl.

Example
gap> DimensionsOfLoewyLayersByTable:= function(tbl, p)
> local A, J;
>
> if Length(PrimeBlocks(tbl, p).defect) = 1 then
> # The group algebra is indecomposable.
> A:= SCAlgebraCentreOfGroupAlgebra(tbl, p);
> J:= RadicalOfIndecomposableGroupAlgebra(A, tbl);
> else
> # Use the simpleminded variant.
> A:= SCAlgebraCentreOfBlock(tbl, p, 1);
> J:= RadicalOfAlgebra(A);
> fi;
> return DimensionsOfLoewyLayers(A, J);
> end;;

Some of these computations have been carried out in [Sch16], with different methods, and [Sch16,
Conjecturere 5.8.1] states that for any sporadic simple group G and any prime p dividing |G|, the
Loewy length of Z(B) is expected to be an upper bound for the Loewy length of Z(FNG(P)), where
B is the principal block of FG, F is a field of characteristic p, and P is a Sylow p-subgroup of G. We
check this conjecture as far as the available data admit this.

Example
gap> conjecture_is_wrong_for:= [];;
gap> conjecture_is_open_for:= [];;
gap> names:= AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false : OrderedBy:= Size);
["M11", "M12", "J1", "M22", "J2", "M23", "HS", "J3", "M24", "McL",

"He", "Ru", "Suz", "ON", "Co3", "Co2", "Fi22", "HN", "Ly", "Th",
"Fi23", "Co1", "J4", "F3+", "B", "M"]

gap> for name in names do
> Print(name, ":\n");
> t:= CharacterTable(name);
> for p in Set(Factors(Size(t))) do
> dimst:= DimensionsOfLoewyLayersByTable(t, p);
> Print(" ", String(p, 2), ": ", String(dimst, -30));
> nname:= Concatenation(name, "N", String(p));
> n:= CharacterTable(nname);
> if n = fail then
> Print("(no Sylow normalizer table)\n");
> Add(conjecture_is_open_for, [name, p]);
> else
> dimsn:= DimensionsOfLoewyLayersByTable(n, p);
> if dimsn = dimst then
> Print("same dimensions for G and N_G(P)\n");
> else
> Print(dimsn, "\n");

Blocks of Character Tables 19

> fi;
> # Check the conjecture.
> if Length(dimst) < Length(dimsn) then
> Add(conjecture_is_wrong_for, [name, p]);
> fi;
> fi;
> od;
> od;
M11:

2: [1, 3, 2, 1, 1] [1, 4, 1, 1]
3: [1, 7, 1] same dimensions for G and N_G(P)
5: [1, 4] same dimensions for G and N_G(P)

11: [1, 5, 1] same dimensions for G and N_G(P)
M12:

2: [1, 7, 2, 1] [1, 14, 1]
3: [1, 8, 2] [1, 9, 1]
5: [1, 4] same dimensions for G and N_G(P)

11: [1, 5, 1] same dimensions for G and N_G(P)
J1:

2: [1, 7] same dimensions for G and N_G(P)
3: [1, 2] same dimensions for G and N_G(P)
5: [1, 2, 1] same dimensions for G and N_G(P)
7: [1, 6] same dimensions for G and N_G(P)

11: [1, 10] same dimensions for G and N_G(P)
19: [1, 6, 1, 1] same dimensions for G and N_G(P)

M22:
2: [1, 9, 2] [1, 16]
3: [1, 5] same dimensions for G and N_G(P)
5: [1, 4] same dimensions for G and N_G(P)
7: [1, 3, 1] same dimensions for G and N_G(P)

11: [1, 5, 1] same dimensions for G and N_G(P)
J2:

2: [1, 12, 3, 1] [1, 12, 6]
3: [1, 8, 4] [1, 9, 3]
5: [1, 4, 5, 3, 1] same dimensions for G and N_G(P)
7: [1, 6] same dimensions for G and N_G(P)

M23:
2: [1, 12, 2] [1, 16]
3: [1, 7, 1] same dimensions for G and N_G(P)
5: [1, 4] same dimensions for G and N_G(P)
7: [1, 3, 1] same dimensions for G and N_G(P)

11: [1, 5, 1] same dimensions for G and N_G(P)
23: [1, 11, 1] same dimensions for G and N_G(P)

HS:
2: [1, 13, 4, 1, 1] [1, 30, 4]
3: [1, 7, 1] same dimensions for G and N_G(P)
5: [1, 13, 3] [1, 14, 2]
7: [1, 6] same dimensions for G and N_G(P)

11: [1, 5, 1] same dimensions for G and N_G(P)
J3:

2: [1, 12, 3, 1] [1, 12, 6]
3: [1, 15] same dimensions for G and N_G(P)

Blocks of Character Tables 20

5: [1, 2, 1] same dimensions for G and N_G(P)
17: [1, 8, 1] same dimensions for G and N_G(P)
19: [1, 9, 1] same dimensions for G and N_G(P)

M24:
2: [1, 18, 5, 1, 1] [1, 54, 6]
3: [1, 9, 3] [1, 10, 2]
5: [1, 4] same dimensions for G and N_G(P)
7: [1, 3, 1] same dimensions for G and N_G(P)

11: [1, 10] same dimensions for G and N_G(P)
23: [1, 11, 1] same dimensions for G and N_G(P)

McL:
2: [1, 12, 4, 1] [1, 16]
3: [1, 15, 4, 1] [1, 16, 4]
5: [1, 14, 4] [1, 15, 3]
7: [1, 3, 1] same dimensions for G and N_G(P)

11: [1, 5, 1] same dimensions for G and N_G(P)
He:

2: [1, 18, 5, 1, 1] [1, 54, 6]
3: [1, 9, 3] [1, 10, 2]
5: [1, 14, 1] same dimensions for G and N_G(P)
7: [1, 19, 3] [1, 21, 1]

17: [1, 8, 1] same dimensions for G and N_G(P)
Ru:

2: [1, 30, 1] [1, 83, 1]
3: [1, 9, 4] [1, 10, 3]
5: [1, 20, 4] [1, 21, 3]
7: [1, 6] same dimensions for G and N_G(P)

13: [1, 12] same dimensions for G and N_G(P)
29: [1, 14, 1] same dimensions for G and N_G(P)

Suz:
2: [1, 26, 9, 1, 1] [1, 59, 21]
3: [1, 22, 8, 2, 1] [1, 24, 11, 3]
5: [1, 10, 5] same dimensions for G and N_G(P)
7: [1, 6] same dimensions for G and N_G(P)

11: [1, 10] same dimensions for G and N_G(P)
13: [1, 6, 1] same dimensions for G and N_G(P)

ON:
2: [1, 16, 2, 1] [1, 27, 4]
3: [1, 14, 3] same dimensions for G and N_G(P)
5: [1, 4] same dimensions for G and N_G(P)
7: [1, 20, 3] [1, 21, 2]

11: [1, 10] same dimensions for G and N_G(P)
19: [1, 6, 1, 1] same dimensions for G and N_G(P)
31: [1, 15, 1] same dimensions for G and N_G(P)

Co3:
2: [1, 16, 11, 3, 1] [1, 49, 11]
3: [1, 28, 8, 2] [1, 35, 15, 1]
5: [1, 20, 5] [1, 21, 4]
7: [1, 6] same dimensions for G and N_G(P)

11: [1, 5, 1] same dimensions for G and N_G(P)
23: [1, 11, 1] same dimensions for G and N_G(P)

Co2:

Blocks of Character Tables 21

2: [1, 36, 16, 4, 1, 1] [1, 310, 82, 1]
3: [1, 24, 16, 5, 1] [1, 30, 12, 2]
5: [1, 21, 5] [1, 22, 4]
7: [1, 6] same dimensions for G and N_G(P)

11: [1, 10] same dimensions for G and N_G(P)
23: [1, 11, 1] same dimensions for G and N_G(P)

Fi22:
2: [1, 38, 14, 6, 1, 1, 1] [1, 188, 24, 2]
3: [1, 31, 17, 7, 1, 1] [1, 93, 9]
5: [1, 13, 6] same dimensions for G and N_G(P)
7: [1, 6] same dimensions for G and N_G(P)

11: [1, 5, 1] same dimensions for G and N_G(P)
13: [1, 6, 1] same dimensions for G and N_G(P)

HN:
2: [1, 36, 7, 1] [1, 58, 15]
3: [1, 24, 7, 1] [1, 23, 6]
5: [1, 34, 9, 1] [1, 64, 3]
7: [1, 6] same dimensions for G and N_G(P)

11: [1, 10] same dimensions for G and N_G(P)
19: [1, 9, 1] same dimensions for G and N_G(P)

Ly:
2: [1, 13, 8, 3] [1, 20, 1]
3: [1, 29, 9, 2, 1] [1, 30, 16, 4]
5: [1, 39, 7, 1] [1, 52, 5]
7: [1, 6] same dimensions for G and N_G(P)

11: [1, 5, 1] same dimensions for G and N_G(P)
31: [1, 6, 1, 1, 1, 1] same dimensions for G and N_G(P)
37: [1, 18, 1] same dimensions for G and N_G(P)
67: [1, 22, 1, 1] same dimensions for G and N_G(P)

Th:
2: [1, 41, 3] [1, 88]
3: [1, 38, 2] [1, 69, 3]
5: [1, 21, 5] [1, 22, 4]
7: [1, 23, 3] same dimensions for G and N_G(P)

13: [1, 12] same dimensions for G and N_G(P)
19: [1, 18] same dimensions for G and N_G(P)
31: [1, 15, 1] same dimensions for G and N_G(P)

Fi23:
2: [1, 48, 25, 7, 4, 2, 1, 1] [1, 152, 141, 23, 2]
3: [1, 51, 28, 9, 3, 1, 1] [1, 230, 58, 3]
5: [1, 13, 6] same dimensions for G and N_G(P)
7: [1, 6] same dimensions for G and N_G(P)

11: [1, 10] same dimensions for G and N_G(P)
13: [1, 6, 1] same dimensions for G and N_G(P)
17: [1, 16] same dimensions for G and N_G(P)
23: [1, 11, 1] same dimensions for G and N_G(P)

Co1:
2: [1, 64, 27, 2, 1, 1] (no Sylow normalizer table)
3: [1, 36, 25, 10, 1, 1] [1, 73, 35, 19]
5: [1, 23, 14, 7] [1, 26, 9, 1]
7: [1, 12, 14] same dimensions for G and N_G(P)

11: [1, 10] same dimensions for G and N_G(P)

Blocks of Character Tables 22

13: [1, 12] same dimensions for G and N_G(P)
23: [1, 11, 1] same dimensions for G and N_G(P)

J4:
2: [1, 51, 6, 1] (no Sylow normalizer table)
3: [1, 9, 4] [1, 10, 3]
5: [1, 4] same dimensions for G and N_G(P)
7: [1, 3, 1] same dimensions for G and N_G(P)

11: [1, 43, 5] [1, 44, 4]
23: [1, 22] same dimensions for G and N_G(P)
29: [1, 28] same dimensions for G and N_G(P)
31: [1, 10, 1, 1] same dimensions for G and N_G(P)
37: [1, 12, 1, 1] same dimensions for G and N_G(P)
43: [1, 14, 1, 1] same dimensions for G and N_G(P)

F3+:
2: [1, 71, 20, 4, 1] (no Sylow normalizer table)
3: [1, 72, 24, 4] (no Sylow normalizer table)
5: [1, 13, 6] same dimensions for G and N_G(P)
7: [1, 26, 4] [1, 27, 3]

11: [1, 10] same dimensions for G and N_G(P)
13: [1, 12] same dimensions for G and N_G(P)
17: [1, 16] same dimensions for G and N_G(P)
23: [1, 11, 1] same dimensions for G and N_G(P)
29: [1, 14, 1] same dimensions for G and N_G(P)

B:
2: [1, 140, 30, 7, 1] (no Sylow normalizer table)
3: [1, 81, 41, 13, 4, 1, 1] [1, 230, 58, 3]
5: [1, 56, 18, 4] [1, 52, 5]
7: [1, 23, 3] same dimensions for G and N_G(P)

11: [1, 10] (no Sylow normalizer table)
13: [1, 12] (no Sylow normalizer table)
17: [1, 16] (no Sylow normalizer table)
19: [1, 18] (no Sylow normalizer table)
23: [1, 11, 1] (no Sylow normalizer table)
31: [1, 15, 1] same dimensions for G and N_G(P)
47: [1, 23, 1] (no Sylow normalizer table)

M:
2: [1, 169, 12, 1] (no Sylow normalizer table)
3: [1, 147, 14, 2, 1] (no Sylow normalizer table)
5: [1, 106, 17, 4, 1] [1, 159, 37, 4]
7: [1, 81, 9, 1] [1, 82, 17]

11: [1, 39, 10] same dimensions for G and N_G(P)
13: [1, 56, 5] [1, 57, 4]
17: [1, 16] (no Sylow normalizer table)
19: [1, 18] (no Sylow normalizer table)
23: [1, 11, 1] (no Sylow normalizer table)
29: [1, 28] (no Sylow normalizer table)
31: [1, 15, 1] (no Sylow normalizer table)
41: [1, 40] (no Sylow normalizer table)
47: [1, 23, 1] same dimensions for G and N_G(P)
59: [1, 29, 1] (no Sylow normalizer table)
71: [1, 35, 1] (no Sylow normalizer table)

Blocks of Character Tables 23

We see for example that for the principal block B of the group algebra of McL over a field F of
characteristic 2, the Loewy length of Z(B) is 4, and the dimensions of Ji(Z(B)), for 0 ≤ i ≤ 4, are
18,17,5,1,0, respectively. In [Sch16, p. 113], it is erroneously stated that the Loewy length is larger
than 5, and that J2(Z(B)) has dimension 11.

The largest Loewy length in the above list occurs for the group Fi23 in characteristic 2.
Now let us look what we know about the abovementioned conjecture.

Example
gap> conjecture_is_wrong_for;
[]
gap> conjecture_is_open_for;
[["Co1", 2], ["J4", 2], ["F3+", 2], ["F3+", 3], ["B", 2],

["B", 11], ["B", 13], ["B", 17], ["B", 19], ["B", 23],
["B", 47], ["M", 2], ["M", 3], ["M", 17], ["M", 19],
["M", 23], ["M", 29], ["M", 31], ["M", 41], ["M", 59],
["M", 71]]

Most of the open cases belong to primes p that divide the group orders only once, but for which the
character tables of the corresponding Sylow p-normalizers are not (yet) contained in GAP’s library.

Example
gap> defectone:= Filtered(conjecture_is_open_for,
> pair -> Size(CharacterTable(pair[1])) mod pair[2]^2 <> 0);
[["B", 11], ["B", 13], ["B", 17], ["B", 19], ["B", 23],

["B", 47], ["M", 17], ["M", 19], ["M", 23], ["M", 29],
["M", 31], ["M", 41], ["M", 59], ["M", 71]]

The following table lists the structures of the groups in question, as they are stated in [CCN+85,
pp. 217, 234].

G p Structure
B 11 11 : 10×S5

13 13 : 12×S4
17 (17 : 8×22).2
19 19 : 18×2
23 23 : 11×2
47 47 : 23

M 17 (17 : 8×L3(2)).2
19 (19 : 9×A5) : 2
23 23 : 11×S4
29 (29 : 14×3).2
31 31 : 15×S3
41 41 : 40
59 59 : 29
71 71 : 35

Table: Some normalizers of cyclic Sylow p-subgroups

We compute the dimensions of the layers in these cases.

Blocks of Character Tables 24

Example
gap> # G = B, p = 11
gap> DimensionsOfLoewyLayersByTable(
> CharacterTable("P:Q", [11, 10]) *
> CharacterTable("S5"), 11);
[1, 10]
gap> # G = B, p = 13
gap> DimensionsOfLoewyLayersByTable(
> CharacterTable("P:Q", [13, 12]) *
> CharacterTable("S4"), 13);
[1, 12]
gap> # G = B, p = 17
gap> tblH1:= CharacterTable("17:8");;
gap> tblG1:= CharacterTable("17:16");;
gap> tblH2:= CharacterTable("2^2");;
gap> tblG2:= CharacterTable("D8");;
gap> DimensionsOfLoewyLayersByTable(
> CharacterTableOfIndexTwoSubdirectProduct(
> tblH1, tblG1, tblH2, tblG2, "(17:8x2^2).2").table, 17);
[1, 16]
gap> # G = B, p = 19
gap> DimensionsOfLoewyLayersByTable(
> CharacterTable("P:Q", [19, 18]) *
> CharacterTable("C2"), 19);
[1, 18]
gap> # G = B, p = 23
gap> DimensionsOfLoewyLayersByTable(
> CharacterTable("P:Q", [23, 11]) *
> CharacterTable("C2"), 23);
[1, 11, 1]
gap> # G = B, p = 47
gap> DimensionsOfLoewyLayersByTable(
> CharacterTable("P:Q", [47, 23]), 47);
[1, 23, 1]
gap> # G = M, p = 17
gap> tblH1:= CharacterTable("17:8");;
gap> tblG1:= CharacterTable("17:16");;
gap> tblH2:= CharacterTable("L3(2)");;
gap> tblG2:= CharacterTable("L3(2).2");;
gap> DimensionsOfLoewyLayersByTable(
> CharacterTableOfIndexTwoSubdirectProduct(
> tblH1, tblG1, tblH2, tblG2, "(17:8xL3(2)).2").table, 17);
[1, 16]
gap> # G = M, p = 19
gap> tblH1:= CharacterTable("19:9");;
gap> tblG1:= CharacterTable("19:18");;
gap> tblH2:= CharacterTable("A5");;
gap> tblG2:= CharacterTable("S5");;
gap> DimensionsOfLoewyLayersByTable(
> CharacterTableOfIndexTwoSubdirectProduct(
> tblH1, tblG1, tblH2, tblG2, "(19:9xA5).2").table, 19);
[1, 18]
gap> # G = M, p = 23

Blocks of Character Tables 25

gap> DimensionsOfLoewyLayersByTable(
> CharacterTable("P:Q", [23, 11]) *
> CharacterTable("S4"), 23);
[1, 11, 1]
gap> # G = M, p = 29
gap> tblH1:= CharacterTable("29:14");;
gap> tblG1:= CharacterTable("29:28");;
gap> tblH2:= CharacterTable("C3");;
gap> tblG2:= CharacterTable("S3");;
gap> DimensionsOfLoewyLayersByTable(
> CharacterTableOfIndexTwoSubdirectProduct(
> tblH1, tblG1, tblH2, tblG2, "(29:14x3).2").table, 29);
[1, 28]
gap> # G = M, p = 31
gap> DimensionsOfLoewyLayersByTable(
> CharacterTable("P:Q", [31, 15]) *
> CharacterTable("S3"), 31);
[1, 15, 1]
gap> # G = M, p = 41
gap> DimensionsOfLoewyLayersByTable(
> CharacterTable("P:Q", [41, 40]), 41);
[1, 40]
gap> # G = M, p = 59
gap> DimensionsOfLoewyLayersByTable(
> CharacterTable("P:Q", [59, 29]), 59);
[1, 29, 1]
gap> # G = M, p = 71
gap> DimensionsOfLoewyLayersByTable(
> CharacterTable("P:Q", [71, 35]), 71);
[1, 35, 1]

For those normalizers N in the above computations that are not direct products, the subdirect
product structure follows from the containment of N in known subgroups of B or M, respectively:

• (17 : 8×22).2 < (22×F4(2)).2 < B,

• (17 : 8×L3(2)).2 < (S4(4).2×L3(2)).2 < M,

• (19 : 9×A5).2 < (U3(8).3×A5).2 < M, and

• (29 : 14×3).2 < 3.Fi24 < M.

Seven cases remain to be checked. From [Wil98], we know that the Sylow 2-subgroups of Co1,
J4, F3+, B, and M are self-normalizing in the simple group, and that the Sylow 3-normalizers of F3+
and M have the 3′-parts 23 and 26, respectively.

Example
gap> hard:= Filtered(conjecture_is_open_for,
> pair -> Size(CharacterTable(pair[1])) mod pair[2]^2 = 0);
[["Co1", 2], ["J4", 2], ["F3+", 2], ["F3+", 3], ["B", 2],

["M", 2], ["M", 3]]

Blocks of Character Tables 26

The first four of these cases and the last one are small enough for our appproach, GAP needs
several hours for each of the computations. The results are as follows.

• The Sylow 2-subgroup of Co1 has 782 conjugacy classes, the dimensions of the Loewy layers
of the centre of its group algebra over the field with two elements are 1,766,15.

• The Sylow 2-subgroup of J4 has 581 conjugacy classes, the dimensions of the Loewy layers of
the centre of its group algebra over the field with two elements are 1,553,27.

• The Sylow 2-subgroup of F3+ has 581 conjugacy classes, the dimensions of the Loewy layers
of the centre of its group algebra over the field with two elements are 1,553,27.

• The Sylow 3-normalizer of F3+ is supersolvable and has 701 conjugacy classes, the dimensions
of the Loewy layers of the centre of its group algebra over the field with three elements are
1,620,78,2.

• The Sylow 3-normalizer of M has 810 conjugacy classes, the dimensions of the Loewy layers
of the centre of its group algebra over the field with three elements are 1,698,108,3.

The other two open cases are more involved. For example, the Sylow 2-subgroup of the Monster
has 26752 conjugacy classes. We should better think about another strategy.

Remark:
The Sylow 2-subgroups of the groups J4 and F3+ have the same number of conjugacy classes and

the same Loewy layer dimensions. In fact, they have the same irreducible characters. This implies
that the centres of their group algebras are isomorphic, because the structure constants that define the
multiplication in these algebras depend only on the character values, not on the element orders (see
ClassMultiplicationCoefficient (Reference: ClassMultiplicationCoefficient for character
tables)).

The two groups are not isomorphic, since the numbers of conjugacy classes of elements of given
orders are different: The Sylow 2-subgroups of J4 have 106, 398, and 75 conjugacy classes of elements
of the orders 2, 4, and 8, respectively, whereas these numbers are 98, 394, and 87 in the case of the
Sylow 2-subgroups of F3+.

The similarity of the two Sylow 2-subgroups can be explained by the fact that the groups are
contained in (maximal) subgroups of the structure 211.M24 in J4 and F3+, where the involved 11-
dimensional modules for M24 are isomorphic; also these maximal subgroups have the same irreducible
characters. (But note that also the Sylow 2-subgroup of Co1 is contained in a (maximal) subgroup of
the structure 211.M24.)

A GAP session that shows these facts is listed below. (A direct call of IsomorphismGroups
(Reference: IsomorphismGroups) for the two groups did not finish after several days.) Note that
the Sylow 2-subgroup of J4 is contained in the maximal subgroups of the type 211 : M24, for which a
permutation representation on 211 points is known.

First we construct the two Sylow 2-subgroups, represented as PC groups (see Chapter (Reference:
Pc Groups)).

Example
gap> g1:= AtlasGroup("Fi24’");;
gap> s1:= SylowSubgroup(g1, 2);;
gap> pc1:= Image(IsomorphismPcGroup(s1));
gap> j4:= CharacterTable("J4");;
gap> j4m1:= CharacterTable(Maxes(j4)[1]);;

Blocks of Character Tables 27

gap> (Size(j4) / Size(j4m1)) mod 2;
1
gap> GroupInfoForCharacterTable(j4m1);
[["AtlasSubgroup", ["J4", 1]],

["PrimitiveGroup", [2048, 11]]]
gap> g2:= PrimitiveGroup(2048, 11);;
gap> s2:= SylowSubgroup(g2, 2);;
gap> pc2:= Image(IsomorphismPcGroup(s2));;
gap> Collected(Factors(Size(pc1)));
[[2, 21]]
gap> Size(pc1) = Size(pc2);
true

Next we compute the two character tables and check the above claims. (Currently GAP does not
recognize automatically that the PC groups are in fact p-groups, but we have to set the supersolvability
flag in order to use an efficient algorithm for the computations.)

Example
gap> IsPGroup(pc1);; IsPGroup(pc2);;
gap> t1:= CharacterTable(pc1);;
gap> irr1:= Irr(t1);;
gap> t2:= CharacterTable(pc2);;
gap> irr2:= Irr(t2);;
gap> deg:= CharacterDegrees(t1);
[[1, 32], [2, 56], [4, 80], [8, 84], [16, 109], [32, 70],

[64, 94], [128, 42], [256, 14]]
gap> deg = CharacterDegrees(t2);
true
gap> IsRecord(TransformingPermutations(irr1, irr2));
true
gap> Collected(OrdersClassRepresentatives(t1));
[[1, 1], [2, 98], [4, 394], [8, 87], [16, 1]]
gap> Collected(OrdersClassRepresentatives(t2));
[[1, 1], [2, 106], [4, 398], [8, 75], [16, 1]]

Chapter 3

Character theoretic functions for
p-blocks

3.1 The character theoretic setup

The aim of this GAP package is to provide functions to compute information about p-blocks of groups
only from character tables. This means that we know the ordinary character table t of the finite
group G, say, and that we know the ordinary character table of some subgroup H of G, together
with the class fusion that describes the embedding of H in G, but we cannot assume that G is given
or that the p-modular character table of G is known. If such information is actually available then
more operations may return non-fail results: If G is known via the attribute UnderlyingGroup
(Reference: UnderlyingGroup for character tables) of the character table in question then calling
DefectGroup (3.4.2) makes sense, and if the p-modular character table of G is known then calling
IBr (3.3.6) for the block object in question makes sense.

For example, the distribution of the irreducible characters of t to p-blocks can be computed with
PrimeBlocks (Reference: PrimeBlocks). Note that this information depends on t: When we talk
about “the b-th p-block of the character table t” then this means that the list Irr(t) contains characters
of exactly b−1 other p-blocks before the first character of the block in question appears.

It is clear that the character theoretic setup does not allow us to perform block theoretic computa-
tions with (ideals of) group rings. Only questions about the centre of a group ring may make sense, for
example a block idempotent can be represented by a class function of the given character table (see
CoefficientsOfOsimaIdempotent (3.3.13)), which is interpreted as the coefficient vector w.r.t. the
basis of class sums, that is, the i-th entry is the coefficient of the the sum over the i-th conjugacy class.

Some definitions can be motivated by the identification of p-blocks with ideals of group rings,
in this context it is natural to talk about the dimension (see Dimension (3.3.9)) or the kernel
(see ClassPositionsOfKernel (3.3.11)) of a block. In this sense, we take the pragmatic view-
point stated in [Nav98, p. 57]: “Most authors write B = eBFG. We will also use this notation
when we find it convenient.” (Here B is a p-block of the group G, F is a field of characteristic
p specified in the given p-modular system (see Section 3.2), and eB is the block idempotent (see
CoefficientsOfOsimaIdempotent (3.3.13)) of B.)

28

Blocks of Character Tables 29

3.2 Theoretical background of blocks of character tables

“Let (K,R,F) be a p-modular system for the group G.” Many statements in modular representation
theory start with this sentence or a similar one, where p is a prime integer, R is a complete discrete
valuation ring with quotient field K of characteristic zero and F = R/M is a field of characteristic p,
for a fixed maximal ideal M, say, of R.

For computational purposes, it is useful to choose the p-modular system in a specific way, as is
described in [LP10, Section 4.2] and to some extent also in [JLPW95, Sections 2-5]. The idea is as
follows. For positive integers m, we set ζm = exp(2πi/m). The set of complex roots of unity of finite
order coprime to p consists exactly of the powers of all ζm, where m is coprime to p. We fix a bijection
from this set to the nonzero elements in finite extensions of the field with p elements, such that the
restriction of this map to the m-th roots of unity (for any integer m that is coprime to p) defines a
ring homomorphism ∗ from Z[ζm] into those finite fields of characteristic p that contain elements of
multiplicative order m. More generally, we can take the union of the rings Zp[ζm] as the domain of ∗,
where Zp is the ring of of p-local numbers in Q.

For a group G whose exponent has p′-part m, this setup allows us to lift eigenvalues of p-modular
representations of G to Z[ζm] and thus to compute Brauer character values in this ring from matrices
over finite fields (see BrauerCharacterValue (Reference: BrauerCharacterValue)). Moreover,
this setup holds also for subgroups of G, so we can restrict and induce Brauer characters via the class
fusions in question.

We do not need the p-modular system (K,R,F) explicitly for actual GAP computations. We
can think of R as the completion of a valuation ring in Q(ζm), and the kernel of the map ∗ is the
maximal ideal M of R. The map ∗ is implemented via the function FrobeniusCharacterValueExt
(4.2.3) (which generalizes FrobeniusCharacterValue (Reference: FrobeniusCharacterValue)),
the images are elements of finite fields in the sense of IsFFE (Reference: IsFFE). If we are interested
in the interpretation of finite field elements in terms of polynomials then ReductionToFiniteField
(4.2.4) can be used. See also Chapter (Reference: Cyclotomic Numbers) for more details how
elements of cyclotomic fields are handled by GAP.

Note that the Brauer characters of G, which depend on the choice of the ideal M, are uniquely
determined in our setup. Also the question whether a given conjugacy class is a defect class of some
p-block can be decided, but may require explicit computations of images under the map ∗, and this can
be a hard problem. On the other hand, questions such as the distribution of the ordinary irreducible
characters of G into p-blocks can be decided without computations in finite fields, and these questions
are not computationally hard (see PrimeBlocks (Reference: PrimeBlocks)); the same holds for the
question whether some algebraic conjugate of a given conjugacy class is a defect class of some p-block
(see Section 3.4).

3.2.1 A number theoretic lemma

Lemma: Let R be the ring of algebraic integers in C, p be a prime integer, and M be a maximal ideal
in R that contains pR. For positive integers m, set ζm = exp(2πi/m). Consider α ∈ R∩Q(ζm) such
that all algebraic conjugates of α lie in M. Then α lies in every maximal ideal of R that contains pR,
and we have αk ∈ pR, where k is the degree of the minimal polynomial of α over Q. Moreover, if p
does not divide m then α ∈ pR.

Proof: (see [LP10, proof of Theorem 4.4.8], [Nav98, proof of Theorem 3.2], or [Isa76, Theorem
(15.18)]) Let A denote the set of algebraic conjugates of α (thus |A|= k holds), and set f = ∏a∈A(X−
a) ∈Q[X]. All coefficients except the leading one lie in M∩Q= M∩R∩Q= M∩Z= pZ, thus 0 =

Blocks of Character Tables 30

f (α)≡ αk (mod pR). Since maximal ideals are prime, α lies in any maximal ideal of R containing
pR. If p does not divide m then p does not ramify in Z[ζm] = R∩Q(ζm), see [Was97, Proposition 2.3].
Thus pR has a unique factorization of the form P1P2 · · ·Pl , for prime ideals Pi in R which are pairwise
different. Since the ideal αkR = (αR)k is contained in pR, each Pi divides (αR)k and hence αR, which
means α ∈ pR.

A well-known application of this lemma is the decision whether two given ordinary irreducible
characters χ , ψ of a group G, say, belong to the same p-block, that is, whether the corresponding
central characters ωχ , ωψ are congruent modulo the fixed maximal ideal M of R. It is sufficient to
test this property for p-regular elements of G (see [LP10, proof of Theorem 4.4.8]). In other words, if
ωχ and ωψ are not congruent modulo M then there is a class C of p-regular elements in G such that
(ωχ −ωψ)(C+) /∈M, where C+ ∈ RG denotes the sum of elements in C. Hence all we have to check
is whether (ωχ −ωψ)(C+)/p is an algebraic integer, for representatives C of families of algebraic
conjugate classes of p-regular elements in G. See PrimeBlocks (Reference: PrimeBlocks) for more
information about the GAP implementation, and the statements cited in the above proof for variants
of this theorem.

Similarly, induced blocks can be computed by inducing central characters. Note that in this case,
we cannot restrict the comparison to p-regular classes, because the values at p-singular classes may
yield that no induced block is defined, see [LP10, Theorem 4.7.7]. See also the examples in Section
3.8 for details.

Another application of the lemma is the computation of defect classes up to Galois conjugacy (see
Section 3.4).

3.3 Block objects for character tables

This section introduces GAP objects that represent p-blocks of character tables. One may argue that
such objects are not necessary because one can simply replace the object that represents the b-th p-
block of the character table t by the triple [t, p,b]. Another argument against these objects is that
the documentation of functions for them is longer than the GAP code that implements them. On the
other hand, such objects are convenient as inputs and outputs of operations, and for caching results of
computations as values of attributes, such as Irr (3.3.5) and IBr (3.3.6).

Thus we offer such GAP objects, but we offer also variants of the relevant functions that accept
the arguments t, p, b instead.

See Section 3.3.14 for technical details.

3.3.1 Block

. Block(tbl, p, b) (operation)

For an ordinary character table tbl , a prime integer p , and a positive integer b , Block returns the
block object that represents the b -th p -block of tbl if this block exists, otherwise fail is returned.

Example
gap> Block(CharacterTable("A5"), 2, 1);
Block(CharacterTable("A5"), 2, 1)
gap> Block(CharacterTable("A5"), 2, 3);
fail

Blocks of Character Tables 31

3.3.2 Defining attributes of block objects

. UnderlyingCharacterTable(B) (attribute)

. UnderlyingCharacteristic(B) (attribute)

. NumberOfBlock(B) (attribute)

These are the defining attributes of the block object B . There are no methods for computing their
values, the values must be set upon creation of the block object.

For the b-th p-block of the character table t, the values of UnderlyingCharacterTable,
UnderlyingCharacteristic, and NumberOfBlock are t, p, and b, respectively.

Example
gap> b:= Block(CharacterTable("A5"), 2, 1);
Block(CharacterTable("A5"), 2, 1)
gap> UnderlyingCharacterTable(b);
CharacterTable("A5")
gap> UnderlyingCharacteristic(b);
2
gap> NumberOfBlock(b);
1

3.3.3 PrincipalBlock

. PrincipalBlock(tbl, p) (operation)

For an ordinary character table tbl and a prime integer PrincipalBlock returns the block object
for the p -block of tbl that contains the trivial character of tbl .

Note that the trivial character need not be the first character in the list of irreducibles of tbl , so
the principal block need not have number 1.

Example
gap> PrincipalBlock(CharacterTable("A5"), 2);
Block(CharacterTable("A5"), 2, 1)

3.3.4 PBlocks

. PBlocks(tbl, p) (function)

For an ordinary character table tbl and a prime integer p , PBlocks returns the list of block objects
that represent the p -blocks of tbl .

Example
gap> PBlocks(CharacterTable("A5"), 2);
[Block(CharacterTable("A5"), 2, 1),

Block(CharacterTable("A5"), 2, 2)]

3.3.5 Irr (for a block object)

. Irr(B) (attribute)

. Irr(ordtbl, p, b) (operation)

Blocks of Character Tables 32

The arguments can be either a block object B which represents the b -th p -block of the ordinary
character table ordtbl , or the three values ordtbl , p , and b .

Irr returns the sublist of those irreducible characters of ordtbl that belong to the block, in the
same ordering as in the Irr (Reference: Irr) list of ordtbl .

Example
gap> irr:= Irr(Block(CharacterTable("A5"), 2, 1));
[Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"),
[3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3]),
Character(CharacterTable("A5"),
[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4]),
Character(CharacterTable("A5"), [5, 1, -1, 0, 0])]

gap> irr = Irr(CharacterTable("A5"), 2, 1);
true

3.3.6 IBr (for a block object)

. IBr(B) (attribute)

. IBr(modtbl, b) (operation)

The arguments can be either a block object B which represents the b -th p-block of the ordinary
character table whose p-modular Brauer table is modtbl , or the two values modtbl and b .

IBr returns the sublist of those irreducible characters of modtbl that belong to the block, in the
same ordering as in the Irr (Reference: Irr) list of modtbl .

If B is given, it may happen that the irreducible p-modular Brauer characters for the character table
that defines B are not available. In this case, IBr returns fail.

Example
gap> ibr:= IBr(Block(CharacterTable("A5"), 2, 1));
[Character(BrauerTable("A5", 2), [1, 1, 1, 1]),

Character(BrauerTable("A5", 2),
[2, -1, E(5)+E(5)^4, E(5)^2+E(5)^3]),
Character(BrauerTable("A5", 2),
[2, -1, E(5)^2+E(5)^3, E(5)+E(5)^4])]

gap> ibr = IBr(CharacterTable("A5") mod 2, 1);
true
gap> IBr(Block(CharacterTable("M"), 2, 1));
fail

3.3.7 DecompositionMatrix (for a block object)

. DecompositionMatrix(B) (attribute)

For a p-block B of a character table t, say. DecompositionMatrix returns the decomposition
matrix of B , that is, the matrix whose rows and columns are indexed by the ordinary irreducible
characters and the p-modular Brauer characters, respectively, that belong to B .

If the p-modular character table of t is not known then fail is returned.
A variant without block objects is DecompositionMatrix (Reference: DecompositionMatrix).

Blocks of Character Tables 33

Example
gap> DecompositionMatrix(Block(CharacterTable("A5"), 2, 1));
[[1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]]
gap> DecompositionMatrix(Block(CharacterTable("A5"), 2, 2));
[[1]]
gap> DecompositionMatrix(Block(CharacterTable("M"), 2, 1));
fail

3.3.8 DimensionsOfDecompositionMatrix (for a block object)

. DimensionsOfDecompositionMatrix(B) (attribute)

For a p-block B of a character table t, say. DimensionsOfDecompositionMatrix returns the
list [k(B), l(B)] of the numbers of rows and columns of the decomposition matrix of B . That is, k(B)
is the number of ordinary irreducible characters in B , and l(B) is the number of irreducible Brauer
characters in B .

Note that these numbers can be computed from the ordinary character table t, whereas
DecompositionMatrix (3.3.7) requires the irreducible p-modular Brauer characters of t.

Example
gap> b:= Block(CharacterTable("M"), 2, 1);;
gap> DimensionsOfDecompositionMatrix(b);
[183, 55]

3.3.9 Dimension (for a block object)

. Dimension(B) (attribute)

The dimension of the p-block B is ∑χ χ(1)2, where the summation runs over the ordinary irre-
ducible characters χ of B .

This is the dimension of the algebra eFG, where e is the block idempotent of B (see
CoefficientsOfOsimaIdempotent (3.3.13)) and G is the underlying group of B .

(For details, see [Nav98, Thm. 3.14].)
Example

gap> List(PBlocks(CharacterTable("2.A5"), 3), Dimension);
[42, 9, 9, 24, 36]

3.3.10 CentralCharacter (for a block object)

. CentralCharacter(B) (attribute)

. CentralCharacter(tbl, p, b) (operation)

The central character of the p -block B of the group G is the algebra homomorphism λB : Z(FG)→
F that is defined by λB(C+) = ωχ(C+)∗, for χ ∈ Irr(B) and class sums C+ of G, see [LP10, p. 324] or
[Nav98, p. 48]. Here ωχ is the central character of χ as defined in CentralCharacter (Reference:
CentralCharacter), that is, ωχ((gG)+) = |gG|χ(g)/χ(1) for g ∈ G. (Note that the values of ωχ are
complex numbers, not elements of a finite field.)

Blocks of Character Tables 34

We represent the central character of the b -th p -block of the character table tbl by the vector of
reductions of the list returned by CentralCharacter (Reference: CentralCharacter) with argument
an irreducible character in the given block. Note that the central character of the block depends on the
choice of the p -modular system, see Section 3.2.

CentralCharacter is based on FrobeniusCharacterValueExt (4.2.3), thus the returned list
contains fail entries exactly when a Conway polynomial would be needed that is not available.

Example
gap> CentralCharacter(CharacterTable("A5"), 2, 1);
[Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)]
gap> CentralCharacter(Block(CharacterTable("A5"), 2, 1));
[Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)]

3.3.11 ClassPositionsOfKernel (for a block object)

. ClassPositionsOfKernel(B) (attribute)

Let B be a p-block of the group G, say. We define the kernel of B as the intersection of the
kernels of the ordinary irreducible characters in B . and ClassPositionsOfKernel returns the list of
positions of those conjugacy classes of G (w. r. t. the underlying character table of B) that lie inside
the kernel.

The kernel of B is the kernel of the natural action of G on the algebra eFG, where e is the block
idempotent of B (see CoefficientsOfOsimaIdempotent (3.3.13)).

The kernel of B is equal to the intersection of the kernel of any character in B with the largest
normal p′-subgroup of G, which is usually denoted by Op′(G), see [LP10, Theorem 4.11.13], [Nav98,
Theorem 6.10], or [NT89, Ch. 5, Sect. 8]. In particular, the kernel of the principal p block of G is
equal to Op′(G).

Example
gap> t:= CharacterTable("6.A6");;
gap> List(PBlocks(t, 2), ClassPositionsOfKernel);
[[1, 3, 5], [1, 3, 5], [1, 3, 5], [1], [1]]
gap> List(PBlocks(t, 3), ClassPositionsOfKernel);
[[1, 4], [1, 4], [1]]
gap> List(PBlocks(t, 5), ClassPositionsOfKernel);
[[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6],

[1, 2, 3, 4, 5, 6], [1, 3, 5], [1, 3, 5], [1, 3, 5],
[1, 4], [1, 4], [1, 4], [1, 4], [1], [1]]

3.3.12 IsFaithful (for a block object)

. IsFaithful(B) (property)

The block B is called faithful if its kernel is trivial, see ClassPositionsOfKernel (3.3.11).
Example

gap> t:= CharacterTable("6.A6");;
gap> List(PBlocks(t, 2), IsFaithful);
[false, false, false, true, true]

Blocks of Character Tables 35

3.3.13 CoefficientsOfOsimaIdempotent (for a block object)

. CoefficientsOfOsimaIdempotent(B) (attribute)

. CoefficientsOfOsimaIdempotent(tbl, p, b) (operation)

Let B be a p -block of the group G. The primitive idempotent corresponding to χ ∈ Irr(G) is

eχ = (χ(1)/|G|)∑
g

χ(g−1)g ∈ Z(CG),

where the summation runs over the elements of G.
The Osima idempotent of B is defined as fB = ∑χ eχ , where the summation runs over χ ∈ Irr(B).

The coefficient of g ∈ G in fB is

ag = (1/|G|)∑
χ

χ(1)χ(g−1),

where the summation runs over χ ∈ Irr(B).
CoefficientsOfOsimaIdempotent returns the vector [ag1 ,ag2 , . . .], where gi lies in the i-th con-

jugacy class of the character table tbl .
The name “Osima idempotent” appears in [Isa76, p. 277]. Both fB and its reduction (fB)

∗ are
called block idempotent in [LP10, p. 324], whereas this term is used only for eB = (fB)

∗ in [Nav98, p.
55].

Example
gap> CoefficientsOfOsimaIdempotent(CharacterTable("A5"), 2, 1);
[11/15, 0, -1/15, 1/15, 1/15]
gap> CoefficientsOfOsimaIdempotent(Block(CharacterTable("A5"), 2, 1));
[11/15, 0, -1/15, 1/15, 1/15]

3.3.14 Technicalities of block objects for character tables

. IsBlockOfCharacterTable(B) (category)

A p-block of a character table can be represented by a GAP object in the filter
IsBlockOfCharacterTable. The idea is that such an object is created by Block (3.3.1) from the
defining data, and that there are various operations that can take a block object as arguments (for
example attributes such as Defect (3.4.1) and Irr (3.3.5)) or can return block objects (for example
PrincipalBlock (3.3.3)).

Block objects aren’t domains in the sense of (Reference: Domains), in particular they do not have
elements; one can use Irr (3.3.5) and IBr (3.3.6) for accessing the ordinary or modular irreducible
characters that “belong to” the given block.

Two objects that represent blocks of character tables are compared w.r.t. the triples [id, p, b
], where id is the identifier of the underlying character table, p is the underlying characteristic, and b
is the number of the block.

The declarations of operations and the installations of methods for these block objects should not
cause conflicts to situations where blocks of algebras, in the sense of direct summands, are considered.
(At the moment, there seems to be no GAP package with such functionality.)

Blocks of Character Tables 36

Example
gap> tbl:= CharacterTable("D8");;
gap> tbl2:= CharacterTable("A4");;
gap> IsBlockOfCharacterTable(tbl);
false
gap> IsBlockOfCharacterTable(Block(tbl, 2, 1));
true
gap> Block(tbl, 2, 1) = Block(tbl2, 2, 1);
false
gap> Block(tbl, 2, 1) < Block(tbl2, 2, 1);
true

3.4 Defect, defect classes, and defect groups

Let G be a group and p be a prime integer. For any positive integer m, let mp denote the highest power
of p that divides m.

The p-defect groups of a conjugacy class C of G are the Sylow p-subgroups of the centralizers in
G of the elements in C.

Let t be the character table of the group G, p be a prime integer, and B be a p-block of t. The
defect of B is defined as the integer

max{logp(|G|p/χ(1)p); χ ∈ Irr(B)},

see [Nav98, Def. 3.15] and [LP10, Def. 4.4.12].
A class gG of p-regular elements in G is called a defect class of B if both λB((gG)+) and (ag)

∗

are nonzero, where λB is the central character of B (see CentralCharacter (3.3.10)) and ag is the
coefficient of the Osima idempotent of B at g (see CoefficientsOfOsimaIdempotent (3.3.13)).
Note that the set of defect classes of a block depends on the choice of the p-modular system, see
Section 3.2.

The p-defect groups of a B are the defect groups of the defect classes of B. Equivalently, the defect
groups of B are the defect groups of arbitrary algebraic conjugates of defect classes of B. ([Isa76, p.
280] defines the defect of a block via the order of its defect group –if the defect group has order pd

then the defect is d. Then it is shown in [Isa76, Theorem 15.41] that this definition coincides with the
above one.)

By the lemma from Section 3.2.1, the set of algebraic conjugates of the defect classes of a p-block
does not depend on the choice of the p-modular system and can be computed without computing p-
modular reductions of cyclotomic numbers. In order to see this, we fix a class C = gG of p-regular
elements of order m in G, and ask whether at least one algebraic conjugate of C is a defect class of
a given p-block B. This is not the case if and only if λB((hG)+) · (ah)

∗ = 0 holds for all algebraic
conjugates h of g, that is, for all generators h of the cyclic group 〈g〉. Choose χ ∈ Irr(B) and set
β = ωχ((gG)+) ·ag. Then there is an integer n coprime to p such that α = n ·β is an algebraic integer,
and α∗ = 0 holds if and only if β ∗ = λB((gG)+) · (ag)

∗ = 0 holds. Thus no algebraic conjugate of C is
a defect class of B if and only if α/p ∈ Z[ζm] holds.

3.4.1 Defect

. Defect(B) (attribute)

. Defect(tbl, p, b) (operation)

Blocks of Character Tables 37

For a block that is either given by a block object B or as the b -th p -block of the character table
tbl , Defect returns the defect of this block, see above.

Example
gap> Defect(Block(CharacterTable("A5"), 2, 1));
2
gap> Defect(CharacterTable("A5"), 2, 1);
2

3.4.2 DefectGroup

. DefectGroup(B) (attribute)

. DefectGroup(tbl, p, b) (operation)

Let tbl be an ordinary character table with underlying group (see UnderlyingGroup (Reference:
UnderlyingGroup for character tables)) G, say, p be a prime integer, and b be a positive integer
denoting the number of a p -block of tbl . Alternatively, let B be the b -th p -block of tbl .

DefectGroup returns a defect group of the b -th p -block of tbl .
If the UnderlyingGroup (Reference: UnderlyingGroup for character tables) is not known

then fail is returned.
Example

gap> tbl:= CharacterTable(AlternatingGroup(5));;
gap> DefectGroup(tbl, 2, 1);
Group([(2,3)(4,5), (2,4)(3,5)])
gap> DefectGroup(Block(CharacterTable("A5"), 2, 1));
fail

3.4.3 NormalizerOfDefectGroup

. NormalizerOfDefectGroup(B) (attribute)

. NormalizerOfDefectGroup(tbl, p, b) (operation)

Let tbl be an ordinary character table with underlying group (see UnderlyingGroup (Reference:
UnderlyingGroup for character tables)) G, say, p be a prime integer, and b be a positive integer
denoting the number of a p -block of tbl . Alternatively, let B be the b -th p -block of tbl .

NormalizerOfDefectGroup returns the normalizer in G of a defect group of the b -th p -block of
tbl .

If the UnderlyingGroup (Reference: UnderlyingGroup for character tables) value is not set
in tbl then fail is returned.

Note that there are methods for fetching defect normalizer information from the CTBlocks
database, see NormalizerOfDefectGroup.

Example
gap> tbl:= CharacterTable(AlternatingGroup(5));;
gap> NormalizerOfDefectGroup(tbl, 2, 1);
Group([(2,3)(4,5), (2,4)(3,5), (3,4,5)])
gap> NormalizerOfDefectGroup(Block(CharacterTable("A5"), 2, 1));
fail

Blocks of Character Tables 38

3.4.4 ClassPositionsOfDefectGroupOfClass

. ClassPositionsOfDefectGroupOfClass(tbl, p, c) (operation)

Let p be a prime integer and c be the position of a p -regular class in the ordinary character table
tbl . ClassPositionsOfDefectGroupOfClass returns the list of positions of those classes that
contain elements of the defect groups of the c -th class.

Note that for a p -regular element g in a group G, the classes of those p -elements in G that contain
elements in the centralizer of g in G are the p -parts of those classes of G that contain the roots of g.

Example
gap> tbl:= CharacterTable("J2");;
gap> OrdersClassRepresentatives(tbl);
[1, 2, 2, 3, 3, 4, 5, 5, 5, 5, 6, 6, 7, 8, 10, 10, 10, 10, 12, 15,

15]
gap> ClassPositionsOfDefectGroupOfClass(tbl, 2, 4);
[1, 2, 6]

3.4.5 ClassPositionsOfDefectGroupOfBlock

. ClassPositionsOfDefectGroupOfBlock(B) (attribute)

. ClassPositionsOfDefectGroupOfBlock(tbl, p, b) (operation)

Let tbl be an ordinary character table, p be a prime integer, and b be a positive integer denoting
the number of a p -block of tbl . Alternatively, let B be the b -th p -block of tbl .

ClassPositionsOfDefectGroupOfBlock returns the list of positions of those classes that con-
tain elements of the defect groups of the b -th p -block of tbl .

Example
gap> tbl:= CharacterTable("J2");;
gap> ClassPositionsOfDefectGroupOfBlock(Block(tbl, 2, 1));
[1, 2, 3, 6, 14]
gap> ClassPositionsOfDefectGroupOfBlock(tbl, 2, 1);
[1, 2, 3, 6, 14]

3.4.6 IsClassWithNormalDefectGroup

. IsClassWithNormalDefectGroup(tbl, p, c) (operation)

returns true if the p -defect groups of the c -th class of the ordinary character table tbl are normal
subgroups of the group of tbl , and false otherwise.

The c -th class of tbl must be p -regular.
Example

gap> IsClassWithNormalDefectGroup(CharacterTable("A5"), 2, 1);
false
gap> IsClassWithNormalDefectGroup(CharacterTable("A5"), 2, 3);
true

Blocks of Character Tables 39

3.4.7 IsBlockWithNormalDefectGroup

. IsBlockWithNormalDefectGroup(B) (property)

. IsBlockWithNormalDefectGroup(tbl, p, b) (operation)

returns true if the defect groups of the b -th p -block of the ordinary character table tbl are normal
subgroups of the group of tbl , and false otherwise.

The block can also be entered as a block object B .
Example

gap> IsBlockWithNormalDefectGroup(CharacterTable("A5"), 2, 1);
false
gap> IsBlockWithNormalDefectGroup(Block(CharacterTable("A5"), 2, 2));
true

3.4.8 IsClassWithCyclicDefectGroup

. IsClassWithCyclicDefectGroup(tbl, p, c) (operation)

returns true if the p -defect groups of the c -th class of the ordinary character table tbl are cyclic,
and false otherwise.

The c -th class of tbl must be p -regular.
Example

gap> IsClassWithCyclicDefectGroup(CharacterTable("A5"), 2, 1);
false
gap> IsClassWithCyclicDefectGroup(CharacterTable("A5"), 2, 3);
true

3.4.9 IsBlockWithCyclicDefectGroup

. IsBlockWithCyclicDefectGroup(B) (property)

. IsBlockWithCyclicDefectGroup(tbl, p, b) (operation)

returns true if the defect groups of the b -th p -block of the ordinary character table tbl are cyclic,
and false otherwise.

The block can also be entered as a block object B .
Example

gap> IsBlockWithCyclicDefectGroup(CharacterTable("A5"), 2, 1);
false
gap> IsBlockWithCyclicDefectGroup(Block(CharacterTable("A5"), 2, 2));
true

3.4.10 TestBlockWithAbelianDefectGroup

. TestBlockWithAbelianDefectGroup(B) (attribute)

. TestBlockWithAbelianDefectGroup(tbl, p, b) (operation)

. IsBlockWithAbelianDefectGroup(B) (attribute)

. IsBlockWithAbelianDefectGroup(tbl, p, b) (operation)

Blocks of Character Tables 40

Brauer’s height zero conjecture states that the defect groups of a p-block of G are abelian if and
only if all ordinary irreducible characters in the block have height zero (cf. [LP10, Conjecture 4.14.6]
or [Nav98, p. 212]). If this conjecture would be true then it would allow us to compute from the
character table of a group whether the defect groups of a block are abelian.

Currently it is known that the existence of an irreducible character of positive defect im-
plies that the defect groups of its block are nonabelian (see [KM13]). The other direction of
the conjecture is still open, and it is in general not known whether the character table of a
group determines which defect groups of its p-blocks are abelian. Therefore, there is no GAP
function IsBlockWithAbelianDefectGroup with return values only true and false. Instead,
TestBlockWithAbelianDefectGroup tests some necessary conditions and allows for a fail result.
The return value is a record as described below.

Let tbl be an ordinary character table, p be a prime integer, and b be a positive integer denoting
the number of a p -block of tbl . Alternatively, let B be the b -th p -block of tbl .

TestBlockWithAbelianDefectGroup returns a record with the following components.

resultHZC
true if all ordinary irreducible characters in the block have height zero, and false otherwise;
if Brauer’s height zero conjecture is true then this holds if and only if the defect groups of the
block are abelian,

result
true or false if the defect groups of the block can be shown to be abelian or nonabelian,
respectively, and fail if the criteria listed below do not suffice for a decision.

comment
a string that explains the reason for the value of the result component.

The following criteria are used.

• If not all ordinary irreducible characters in the block have height zero then the defect groups of
the block are nonabelian, by [KM13].

• If the defect is at most 2 or if the exponent of the defect groups is 2 or if the defect groups are
cyclic then the defect groups are abelian.

• If tbl is p -solvable then the height zero conjecture holds for tbl , by [GW84].

• If the defect groups contain elements whose centralizer order is not divisible by the order of the
defect groups then the defect groups are nonabelian.

• For a block of maximal defect, [NST15] yields that the defect groups (the Sylow subgroups) are
abelian if and only if all ordinary irreducibles in the principal p -block have height zero and the
class lengths of all p -elements are not divisible by p .

• For a block whose defect group is normal in the group of tbl , the height zero conjecture is true
by a theorem of Reynolds, see [Nav98, Thm. 9.23].

• If the Sylow p -subgroups the group of tbl are abelian (which can be computed by [NST15])
then the defect groups of any p -block are abelian.

Blocks of Character Tables 41

Example
gap> TestBlockWithAbelianDefectGroup(CharacterTable("A5"), 2, 1);
rec(comment := "defect at most 2", result := true, resultHZC := true
)

gap> TestBlockWithAbelianDefectGroup(CharacterTable("A6"), 2, 1);
rec(comment := "not all irreducibles have height zero",

result := false, resultHZC := false)
gap> TestBlockWithAbelianDefectGroup(CharacterTable("J1"), 2, 1);
rec(comment := "defect group is an el. ab. 2-group", result := true,

resultHZC := true)
gap> TestBlockWithAbelianDefectGroup(
> CharacterTable("2.L2(23).2"), 2, 2);
rec(comment := "cyclic defect group", result := true,

resultHZC := true)
gap> TestBlockWithAbelianDefectGroup(
> CharacterTable("U3(11)"), 2, 2);
rec(comment := "no criterion yields a decision", result := fail,

resultHZC := true)

More examples are shown in Section 2.2.
IsBlockWithAbelianDefectGroup returns the value of the result component of the result of

TestBlockWithAbelianDefectGroup, called with the same arguments.
Example

gap> IsBlockWithAbelianDefectGroup(CharacterTable("A5"), 2, 1);
true
gap> IsBlockWithAbelianDefectGroup(CharacterTable("A6"), 2, 1);
false
gap> IsBlockWithAbelianDefectGroup(CharacterTable("J1"), 2, 1);
true
gap> IsBlockWithAbelianDefectGroup(CharacterTable("2.L2(23).2"),
> 2, 2);
true
gap> IsBlockWithAbelianDefectGroup(CharacterTable("U3(11)"),
> 2, 2);
fail

(Note that technically, IsBlockWithAbelianDefectGroup cannot be implemented via a property
in the sense of GAP’s type system, see (Reference: Properties). It is implemented via an attribute.)

3.4.11 ClassPositionsOfDefectClasses

. ClassPositionsOfDefectClasses(B) (attribute)

. ClassPositionsOfDefectClasses(tbl, p, b) (operation)

Let tbl be an ordinary character table, p be a prime integer, and b be a positive integer denoting
the number of a p -block of tbl . Alternatively, let B be the b -th p -block of tbl .

ClassPositionsOfDefectClasses returns the list of positions of those conjugacy classes of
tbl that are defect classes of its b -th p -block if GAP can decide this with reasonable effort, and
fail otherwise. The result fail occurs if and only if either tbl has no b -th p -block or if the known
Conway polynomials (see ConwayPolynomial (Reference: ConwayPolynomial)) do not suffice.

Blocks of Character Tables 42

Example
gap> ClassPositionsOfDefectClasses(CharacterTable("A5"), 2, 1);
[1]
gap> b:= Block(CharacterTable("A5"), 2, 2);;
gap> ClassPositionsOfDefectClasses(b);
[3, 4, 5]
gap> b:= Block(CharacterTable("J4"), 23, 32);;
gap> ClassPositionsOfDefectClasses(b);
#I the Conway polynomial of degree 21 for p = 23 is not known
fail

3.4.12 ClassPositionsOfDefectClassesUpToGaloisConjugacy

. ClassPositionsOfDefectClassesUpToGaloisConjugacy(B) (attribute)

. ClassPositionsOfDefectClassesUpToGaloisConjugacy(tbl, p, b) (operation)

ClassPositionsOfDefectClassesUpToGaloisConjugacy is similar to
ClassPositionsOfDefectClasses (3.4.11). The result is either fail or the list of those
class positions such that at least one algebraic conjugate class is a defect class of the b -th p -block of
tbl .

By the lemma from Section 3.2.1, this information can be computed without using Con-
way polynomials, thus fail is returned only if tbl has no b -th p -block. (Note that
ClassPositionsOfDefectClasses (3.4.11) returns fail also if not all defect classes can be de-
termined.)

Example
gap> b:= Block(CharacterTable("A5"), 2, 2);
Block(CharacterTable("A5"), 2, 2)
gap> ClassPositionsOfDefectClassesUpToGaloisConjugacy(b);
[3, 4, 5]
gap> ClassPositionsOfDefectClassesUpToGaloisConjugacy(
> CharacterTable("J4"), 23, 32);
[2, 3, 5, 6, 7, 14, 15, 16, 19, 20, 34, 57, 58, 59, 60]

3.5 Radical p-subgroups

Let D be a p-subgroup of the group G, where p is a prime integer. Then D is called a radical p-
subgroup of G if D is equal to the p-core (see PCore (Reference: PCore)) of the normalizer of D in
G, see [LP10, Def. 4.7.25] and [Nav98, p. 84].

For example, the p-core of G (see PCore (Reference: PCore)) is radical, and every radical p-
subgroup of G contains the p-core of G. Moreover, the defect groups of p-blocks of G (see Section
3.4) are radical. In particular the Sylow p-subgroups of G are radical.

Radical p-subgroups are important for example if one deals with p-weights, see Section 3.7. See
Section 3.6 for computing chains of radical p-subgroups.

3.5.1 IsRadicalPSubgroup

. IsRadicalPSubgroup(G, D, p) (operation)

Blocks of Character Tables 43

For a subgroup D of the group G (this relation is not checked), IsRadicalPSubgroup returns
true if D is a radical p -subgroup of G (see above), and false otherwise.

Example
gap> g:= SmallGroup(48, 29);; # GL(2,3)
gap> syl2:= SylowSubgroup(g, 2);;
gap> ccl:= ConjugacyClassesSubgroups(syl2);;
gap> reps:= List(ccl, Representative);;
gap> List(reps, Size);
[1, 2, 2, 4, 4, 4, 8, 8, 8, 16]
gap> israd:= List(reps, r -> IsRadicalPSubgroup(g, r, 2));
[false, false, false, false, false, false, true, false, false, true]

3.5.2 NormalizerOfRadicalPSubgroup

. NormalizerOfRadicalPSubgroup(G, D, p) (operation)

Let D be a p -subgroup of the group G , where p is a prime integer. (It is not checked whether D
is actually a subgroup of G .) NormalizerOfRadicalPSubgroup returns fail if D is not a radical
p -subgroup of G , see IsRadicalPSubgroup (3.5.1), and the normalizer of D in G otherwise.

The advantage of using this function instead of IsRadicalPSubgroup (3.5.1) is that the normal-
izer need not be computed twice if one is interested in it.

Example
gap> # (continuing the example for IsRadicalPSubgroup)
gap> norm:= List(reps, r -> NormalizerOfRadicalPSubgroup(g, r, 2));
[fail, fail, fail, fail, fail, fail, Group([f1, f2, f3, f4, f5]),

fail, fail, Group([f1, f3, f4, f5])]
gap> Positions(israd, false) = Positions(norm, fail);
true

3.5.3 RepresentativesRadicalPSubgroupsAndNormalizers

. RepresentativesRadicalPSubgroupsAndNormalizers(G, p[, arec]) (function)

. RepresentativesRadicalPSubgroupsAndNormalizers(tom, p) (function)

Let the first argument be either a group G or the table of marks tom of the group G such that the
filter IsTableOfMarksWithGens (Reference: IsTableOfMarksWithGens) is set in tom , and let p
be a prime integer. RepresentativesRadicalPSubgroupsAndNormalizers returns a list of records
with the components subgroup and normalizer, with the values U and N, respectively, such that U
runs over representatives of conjugacy classes of radical p -subgroups of G and N is the normalizer of
U in G .

Calling PCore (Reference: PCore) with the arguments N and p yields U , this value is cached
inside N.

If the first argument is a table of marks tom then also the components subgroupnr and
normalizernr are bound in the records that are returned, their values are the positions of the conju-
gacy classes of U and N in the list of classes of subgroups of tom . Thus these numbers can be used
for fetching a conjugate of U and N with RepresentativeTom (Reference: RepresentativeTom).

Blocks of Character Tables 44

The optional argument arec , if given, must be a record. It can be used to submit data for ac-
celerating the computations in the case that a group G is given as the first argument. The following
components of arec are supported.

Maxes
a list l of subgroups of G such that any p -local subgroup of G is conjugate to a subgroup of one
of the groups in l; this holds if l contains representatives of all classes of maximal subgroups of
G , but often a smaller list suffices,

CharacterTable
the ordinary character table of G .

The idea behind the Maxes component is that the union L, say, of class representatives of p -radical
subgroups in the subgroups in the list l covers the classes of non-normal radical p -subgroups of G :
If U is p -radical in G and not normal in G then U is p -radical in some maximal subgroup of G that
contains U . (If U is not normal in G then the normalizer N of U in G is contained in some maximal
subgroup M of G , thus N is also the normalizer of U in M, and hence U is p -radical in M.) Thus we
can find candidates for all classes of radical p -subgroups of G by omitting those subgroups from L
that are not p -radical in G , omitting also duplicates in the sense that the subgroups are conjugate in G ,
and adding the p-core of G .

Example
gap> g:= DihedralGroup(8);;
gap> RepresentativesRadicalPSubgroupsAndNormalizers(g, 2);
[rec(normalizer := Group([f1, f2, f3]),

subgroup := Group([f1, f2, f3]))]
gap> g:= SymmetricGroup(5);;
gap> RepresentativesRadicalPSubgroupsAndNormalizers(g, 2);
[rec(normalizer := Sym([1 .. 5]), subgroup := Group(())),

rec(normalizer := Group([(3,4,5), (3,4), (1,2)]),
subgroup := Group([(1,2)])),

rec(normalizer := Group([(1,2)(3,4), (1,3)(2,4), (2,4), (2,3)]),
subgroup := Group([(1,3)(2,4), (1,2)(3,4)])),

rec(normalizer := Group([(1,4)(2,3), (3,4), (1,2)]),
subgroup := Group([(3,4), (1,2), (1,3)(2,4)]))]

gap> tom:= TableOfMarks("A5");;
gap> RepresentativesRadicalPSubgroupsAndNormalizers(tom, 2);
[rec(normalizer := Alt([1 .. 5]), normalizernr := 9,

subgroup := Group(()), subgroupnr := 1),
rec(normalizer := Group([(2,4)(3,5), (2,3)(4,5), (3,4,5)]),

normalizernr := 8, subgroup := Group([(2,3)(4,5), (2,4)(3,5)])
, subgroupnr := 4)]

The above computation shows that the alternating group on five points has exactly two classes of
radical 2-subgroups, the trivial subgroup and a Klein four group contained in the stabilizer of a point.
Thus we can restrict the computations to this point stabilizer and get essentially the same result.

Example
gap> g:= AlternatingGroup(5);;
gap> r:= rec(Maxes:= [Stabilizer(g, 5)],
> CharacterTable:= CharacterTable("A5"));;
gap> RepresentativesRadicalPSubgroupsAndNormalizers(g, 2, r);

Blocks of Character Tables 45

[rec(normalizer := Alt([1 .. 5]), subgroup := Group(())),
rec(normalizer := Group([(1,4)(2,3), (1,3)(2,4), (2,3,4)]),

subgroup := Group([(1,4)(2,3), (1,3)(2,4)]))]

The following methods are available.

• If a table of marks tom is given then we run over the classes of p -subgroups.

• If a group G but no record arec with Maxes component is given then first we run over the
classes of subgroups of a Sylow p -subgroup of G/N, where N is the p -core of G , then fuse
G/N-conjugate classes, and finally compute preimages under the natural epimorphism from G
to G/N.

• If a group G and a record arec with Maxes component l are given then we run over the sub-
groups in l and compute, for each such subgroup U , its p -radical subgroups with the above
method. Finally, representatives under G -conjugacy are computed.

Once RepresentativesRadicalPSubgroupsAndNormalizers has computed the result, it is
stored via the attribute ComputedRepresentativesRadicalPSubgroupsAndNormalizers.

3.6 Chains of radical p-subgroups

A p-chain of length n of the group G is any strictly increasing chain P0 < P1 < · · ·< Pn of p-subgroups
of G, see [LP10, p. 433]. The normalizer of this chain is defined as N0∩N1∩·· ·∩Nn, where Ni is the
normalizer of Pi in G.

3.6.1 RepresentativesChainsOfRadicalPSubgroupsAndNormalizers

. RepresentativesChainsOfRadicalPSubgroupsAndNormalizers(G, p[, arec]) (function)

. RepresentativesChainsOfRadicalPSubgroupsAndNormalizers(tom, p) (function)

Called with the same arguments as RepresentativesRadicalPSubgroupsAndNormalizers
(3.5.3), this function returns a list l, say, such that l[k] describes those ascending p-chains of length k
of the group in question (that is, either G or the underlying group of tom), up to conjugation in this
group, that start at the p-core P, say, of this group and that consist of radical p-subgroups. Each entry
in l[k] is a record with the following components.

subgroups
the list [P1,P2, . . . ,Pk] such that P < P1 < P2 < · · ·< Pk is the p-chain in question (note that the
p-core itself does not appear in the list) and

normalizer
the normalizer of the chain.

The function calls the function RepresentativesRadicalPSubgroupsAndNormalizers (3.5.3)
for computing class representatives of radical p-subgroups. The optional argument arec , if present,
is used for this purpose.

Blocks of Character Tables 46

Example
gap> g:= DihedralGroup(8);;
gap> RepresentativesChainsOfRadicalPSubgroupsAndNormalizers(g, 2);
[]
gap> g:= SymmetricGroup(5);;
gap> RepresentativesChainsOfRadicalPSubgroupsAndNormalizers(g, 2);
[[rec(normalizer := Group([(3,4,5), (3,4), (1,2)]),

subgroups := [Group([(1,2)])]),
rec(normalizer := Group([(1,2)(3,4), (1,3)(2,4), (2,4), (2,3)

]), subgroups := [Group([(1,3)(2,4), (1,2)(3,4)])]),
rec(normalizer := Group([(1,4)(2,3), (3,4), (1,2)]),

subgroups := [Group([(3,4), (1,2), (1,3)(2,4)])])],
[

rec(normalizer := Group([(3,4), (1,2)]),
subgroups :=

[Group([(1,2)]), Group([(3,4), (1,2), (1,3)(2,4)])]
),

rec(normalizer := Group([(1,4)(2,3), (3,4), (1,2)]),
subgroups := [Group([(1,3)(2,4), (1,2)(3,4)]),

Group([(3,4), (1,2), (1,3)(2,4)])])]]
gap> tom:= TableOfMarks("A5");;
gap> RepresentativesChainsOfRadicalPSubgroupsAndNormalizers(tom, 2);
[[rec(normalizer := Group([(2,4)(3,5), (2,3)(4,5), (3,4,5)]),

subgroups := [Group([(2,3)(4,5), (2,4)(3,5)])])]]

RepresentativesChainsOfRadicalPSubgroupsAndNormalizers stores the computed result
via the attribute ComputedRepresentativesChainsOfRadicalPSubgroupsAndNormalizers.

3.7 p-weights

Let G be a group, p be a prime integer, P be a p-subgroup of G, and N be the normalizer of P in G. A
p-weight of G is defined as a pair (P,ψ) where ψ is an irreducible defect zero character of N/P, that
is, the p-parts of ψ(1) and |N/P| are equal (see [Nav98, p. 90]).

The p-weight (P,ψ) is said to belong to the p-block B of G if the p-block of ψ induces B, see
Section 3.8. Note that each p-weight belongs to a block, because block induction (in the sense of
Brauer) from N to G is always defined, see for example [LP10, Thm. 4.7.19].

A more suitable way of representing p-weights in our context –we want to deal with character
tables instead of groups– is the following.

Let t be the ordinary character table of G and n be the ordinary character table of N, and if n is
different from t then assume that the class fusion of N in G is stored on n. Then the p-weight (P,ψ)
can be represented by the pair (n,ψ ′), where ψ ′ is the irreducible character of N that is obtained from
ψ by inflation.

Note that P is p-radical in G (see Section 3.5) if N/P has a p-block of defect zero, thus P is
uniquely determined by N as its p-core. (To see this, note that the p-core of a group G is contained in
the defect groups of all p-blocks of G, see [Nav98, Thm. 4.8] or [LP10, Thm. 4.6.10].)

Note also that the character table of N determines which of its conjugacy classes lie in P, see
ClassPositionsOfPCore (Reference: ClassPositionsOfPCore).

In order to deal also with cases where the ordinary character table of N is not known, we provide
the following alternative description of p-weights. Suppose that there is a chain 1 < K ≤ P < N ≤

Blocks of Character Tables 47

M < G of subgroups of G such that K is normal in M, and such that the character tables m, m′, and
n′ of M, M/K, and N/K, respectively, are known. Again we have to assume that the relevant class
fusions are stored on the character tables: the fusion that describes the embedding of N/K in M/K
and the fusion that describes the projection from M to M/K. In this situation, we can represent (P,ψ)
by the pair ((n′,m′,m),ψ ′), where ψ ′ is the irreducible character of N/K that is obtained from ψ by
inflation.

Note that we can compute, for a p-weight described by ((n′,m′,m),ψ ′), to which p-block of G it
belongs: Let ψ be the irreducible character of N that is obtained from ψ ′ by inflation, and let B denote
the p-block of G that is induced by the p-block of ψ . We compute B by first inducing the p-block of
ψ ′ from N/K to M/K, then taking the corresponding block of M, and then inducing this block to G.
(Note that block induction is transitive, see for example [LP10, Exercise 4.7.3]).

3.7.1 DescriptionOfPWeights

. DescriptionOfPWeights(B) (function)

. DescriptionOfPWeights(tbl, p[, b]) (function)

First consider the case of two arguments. Let tbl be the ordinary character table of a group G, say,
and p be a prime integer. DescriptionOfPWeights returns either fail or a record r that describes
the p -weights of G, up to G-conjugacy, as follows.

Suppose that G has k conjugacy classes of radical p -subgroups, with representatives P1,P2, . . . ,Pk.
The normalizers component of r is a dense list [n1,n2, . . . ,nk], where ni is either the character

table of the normalizer Ni of Pi in G, or ni is a triple ((ni)
′,(mi)

′,mi) of character tables as defined
above in this section, which describes this normalizer.

The characters component of r is a dense list of the same length k, its i-th entry is the list of
those irreducible characters ψ of ni or of (ni)

′, respectively, with the property that Pi is contained in
the kernel of ψ and that ψ has defect zero w.r.t. the factor group Ni/Pi.

The blocks component of r is a dense list of the same length k, its i-th entry is the list of numbers
of the blocks in tbl to which the given characters ψ of ni belong.

Now consider the case of three arguments, where b is a positive integer, and the case of one
argument B that stands for the b -th p -block of tbl . In these cases, the format of the result is the
same, but it is restricted to those classes of radical p -subgroups and to those irreducible characters for
which the induced block is B .

Example
gap> DescriptionOfPWeights(CharacterTable(AlternatingGroup(5)), 2);
rec(blocks := [[2], [1, 1, 1]],

characters :=
[[Character(CharacterTable(Alt([1 .. 5])),

[4, 0, 1, -1, -1])],
[Character(CharacterTable(Alt([1 .. 4])),

[1, 1, 1, 1]),
Character(CharacterTable(Alt([1 .. 4])),
[1, E(3)^2, E(3), 1]),
Character(CharacterTable(Alt([1 .. 4])),
[1, E(3), E(3)^2, 1])]],

normalizers := [CharacterTable(Alt([1 .. 5])),
CharacterTable(Alt([1 .. 4]))])

gap> DescriptionOfPWeights(CharacterTable(AlternatingGroup(5)), 2, 1);
rec(

Blocks of Character Tables 48

characters :=
[[], [Character(CharacterTable(Alt([1 .. 4])),

[1, 1, 1, 1]),
Character(CharacterTable(Alt([1 .. 4])),
[1, E(3)^2, E(3), 1]),
Character(CharacterTable(Alt([1 .. 4])),
[1, E(3), E(3)^2, 1])]],

normalizers := [CharacterTable(Alt([1 .. 5])),
CharacterTable(Alt([1 .. 4]))])

If the attribute UnderlyingGroup (Reference: UnderlyingGroup for character tables) is not
set in tbl and if the p -weights of tbl are not yet known then fail is returned.

3.8 Block induction

Block induction relates certain p-blocks of subgroups of a group G to p-blocks of G. From the various
definitions of induced blocks that appear in the literature, each two of the following ones coincide
when both of them are defined.

In all cases, G is a finite group, p is a prime integer, H is a subgroup of G, and we are given a
p-block b of H. Recall that the central character ω∗b is defined as the p-modular reduction of the class
function ωχ , for any irreducible character χ in b.

Block induction in the sense of Brauer
Let sH : Z(FG)→ Z(FH) be the F-linear map that is defined by C+ 7→ (C ∩H)+, for each
conjugacy class C of G. If λb ◦ sH = λB (see CentralCharacter (3.3.10)) holds for some
p-block B of G then we call B the block induced by b, and write B = bG.

The function BrauerCorrespondent (3.8.1) can be used to compute the number of the block
B. See [LP10, Section 4.7] or [Nav98, p. 86 ff.] for details. Note that λb ◦ sH can be computed
as (ωχG)∗, if we extend the definition of CentralCharacter (Reference: CentralCharacter)
to arbitrary characters, see [LP10, Lemma 4.7.5].

p-regular block induction
For any two different p-blocks B, C of G, the class functions λB, λC differ at some p-regular
class, see [LP10, Proof of Thm. 4.4.8]. Thus it makes sense to define the induced block B by
the condition that λb ◦ sH and λB coincide at p-regular classes –if such a block B exists then it is
unique. If bG is defined in the sense of Brauer then of course B = bG holds.

The function PRegularCorrespondent (3.8.2) can be used to compute the number of the
block B. Note that this computation is cheaper than that of bG. Thus it is advisable to call
PRegularCorrespondent (3.8.2) instead of BrauerCorrespondent (3.8.1) if one knows in
advance that bG is defined.

Block induction in the sense of Alperin-Burry
This induction concept is defined not character theoretically but using the interpretation of the
p-blocks as the indecomposable direct summands of the group algebra RG. Namely, RG is a
R[G×G]-module, w. r. t. the action x · (g1,g2) = g−1

1 xg2, for x ∈ RG and g1,g2 ∈G. Restricting
this action on a block B of RG to R[H ×H] yields a direct sum of blocks of RH. If B is the
unique block of RG with the property that the block b of RH occurs as a direct summand of the

Blocks of Character Tables 49

restriction then block induction in the sense of Alperin-Burry is defined, and B is the induced
block (see [AB80]).

The function AlperinBurryCorrespondent (3.8.3) can be used to compute the number of the
block B, provided that the underlying groups of the character tables in question are available.

Extended block induction
If B is the unique block of G with the property (λb ◦ sH)((fB)

∗) 6= 0, where fB ∈ Z(RG) is the
block idempotent of B (see CoefficientsOfOsimaIdempotent (3.3.13)), then we say that
extended block induction (or block induction in the sense of Wheeler) is defined for b, and B is
the induced block. It is shown in [Whe94] that this condition holds if block induction is defined
in the sense of Brauer or of Alperin-Burry, thus it provides a common generalization of these
concepts. (In fact it generalizes p-regular induction.)

The function WheelerCorrespondent (3.8.4) can be used to compute the number of the
block B. Using [Whe94, Lemma 1.3], we can compute the induced block via the equality
(λb ◦ sH)((fB)

∗) = (χB(1)/χG(1))∗, where χ is any character in b and χB is the restriction of
χG to B. (With this approach, we need not compute reductions of cyclotomic numbers to finite
fields, cf. Section 3.2.

The following functions implement the above concepts of block induction. In all cases, four
arguments occur. The first two are the ordinary character tables of the two groups H and G, with
H ≤ G, the third is the prime integer p, and and the fourth is either a positive integer b denoting the
number of a p-block of the character table of H or an irreducible character of H that lies in the b-th
p-block of H.

Alternatively, the b-th p-block of the character table of H can be entered via a block object B. In
this case, only the character table of G must be supplied in addition to B.

3.8.1 BrauerCorrespondent

. BrauerCorrespondent(B, tblG) (operation)

. BrauerCorrespondent(tblH, tblG, p, b) (operation)

Called with the arguments as described above, BrauerCorrespondent returns the number of the
induced p -block of tblG if block induction to G is defined for the given block in the sense of Brauer
(see above), otherwise fail is returned.

3.8.2 PRegularCorrespondent

. PRegularCorrespondent(B, tblG) (operation)

. PRegularCorrespondent(tblH, tblG, p, b) (operation)

Called with the arguments as described above, PRegularCorrespondent returns the number of
the induced p -block of G if p -regular block induction to G is defined for the given block, otherwise
fail is returned.

3.8.3 AlperinBurryCorrespondent

. AlperinBurryCorrespondent(B, tblG) (operation)

. AlperinBurryCorrespondent(tblH, tblG, p, b) (operation)

Blocks of Character Tables 50

Called with the arguments as described above, AlperinBurryCorrespondent returns the number
of the induced p -block of G if block induction to G is defined for the given block in the sense of
Alperin-Burry (see above), otherwise fail is returned. The currently available methods require that
underlying groups are stored for tblH and tblG , and that these groups are compatible.

3.8.4 WheelerCorrespondent

. WheelerCorrespondent(B, tblG) (operation)

. WheelerCorrespondent(tblH, tblG, p, b) (operation)

Called with the arguments as described above, WheelerCorrespondent returns the number of
the induced p -block of G if extended block induction to G is defined for the given block, otherwise
fail is returned.

3.9 Reality questions about blocks

A conjugacy class C of the group G is called real if C is equal to the class of inverses of the elements
in C (see RealClasses (Reference: RealClasses)).

The class C is called strongly real if its elements are either the identity in G or are inverted by
conjugation with an involution (that is, an element of order two) in G. Equivalently, the elements in a
strongly real class C are the identity or products of at most two involutions in G; note that if t ∈ G is
an involution such that tg = g−1t holds for g ∈C then (tg)2 is the identity, hence g = t(tg) is a product
of at most two involutions.

A p-block B of G is called real if Irr(B) is invariant under complex conjugation (see
ComplexConjugate (Reference: ComplexConjugate)). In [Nav98, p. 75], real p-blocks are called
selfdual.

The p-block B is called strongly real (see [Mur06]) if it is real and has a strongly
real defect class (see ClassPositionsOfDefectClasses (3.4.11)). Since a class is strongly
real if and only if all of its algebraic conjugates are strongly real, the real p-block B is
strongly real if and only if the set of defect classes of B up to Galois conjugacy (see
ClassPositionsOfDefectClassesUpToGaloisConjugacy (3.4.12)) contains a strongly real class.

3.9.1 IsRealClass

. IsRealClass(tbl, c) (operation)

Let c be the position of a class in the ordinary character table tbl . IsRealClass returns true if
the c -th class in tbl is real, and false otherwise.

Example
gap> tbl:= CharacterTable("M22");;
gap> List([1 .. NrConjugacyClasses(tbl)],
> c -> IsRealClass(tbl, c));
[true, true, true, true, true, true, true, false, false, true,

false, false]

Blocks of Character Tables 51

3.9.2 IsStronglyRealClass

. IsStronglyRealClass(tbl, c) (operation)

Let c be the position of a class in the ordinary character table tbl . IsStronglyRealClass
returns true if the c -th class in tbl is strongly real, and false otherwise.

This property can be checked using the class multiplication coefficients of tbl , see
ClassMultiplicationCoefficient (Reference: ClassMultiplicationCoefficient for character
tables).

Example
gap> tbl:= CharacterTable("M22");;
gap> List([1 .. NrConjugacyClasses(tbl)],
> c -> IsStronglyRealClass(tbl, c));
[true, true, true, true, true, true, true, false, false, false,

false, false]

3.9.3 IsRealBlock

. IsRealBlock(B) (property)

. IsRealBlock(tbl, p, b) (operation)

returns true if the b -th p -block of the ordinary character table tbl is real, and false otherwise.
The block can also be entered as a block object B .

Example
gap> IsRealBlock(CharacterTable("A7"), 5, 1);
true
gap> IsRealBlock(Block(CharacterTable("A7"), 5, 2));
false

3.9.4 IsStronglyRealBlock

. IsStronglyRealBlock(B) (property)

. IsStronglyRealBlock(tbl, p, b) (operation)

returns true if the b -th p -block of the ordinary character table tbl is strongly real, and false
otherwise.

The block can also be entered as a block object B .
Example

gap> tbl:= CharacterTable("2.A5");;
gap> IsStronglyRealBlock(Block(tbl, 2, 1));
true
gap> IsStronglyRealBlock(tbl, 2, 2);
false

The principal block is always strongly real. The unique nonprincipal 2-block of 2.A5 ∼= SL(2,5) is
not strongly regular; note that the corresponding defect zero block of the factor group A5 is strongly
regular.

Blocks of Character Tables 52

Example
gap> tbl:= CharacterTable("A5");;
gap> IsStronglyRealBlock(tbl, 2, 2);
true

(This example can be generalized: The group G = SL(2,q), for odd q, contains exactly one invo-
lution, which is central in G. Thus G cannot have strongly real p-blocks of nonmaximal defect.)

3.10 Selecting blocks according to their invariants

The idea behind the functions described in this section is that one selects those p-blocks from a given
set that satisfy certain conditions, where the candidates can be given either by a list of block objects
or by a list of character tables whose p-blocks are considered, for all prime divisors p of the group
order. (In the case of character tables from GAP’s character table library, one can enter also a list of
admissible names of these tables, for example their Identifier (Reference: Identifier for character
tables) values.)

For example all p-blocks with positive defect or with trivial kernel can be considered, or more gen-
erally all p-blocks with prescribed values for some properties and attributes that have been introduced
in the previous sections.

AllPBlocks (3.10.1) and OnePBlock (3.10.2) return all blocks and one block with the desired
properties, respectively.

BlockInvariants (3.10.3) returns a record that contains a matrix of block invariants (one row
for each block with the desired properties) and a description of the invariants corresponding to the
columns. DisplayBlockInvariants (3.10.4) and BrowseBlockInvariants (3.10.5) (this function
requires the Browse package [BL18]) show a tabular overview of these invariants. The columns
of these matrices of block invariants can be customized, see CTBlocks.BlockInvariantsColumns
(3.10.6).

3.10.1 AllPBlocks

. AllPBlocks(source[, fun1, val1, ...]) (function)

The first argument source must be either a list l1 of block objects or (an admissible name of) an
ordinary character table t or a list of (admissible names of) ordinary character tables l2. If there is just
this argument then AllPBlocks returns l1 or the list of all p-blocks of t, for all primes dividing the
order of the underlying group of t, or the concatenation of these lists for the tables in l2.

Additional arguments fun1 , val1 , fun2 , val2 . . . can be used to restrict the output. Each of
fun1 , fun2 , . . . must be a unary function that takes a block object as its argument, and each of val1 ,
val2 , . . . describes the admissible values, as follows: The i-th value is admissible for the result of the
i-th function applied to a given block object if the result is either equal to the value or (if the value is
a list) is contained in the value or (if the value is a function) yields true when the value is applied
to the result. AllPBlocks returns the list of those blocks for which the values of all functions are
admissible.

Example
gap> t:= CharacterTable("A5");;
gap> AllPBlocks(t);
[Block(CharacterTable("A5"), 2, 1),

Blocks of Character Tables 53

Block(CharacterTable("A5"), 2, 2),
Block(CharacterTable("A5"), 3, 1),
Block(CharacterTable("A5"), 3, 2),
Block(CharacterTable("A5"), 3, 3),
Block(CharacterTable("A5"), 5, 1),
Block(CharacterTable("A5"), 5, 2)]

gap> AllPBlocks(t, Defect, 2);
[Block(CharacterTable("A5"), 2, 1)]
gap> AllPBlocks(t, Defect, IsPosInt);
[Block(CharacterTable("A5"), 2, 1),

Block(CharacterTable("A5"), 3, 1),
Block(CharacterTable("A5"), 5, 1)]

3.10.2 OnePBlock

. OnePBlock(source[, fun1, val1, ...]) (function)

The difference between OnePBlock and AllPBlocks (3.10.1) is that OnePBlock, when called
with the same arguments, returns the first entry of the result of AllPBlocks (3.10.1) if this result is
nonempty, and fail otherwise.

Example
gap> t:= CharacterTable("A5");;
gap> OnePBlock(t);
Block(CharacterTable("A5"), 2, 1)
gap> OnePBlock(t, UnderlyingCharacteristic, 2);
Block(CharacterTable("A5"), 2, 1)
gap> OnePBlock(t, Defect, 2);
Block(CharacterTable("A5"), 2, 1)
gap> OnePBlock(t, Defect, IsPosInt);
Block(CharacterTable("A5"), 2, 1)

3.10.3 BlockInvariants

. BlockInvariants(source[, fun1, val1, ...][, arec]) (function)

This function returns a record with the following components.

list
a matrix of block invariants whose rows correspond to the block objects that are returned by
AllPBlocks (3.10.1) when this function is called with the same arguments,

columns
a list af records that correspond to the columns of the matrix stored in the list component; for
the format of these records, see CTBlocks.BlockInvariantsColumns (3.10.6),

header
a list of strings that describe the contents.

For the meaning of the arguments of this function except arec , see AllPBlocks (3.10.1).
The optional argument arec can be used to customize the columns of the list component, see
CTBlocks.BlockInvariantsColumns (3.10.6).

Blocks of Character Tables 54

Example
gap> t:= CharacterTable("A5");;
gap> inv:= BlockInvariants(t);;
gap> List(inv.columns, r -> r.label);
["p", "b", "d", "k", "l", "c", "a", "n", "f", "r", "sr"]
gap> Display(inv.list);
[[2, 1, 2, 4, 3, false, true, false, true, true, true],

[2, 2, 0, 1, 1, true, true, true, true, true, true],
[3, 1, 1, 3, 2, true, true, false, true, true, true],
[3, 2, 0, 1, 1, true, true, true, true, true, true],
[3, 3, 0, 1, 1, true, true, true, true, true, true],
[5, 1, 1, 4, 2, true, true, false, true, true, true],
[5, 2, 0, 1, 1, true, true, true, true, true, true]]

The following values of fun1 , fun2 , . . . have the additional effect that the corresponding column
is omitted from the list component if exactly one admissible value is prescribed.

• Defect (3.4.1)

• IsBlockWithAbelianDefectGroup (3.4.10)

• IsBlockWithCyclicDefectGroup (3.4.9)

• IsBlockWithNormalDefectGroup (3.4.7)

• IsFaithful (3.3.12)

• NumberOfBlock (3.3.2)

• UnderlyingCharacteristic (3.3.2)
Example

gap> inv:= BlockInvariants(t, UnderlyingCharacteristic, 2);;
gap> List(inv.columns, r -> r.label);
["b", "d", "k", "l", "c", "a", "n", "f", "r", "sr"]
gap> Display(inv.list);
[[1, 2, 4, 3, false, true, false, true, true, true],

[2, 0, 1, 1, true, true, true, true, true, true]]

3.10.4 DisplayBlockInvariants

. DisplayBlockInvariants(source[, fun1, val1, ...][, arec]) (function)

This function prints the return value of BlockInvariants (3.10.3), when this function is called
with the same arguments, in tabular form.

If there is just one argument then DisplayBlockInvariants prints tabular information about
the p-blocks of the given character table(s), for all primes p dividing the group order(s). Each row
corresponds to a p-block, and each column corresponds to a block invariant.

(First we set the user preference DisplayFunction to the value "Print" in order to make sure
that only ASCII characters are shown in the following example output. The value will be reset at the
end of the examples in this manual chapter.)

Blocks of Character Tables 55

Example
gap> origpref:= UserPreference("AtlasRep", "DisplayFunction");;
gap> SetUserPreference("AtlasRep", "DisplayFunction", "Print");
gap> t:= CharacterTable("2.A5");;
gap> DisplayBlockInvariants(t);
Block invariants for 2.A5

--
| p | b | d | k | l | c | a | n | f | r | sr |
--
2	1	3	7	3	-	-	-	+	+	+
	2	1	2	1	+	+	+	+	+	-
3	1	1	3	2	+	+	-	-	+	+
	2	0	1	1	+	+	+	-	+	-
	3	0	1	1	+	+	+	-	+	-
	4	1	3	2	+	+	-	+	+	+
	5	0	1	1	+	+	+	+	+	-
5	1	1	4	2	+	+	-	-	+	+
	2	0	1	1	+	+	+	-	+	-
	3	1	4	2	+	+	-	+	+	+
--

See CTBlocks.BlockInvariantsColumns (3.10.6) for the meaning of the columns.
The meaning of the arguments fun1 , val1 , fun2 , val2 . . . for restricting the rows and

the meaning of arec for customizing the columns and the header is the same as described for
BlockInvariants (3.10.3).

Example
gap> DisplayBlockInvariants(t, UnderlyingCharacteristic, 2);;
Block invariants for 2.A5
p = 2

--
| b | d | k | l | c | a | n | f | r | sr |
--
| 1 | 3 | 7 | 3 | - | - | - | + | + | + |
| 2 | 1 | 2 | 1 | + | + | + | + | + | - |
--

The user preference DisplayFunction from the package AtlasRep controls whether the output
is just printed or shown using a pager. Depending on the value of this user preference and the terminal
capabilities, nicer table borders may be used than are shown in the above examples.

3.10.5 BrowseBlockInvariants

. BrowseBlockInvariants(source[, fun1, val1, ...][, arec]) (function)

The arguments of this function are equal to the ones for DisplayBlockInvariants (3.10.4). The
difference to that function is that BrowseBlockInvariants does not print the overview to the screen
but shows it in a browse table, see (Browse: Browsing Tables in GAP using ncurses –The User
Interface).

Blocks of Character Tables 56

BrowseBlockInvariants can be used only if the Browse package [BL18] is loaded.
The full functionality of the function NCurses.BrowseGeneric (Browse:

NCurses.BrowseGeneric) is available.
Example

gap> n:= [14, 14, 14, 14, 14, 14];; # ‘‘do nothing’’
gap> enter:= [NCurses.keys.ENTER];;
gap> BrowseData.SetReplay(Concatenation(
> "sc", # select the ’p’ column,
> "sc", # categorize by this column,
> "X", # expand all categories
> n, # wait a little
> "scrrrrrrr", # select the ’f’ column
> "f+", enter, # restrict to the faithful blocks
> n, # wait a little
> "!", # reset the filtering etc.
> n, # wait a little
> "Q")); # and quit
gap> t:= CharacterTable("2.A5");;
gap> BrowseBlockInvariants(t);
gap> BrowseData.SetReplay(false);

3.10.6 Customizing the columns of block invariants overviews

. CTBlocks.BlockInvariantsColumns (global variable)

This variable defines the columns of the overviews that are computed by BlockInvariants
(3.10.3), DisplayBlockInvariants (3.10.4), and BrowseBlockInvariants (3.10.5). Each column
is described by a record with the following components.

label
a string that serves as a column label in the table header,

fun a unary function that takes a block object as its argument, for example Defect (3.4.1),

align
one of "left" or "right", meaning the alignment of the values in the printed table,

replace (optional)
if present, this must be a list of length three, the first entry being the list of admissible values,
the second entry being the list of the corresponding strings that shall be printed in the overview,
and the third entry being the list of the corresponding strings that shall be shown in the table
header when the output is restricted to the given value; the same strings are also shown in
the category rows of the browse table shown by BrowseBlockInvariants (3.10.5). If no
component replace is present then String (Reference: String) is applied to the invariant in
question, and the label together with the value will be used in the header and in category rows
of the printed table.

Example
gap> CTBlocks.BlockInvariantsColumns[1];
rec(align := "left", fun := function(B) ... end, label := "G")

Blocks of Character Tables 57

The columns of the overview tables can be customized via the optional record that can be en-
tered as the last argument to BlockInvariants (3.10.3), DisplayBlockInvariants (3.10.4), and
BrowseBlockInvariants (3.10.5). If this record contains the component columns with value a
list of records as described above then this list of columns is considered instead of the default list
CTBlocks.BlockInvariantsColumns. This way one can reduce, extend, or reorder the columns
that are shown.

Example
gap> cols:= List(["c", "a", "n", "f"],
> l -> First(CTBlocks.BlockInvariantsColumns,
> r -> r.label = l));;
gap> t:= CharacterTable("2.A5");;
gap> DisplayBlockInvariants(t, rec(columns:= cols));
Block invariants for 2.A5

| c | a | n | f |

-	-	-	+
+	+	+	+
+	+	-	-
+	+	+	-
+	+	+	-
+	+	-	+
+	+	+	+
+	+	-	-
+	+	+	-
+	+	-	+

By default, the following columns appear.

G (omitted if only one character table is given)
the identifier of the underlying character table,

b the block number,

d the defect of the block,

k the number of ordinary irreducibles in the block,

l the number of modular irreducibles in the block,

c + if the defect groups of the block are cyclic, - otherwise,

a + if the defect groups of the block are abelian, - if they are nonabelian, ? if the character table
does not determine this property,

n + if the defect groups of the block are normal, - otherwise,

f + if the block is faithful, - otherwise,

r + if the block is real, - otherwise,

Blocks of Character Tables 58

sr + if the block is strongly real, - otherwise,
Example

gap> List(CTBlocks.BlockInvariantsColumns, r -> r.label);
["G", "p", "b", "d", "k", "l", "c", "a", "n", "f", "r", "sr"]

Another supported component of the optional record is header. If it is bound then its
value must be a list of strings which apper as the header component of the record returned
by BlockInvariants (3.10.3) and which are shown as a header above the tables printed by
DisplayBlockInvariants (3.10.4) and BrowseBlockInvariants (3.10.5). The default for the
header is ["Block invariants"] except that the line is extended by the identifier of the char-
acter table if exactly one character table is entered as the first argument.

Example
gap> DisplayBlockInvariants(t, Defect, IsPosInt,
> rec(columns:= cols,
> header:= ["only Boolean invariants"]));
only Boolean invariants

| c | a | n | f |

-	-	-	+
+	+	+	+
+	+	-	-
+	+	-	+
+	+	-	-
+	+	-	+

(The user preference DisplayFunction from the AtlasRep had been changed before showing
examples for DisplayBlockInvariants (3.10.4). Now we reset this preference to its original value.)

Example
gap> SetUserPreference("AtlasRep", "DisplayFunction", origpref);

3.11 Centres of p-blocks as algebras

The functions described in this section create algebra objects (see (Reference: Algebras)) which
are isomorphic with the centres of blocks or group algebras. The structure constants of the cen-
tre of a group algebra can be computed from the character table of the group in question, see
ClassMultiplicationCoefficient (Reference: ClassMultiplicationCoefficient for character
tables), and the centre of a p-block is a suitable subalgebra.

3.11.1 SCAlgebraCentreOfGroupAlgebra

. SCAlgebraCentreOfGroupAlgebra(G, p) (function)

. SCAlgebraCentreOfGroupAlgebra(G, F) (function)

. SCAlgebraCentreOfGroupAlgebra(tbl, p) (function)

. SCAlgebraCentreOfGroupAlgebra(tbl, F) (function)

Blocks of Character Tables 59

Let either G be a group or tbl be the ordinary character table of a group.
If the second argument is a prime integer p then SCAlgebraCentreOfGroupAlgebra returns a

s. c. algebra (see (Reference: Constructing Algebras by Structure Constants) that is isomorphic
with the centre of the group algebra of the group, over the field with p elements.

If the second argument is a finite field F then the same holds, except that the coefficients domain
of the algebra is F .

The canonical basis of the algebra corresponds to the class sums in the group; the basis vectors
appear in the same ordering as in the ConjugacyClasses (Reference: ConjugacyClasses attribute)
value for G or tbl , respectively.

Example
gap> tbl:= CharacterTable("M11");
CharacterTable("M11")
gap> a:= SCAlgebraCentreOfGroupAlgebra(tbl, 3);
<algebra-with-one of dimension 10 over GF(3)>
gap> a.2 * a.3;
(Z(3))*C2+(Z(3))*C4+C7+C8+(Z(3))*C9+(Z(3))*C10
gap> Dimension(RadicalOfAlgebra(a));
8
gap> SCAlgebraCentreOfGroupAlgebra(tbl, GF(9));
<algebra-with-one of dimension 10 over GF(3^2)>

3.11.2 BlockDecompositionSCAlgebraCentreOfGroupAlgebra

. BlockDecompositionSCAlgebraCentreOfGroupAlgebra(tbl, p) (function)

. BlockDecompositionSCAlgebraCentreOfGroupAlgebra(tbl, F) (function)

Let tbl be an ordinary character table.
If the second argument is a prime integer p then this function returns a list of subalgebras of

the s. c. algebra returned by SCAlgebraCentreOfGroupAlgebra (3.11.1) when this is called with
tbl and the smallest field that contains the p -modular reductions of all block idempotents of tbl in
characteristic p . The i-th subalgebra corresponds to the i-th p -block of tbl .

If the second argument is a finite field F then the same holds, except that the coefficients domain
of the algebras is F . If F is too small then fail is returned.

Example
gap> tbl:= CharacterTable("M11");
CharacterTable("M11")
gap> dec:= BlockDecompositionSCAlgebraCentreOfGroupAlgebra(
> tbl, 5);
[<algebra of dimension 5 over GF(5^2)>,

<algebra of dimension 1 over GF(5^2)>,
<algebra of dimension 1 over GF(5^2)>,
<algebra of dimension 1 over GF(5^2)>,
<algebra of dimension 1 over GF(5^2)>,
<algebra of dimension 1 over GF(5^2)>]

gap> List(dec, Dimension);
[5, 1, 1, 1, 1, 1]
gap> dec:= BlockDecompositionSCAlgebraCentreOfGroupAlgebra(
> tbl, GF(5));
fail

Blocks of Character Tables 60

3.11.3 SCAlgebraCentreOfBlock

. SCAlgebraCentreOfBlock(tbl, p, b) (function)

. SCAlgebraCentreOfBlock(tbl, F, b) (function)

Let tbl be an ordinary character table, and b be a positive integer.
If the second argument is a prime integer p then SCAlgebraCentreOfBlock returns a subalgebra

of the s. c. algebra returned by SCAlgebraCentreOfGroupAlgebra (3.11.1) when this is called with
tbl and the smallest field that contains the p -modular reductions of the b -th block idempotent of tbl
in characteristic p .

If the second argument is a finite field F then the same holds, except that the coefficients domain
of the algebra is F . If F is too small then fail is returned.

Example
gap> tbl:= CharacterTable("M11");
CharacterTable("M11")
gap> SCAlgebraCentreOfBlock(tbl, 5, 1);
<algebra of dimension 5 over GF(5)>
gap> SCAlgebraCentreOfBlock(tbl, 5, 3);
<algebra of dimension 1 over GF(5^2)>
gap> SCAlgebraCentreOfBlock(tbl, GF(5), 3);
fail

Chapter 4

Utilities

This chapter lists the documentation about functions which have been developed for the current pack-
age but are of more general interest (see Section 4.1) and functions which are referenced by the
package documentation, whose code is available in the main GAP library, but which are currently
undocumented (see ReductionToFiniteField (4.2.4)).

4.1 Generalized Straight Line Programs

Generalized straight line programs (in the following abbreviated as gslps) are a generalization of the
straight line programs that are introduced in Section (Reference: Straight Line Programs). Like the
latter objects, gslps describe an efficient way for evaluating an abstract word at concrete generators.
The difference is that gslps can be built from existing (generalized) straight line programs. So the
advantages of using gslps are

• that available objects are reused,

• that the internal structure is retained, and

• that intermediate results of an evaluation are not kept longer than until the relevant straight line
program inside is evaluated.

A gslp in GAP is represented by an object in the category
IsGeneralizedStraightLineProgram (4.1.1). This object has exactly one of the following
forms.

• It is a straight line program, that is, it lies in the category IsStraightLineProgram
(Reference: IsStraightLineProgram), and evaluation at some group elements is defined by
ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram).

• It is of “union” kind, that is, the defining data are a nonempty list of gslps, and evaluation at
some group elements means to evaluate these defining programs at these group elements, and
to return the concatenation of the results.

• It is of “compose” kind, that is, the defining data are a nonempty list of gslps, and evaluation at
some group elements means to evaluate the first of them at these elements, then to evaluate the
second of them at the result of the first evaluations, and so on, and to return the last result.

61

Blocks of Character Tables 62

Gslps can be constructed using GeneralizedStraightLineProgram (4.1.2).
Defining attributes for gslps are NrInputsOfGeneralizedStraightLineProgram (4.1.4) and

DataOfGeneralizedStraightLineProgram (4.1.3). The probably most interesting operation for
gslps is ResultOfGeneralizedStraightLineProgram (4.1.6).

Special methods applicable to gslps are installed for the operations IsInternallyConsistent
(Reference: IsInternallyConsistent), ViewString (Reference: ViewString), and String
(Reference: String).

Here are typical situations where gslps arise:

1. Suppose that a list l of standard generators for a group G is given, and that we know a straight
line program for computing generators l′ of a maximal subgroup M of G from l. For example,
these data may be taken from the ATLAS of Group Representations [WWT+]. If M is also
a group for which the ATLAS of Group Representations contains generators and straight line
programs, we may be interested in computing standard generators l′′ for M from l′. For that, a
second straight line program can be needed, and it makes sense to encode the computation of l′′

from l via a gslp of “compose” kind.

2. Now suppose that we are in fact interested in a downward extension H of G, and that π is the
natural epimorphism from H to G, which maps a list L, say, of standard generators of H to l.
Then the above gslp can be applied to L, but the result L′ may generate a proper subgroup of
π−1(M) because some part of the kernel of π is missing. A list K of generators of the kernel
of π can be described by a straight line program that takes L as its input, and it makes sense to
encode the computation of the concatenation of L′ and K from L via a gslp of “union” kind.

A remark on the name “generalized straight line program”: We could have taken the view-
point that these objects are the ones that one wants to deal with, and that they should therefore be
called “straight line program”, whereas GAP’s straight line programs could be called “special straight
line programs”, However, several functions are applicable to GAP’s straight line programs (such as
IntermediateResultOfSLP (Reference: IntermediateResultOfSLP)) for which we do not intend
to provide methods applicable to our generalized straight line programs.

4.1.1 IsGeneralizedStraightLineProgram

. IsGeneralizedStraightLineProgram(obj) (category)

Each generalized straight line program in GAP lies in the category
IsGeneralizedStraightLineProgram. Examples are straight line programs, that is, objects
in the category IsStraightLineProgram (Reference: IsStraightLineProgram).

Example
gap> gslp:= GeneralizedStraightLineProgram("union",
> [[[[[1,2]]], 1], [[[[1,3]]], 1]]);
<generalized straight line program>
gap> IsGeneralizedStraightLineProgram(gslp);
true
gap> slp:= StraightLineProgram([[[1,2]]], 1);
<straight line program>
gap> IsGeneralizedStraightLineProgram(slp);
true
gap> IsGeneralizedStraightLineProgram([slp, slp]);
false

Blocks of Character Tables 63

4.1.2 GeneralizedStraightLineProgram

. GeneralizedStraightLineProgram(lines[, nrgens]) (function)

. GeneralizedStraightLineProgram(kind, list) (function)

In the first form, lines must be a list of lists that defines a unique straight line
program (see IsStraightLineProgram (Reference: IsStraightLineProgram)); in this case
GeneralizedStraightLineProgram delegates to StraightLineProgram (Reference: Straight-
LineProgram for a list of lines (and the number of generators)).

In the second form, kind must be one of the strings "union" or "compose", and list must be
a nonempty list such that each of its entries is either a gslp or a list l, say, such that CallFuncList
(Reference: CallFuncList) applied to GeneralizedStraightLineProgram and l returns a gslp.

Example
gap> GeneralizedStraightLineProgram([[[1,2]]], 1);
<straight line program>
gap> GeneralizedStraightLineProgram("union",
> [[[[[1,2]]], 1], [[[[1,3]]], 1]]);
<generalized straight line program>
gap> GeneralizedStraightLineProgram("compose",
> [[[[[1,2]]], 1], [[[[1,3]]], 1]]);
<generalized straight line program>

4.1.3 DataOfGeneralizedStraightLineProgram

. DataOfGeneralizedStraightLineProgram(gslp) (attribute)

For a generalized straight line program gslp that is not a straight line program,
DataOfGeneralizedStraightLineProgram returns a list of length two, the first entry being either
"union" or "compose" and the second being the list of defining generalized straight line programs.

If gslp is a straight line program then this attribute is not set in gslp . There is no default method
to compute the value if it is not stored.

Example
gap> gslp:= GeneralizedStraightLineProgram("union",
> [[[[[1,2]]], 1], [[[[1,3]]], 1]]);
<generalized straight line program>
gap> DataOfGeneralizedStraightLineProgram(gslp);
["union", [<straight line program>, <straight line program>]]

4.1.4 NrInputsOfGeneralizedStraightLineProgram

. NrInputsOfGeneralizedStraightLineProgram(gslp) (attribute)

For a generalized straight line program gslp , this function returns the number of generators that
are needed as input.

If gslp is a straight line program then it may be necessary that the value is set in the construction
of gslp , see NrInputsOfStraightLineProgram (Reference: NrInputsOfStraightLineProgram).
If gslp is not a straight line program then the value is determined by the (generalized) straight line
programs from which gslp is constructed.

Blocks of Character Tables 64

Example
gap> NrInputsOfGeneralizedStraightLineProgram(
> GeneralizedStraightLineProgram("union",
> [[[[[1,2]]], 1], [[[[1,3]]], 1]]));
1

In order to avoid the introduction of unnecessary filters, we de-
fine NrInputsOfGeneralizedStraightLineProgram just as a synonym of
NrInputsOfStraightLineProgram (Reference: NrInputsOfStraightLineProgram).

4.1.5 NrOutputsOfGeneralizedStraightLineProgram

. NrOutputsOfGeneralizedStraightLineProgram(gslp) (attribute)

For a generalized straight line program gslp , this function returns the number of elements returned
by ResultOfGeneralizedStraightLineProgram (4.1.6) when gslp is evaluated.

Example
gap> NrOutputsOfGeneralizedStraightLineProgram(
> GeneralizedStraightLineProgram("union",
> [[[[[1,2]]], 1], [[[[1,3]]], 1]]));
2
gap> NrOutputsOfGeneralizedStraightLineProgram(
> GeneralizedStraightLineProgram("compose",
> [[[[[1,2]]], 1], [[[[1,3]]], 1]]));
1

4.1.6 ResultOfGeneralizedStraightLineProgram

. ResultOfGeneralizedStraightLineProgram(gslp, gens) (operation)

ResultOfGeneralizedStraightLineProgram evaluates the generalized straight line program
(see IsGeneralizedStraightLineProgram (4.1.1)) gslp at the group elements in the list gens , as
follows.

• If gslp is a straight line program then the value of ResultOfStraightLineProgram
(Reference: ResultOfStraightLineProgram) is returned.

• If gslp is of “union” kind then ResultOfGeneralizedStraightLineProgram is applied to
each of the involved generalized straight line programs, with second argument gens , and the
concatenation of the results is returned.

• If gslp is of “compose” kind then ResultOfGeneralizedStraightLineProgram is first
called with the first involved generalized straight line program and gens , then the operation
is called with the second involved generalized straight line program and the result of this call,
and so on; the last such result is returned.

Example
gap> gens:= [(1,2,3,4,5,6)];;
gap> gslp:= GeneralizedStraightLineProgram("union",
> [[[[[1,2]]], 1], [[[[1,3]]], 1]]);

Blocks of Character Tables 65

<generalized straight line program>
gap> ResultOfGeneralizedStraightLineProgram(gslp, gens);
[(1,3,5)(2,4,6), (1,4)(2,5)(3,6)]
gap> gslp:= GeneralizedStraightLineProgram("compose",
> [[[[[1,2]]], 1], [[[[1,3]]], 1]]);
<generalized straight line program>
gap> ResultOfGeneralizedStraightLineProgram(gslp, gens);
[()]

In order to avoid the introduction of unnecessary operations, we de-
fine ResultOfGeneralizedStraightLineProgram just as a synonym of
ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram).

4.1.7 EquivalentStraightLineProgram

. EquivalentStraightLineProgram(gslp) (attribute)

For a generalized straight line program gslp , EquivalentStraightLineProgram re-
turns a straight line program such that evaluating gslp and this straight line program with
ResultOfGeneralizedStraightLineProgram (4.1.6) yields the same output, for any list of input
elements.

Example
gap> gslp:= GeneralizedStraightLineProgram("union",
> [[[[[1,2]]], 1], [[[[1,3]]], 1]]);
<generalized straight line program>
gap> slp:= EquivalentStraightLineProgram(gslp);
<straight line program>
gap> Display(slp);
input:
r:= [g1];
program:
return values:
[r[1]^2, r[1]^3]
gap> gslp:= GeneralizedStraightLineProgram("compose",
> [[[[[1,2]]], 1], [[[[1,3]]], 1]]);
<generalized straight line program>
gap> slp:= EquivalentStraightLineProgram(gslp);
<straight line program>
gap> Display(slp);
input:
r:= [g1];
program:
r[2]:= r[1]^2;
r[1]:= r[2];
return values:
[r[1]^3]

Blocks of Character Tables 66

4.2 Miscellaneous

4.2.1 PRegularTable

. PRegularTable(tbl, p) (function)

. ComputedPRegularTables(tbl) (attribute)

For an ordinary character table tbl and a prime integer p , PRegularTable returns the same as
CharacterTableRegular (Reference: CharacterTableRegular). The only difference is that the
results of PRegularTable are cached in tbl , via the attribute ComputedPRegularTables.

The purpose of this attribute is to store p-regular character tables (see CharacterTableRegular
(Reference: CharacterTableRegular) for those primes p for which the irreducible characters of the
p-modular character table are not available. It may still be possible to provide the irreducibles of
certain blocks, and for that, it is necessary to assign these characters to a suitable modular character
table.

The cached tables are used for example by IBr (3.3.6).

4.2.2 PrintOverviewOfDefectOneNormalizers

. PrintOverviewOfDefectOneNormalizers(tbl) (function)

Let tbl be the ordinary character table of a finite group G, say. For each prime integer p that
divides the order of G exactly once, PrintOverviewOfDefectOneNormalizers prints one or two
lines of information about the normalizers of Sylow p-subgroups in G.

If such a Sylow p-normalizer is maximal in G and if the attribute Maxes (CTblLib: Maxes) is set
in tbl then one line is printed for p, saying that the normalizer is maximal, and showing the name of
the character table.

Otherwise, if the character table of the Sylow p-normalizer is known then the availability of the
character table and its name are mentioned, and if not then an approximation of the structure is shown.
If the attribute Maxes (CTblLib: Maxes) is set in tbl then also the list of maximal subgroups is
shown that contain a Sylow p-normalizer.

Example
gap> PrintOverviewOfDefectOneNormalizers(CharacterTable("A5"));
3: max. subgroup S3
5: max. subgroup D10
gap> PrintOverviewOfDefectOneNormalizers(CharacterTable("A6"));
5: char. table available as D10,

contained in max. subgroups A5, A6M2
gap> PrintOverviewOfDefectOneNormalizers(CharacterTable("S10"));
7: structure (7x[6]).6,

contained in max. subgroups S7xS3

4.2.3 FrobeniusCharacterValueExt

. FrobeniusCharacterValueExt(value, p) (function)

The GAP library function FrobeniusCharacterValue (Reference: FrobeniusCharacter-
Value) works only for those cyclotomics value whose conductor is coprime to p . In order to im-
plement the ring homomorphism from all cyclotomics whose coefficients are coprime to p , we use the

Blocks of Character Tables 67

fact that this ring homomorphism is defined via the Conway polynomials on the m-th roots of unity,
for m coprime to p , and is defined by mapping all p^k-th roots of unity to the identity element of the
finite field.

This means that for q = p k and n = mq, with m coprime to p , the image of ζ i
n is equal to the image

of ζ
j

m, where i≡ jq mod m holds.
Example

gap> FrobeniusCharacterValue(E(4), 2);
fail
gap> FrobeniusCharacterValueExt(E(4), 2);
Z(2)^0

4.2.4 ReductionToFiniteField

. ReductionToFiniteField(value, p) (function)

Let value be a cyclotomic whose coefficients over the rationals are in the ring Zp of p -local
numbers, where p is a prime integer.

ReductionToFiniteField returns either fail or a pair [f ,m], where f is a polynomial over the
field with p elements and m is a positive integer.

In the latter case, the meaning is as follows. Let F be the finite field with pm elements, given
as a set of residue classes modulo the ideal I that is spanned by the Conway polynomial (see
ConwayPolynomial (Reference: ConwayPolynomial)) of degree m in characteristic p. The coset
f + I represents the image of value under the ring homomorphism ∗ defined in Section 3.2, and F is
the minimal field that contains this image.

fail is returned if the conductor of value is divisible by p , if the denominator of some coefficient
of value is divisible by p . or if the Conway polynomial of the degree in question is not known and
would be hard to compute, in the sense of IsCheapConwayPolynomial (Reference: IsCheapCon-
wayPolynomial).

Example
gap> ReductionToFiniteField(E(5), 2);
[x_1^3, 4]
gap> ReductionToFiniteField(Sqrt(5), 2);
[Z(2)^0, 1]
gap> ReductionToFiniteField(E(7), 2);
[x_1, 3]
gap> ReductionToFiniteField(Sqrt(-7), 2);
[Z(2)^0, 1]
gap> ReductionToFiniteField(Sqrt(7), 2); # conductor is 28
fail

4.2.5 InfoBlocks

. InfoBlocks (info class)

Currently only the info levels 0, 1, and 2 are supported. If the level is 1 then info messages
about fail results are printed. If the level is 2 then additionally info messages about the progress of
computations are printed. The default info level of InfoBlocks is zero.

References

[AB80] J. L. Alperin and D. W. Burry. Block theory with modules. J. Algebra, 65(1):225–233,
1980. 49

[BH01] T. Breuer and E. Horváth. On block induction. J. Algebra, 242(1):213–224, 2001. 4, 11,
12

[BL18] T. Breuer and F. Lübeck. Browse, ncurses interface and browsing applications, Version
1.8.9. http://www.math.rwth-aachen.de/~Browse, Jun 2018. GAP package. 52, 56

[CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of finite
groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary
characters for simple groups, With computational assistance from J. G. Thackray. 23

[GAP19] GAP – Groups, Algorithms, and Programming, Version 4.10.2.
http://www.gap-system.org, Jun 2019. 4

[GM00] R. Gow and J. Murray. Real 2-regular classes and 2-blocks. J. Algebra, 230(2):455–473,
2000. 16

[GW84] D. Gluck and T. R. Wolf. Brauer’s height conjecture for p-solvable groups. Trans. Amer.
Math. Soc., 282(1):137–152, 1984. 40

[Isa76] I. M. Isaacs. Character theory of finite groups. Academic Press [Harcourt Brace Jo-
vanovich Publishers], New York, 1976. Pure and Applied Mathematics, No. 69. 29, 35,
36

[JLPW95] C. Jansen, K. Lux, R. Parker, and R. Wilson. An atlas of Brauer characters, volume 11
of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford
University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton, Oxford
Science Publications. 29

[KM13] R. Kessar and G. R. Malle. Quasi-isolated blocks and Brauer’s height zero conjecture.
Ann. of Math. (2), 178(1):447, 2013. 40

[LP10] K. Lux and H. Pahlings. Representations of groups, volume 124 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 2010. A computational
approach. 13, 29, 30, 33, 34, 35, 36, 40, 42, 45, 46, 47, 48

[Mur06] J. Murray. Strongly real 2-blocks and the Frobenius-Schur indicator. Osaka J. Math.,
43(1):201–213, 2006. 50

68

http://www.math.rwth-aachen.de/~Browse
http://www.gap-system.org

Blocks of Character Tables 69

[Nav98] G. Navarro. Characters and blocks of finite groups, volume 250 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge, 1998. 28, 29, 33,
34, 35, 36, 40, 42, 46, 48, 50

[NST15] G. Navarro, R. Solomon, and P. H. Tiep. Abelian Sylow subgroups in a finite group, II. J.
Algebra, 421:3–11, 2015. 40

[NT89] H. Nagao and Y. Tsushima. Representations of finite groups. Academic Press Inc., Boston,
MA, 1989. Translated from the Japanese. 34

[Sch16] I. Schwabrow. The center of a block. Phd thesis, School of Mathematics, University of
Manchester, 2016. 18, 23

[Sul08] I. Suleiman. Strongly real elements in sporadic groups and alternating groups. Jordan J.
Math. Stat., 1(2):97–103, 2008. 15

[Was97] L. C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts in
Mathematics. Springer-Verlag, New York, second edition, 1997. 30

[Whe94] W. W. Wheeler. Extended block induction. J. London Math. Soc. (2), 49(1):73–82, 1994.
13, 49

[Wil98] R. A. Wilson. The McKay conjecture is true for the sporadic simple groups. J. Algebra,
207(1):294–305, 1998. 25

[WWT+] R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, R. A. Parker, S. P. Norton, S. Nick-
erson, S. Linton, J. Bray, and R. Abbott. ATLAS of Finite Group Representations.
http://brauer.maths.qmul.ac.uk/Atlas/. 62

http://brauer.maths.qmul.ac.uk/Atlas/

Index

p-chain, 45

AllPBlocks, 52
AlperinBurryCorrespondent

for a block object and the character table of
the supergroup, 49

for two character tables, characteristic, and
block number, 49

Block, 30
block idempotent, 35
BlockDecompositionSCAlgebraCentreOf-

GroupAlgebra
for given characteristic, 59
for given field of coefficients, 59

BlockInvariants, 53
BrauerCorrespondent

for a block object and the character table of
the supergroup, 49

for two character tables, characteristic, and
block number, 49

BrowseBlockInvariants, 55

CentralCharacter
for a block object, 33
for character table, characteristic, and block

number, 33
ClassPositionsOfDefectClasses

for a block object, 41
for character table, characteristic, and block

number, 41
ClassPositionsOfDefectClassesUpTo-

GaloisConjugacy
for a block object, 42
for character table, characteristic, and block

number, 42
ClassPositionsOfDefectGroupOfBlock

for a block object, 38
for character table, characteristic, and block

number, 38

ClassPositionsOfDefectGroupOfClass, 38
ClassPositionsOfKernel

for a block object, 34
CoefficientsOfOsimaIdempotent

for a block object, 35
for character table, characteristic, and block

number, 35
ComputedPRegularTables, 66
CTBlocks, 1
CTBlocks.BlockInvariantsColumns, 56

DataOfGeneralizedStraightLineProgram,
63

DecompositionMatrix
for a block object, 32

Defect
for a block object, 36
for character table, characteristic, and block

number, 36
DefectGroup

for a block object, 37
for character table, characteristic, and block

number, 37
DescriptionOfPWeights

for a block object, 47
for character table, characteristic, and option-

ally block number, 47
Dimension

for a block object, 33
DimensionsOfDecompositionMatrix

for a block object, 33
DisplayBlockInvariants, 54

EquivalentStraightLineProgram, 65

FrobeniusCharacterValueExt, 66

GeneralizedStraightLineProgram
for a list of lines (and the number of genera-

tors), 63

70

Blocks of Character Tables 71

for kind and list, 63

IBr
for a block object, 32
for Brauer table and block number, 32

InfoBlocks, 67
Irr

for a block object, 31
for character table, characteristic, and block

number, 31
IsBlockOfCharacterTable, 35
IsBlockWithAbelianDefectGroup

for a block object, 39
for character table, characteristic, and block

number, 39
IsBlockWithCyclicDefectGroup

for a block object, 39
for character table, characteristic, and block

number, 39
IsBlockWithNormalDefectGroup

for a block object, 39
for character table, characteristic, and block

number, 39
IsClassWithCyclicDefectGroup, 39
IsClassWithNormalDefectGroup, 38
IsFaithful

for a block object, 34
IsGeneralizedStraightLineProgram, 62
IsRadicalPSubgroup, 42
IsRealBlock

for a block object, 51
for character table, characteristic, and block

number, 51
IsRealClass, 50
IsStronglyRealBlock

for a block object, 51
for character table, characteristic, and block

number, 51
IsStronglyRealClass, 51

NormalizerOfDefectGroup
for a block object, 37
for character table, characteristic, and block

number, 37
NormalizerOfRadicalPSubgroup, 43
NrInputsOfGeneralizedStraightLine-

Program, 63

NrOutputsOfGeneralizedStraightLine-
Program, 64

NumberOfBlock
for a block object, 31

OnePBlock, 53

PBlocks, 31
PRegularCorrespondent

for a block object and the character table of
the supergroup, 49

for two character tables, characteristic, and
block number, 49

PRegularTable, 66
PrincipalBlock, 31
PrintOverviewOfDefectOneNormalizers, 66

radical p-subgroup, 42
real p-block, 50
real class, 50
ReductionToFiniteField, 67
RepresentativesChainsOfRadicalP-

SubgroupsAndNormalizers
for group, characteristic, optionally a record,

45
for table of marks and characteristic, 45

RepresentativesRadicalPSubgroupsAnd-
Normalizers

for group, characteristic, optionally a record,
43

for table of marks and characteristic, 43
ResultOfGeneralizedStraightLine-

Program, 64

SCAlgebraCentreOfBlock
for given characteristic, 60
for given field of coefficients, 60

SCAlgebraCentreOfGroupAlgebra
for char. table and given characteristic, 58
for char. table and given field of coefficients,

58
for group and given characteristic, 58
for group and given field of coefficients, 58

strongly real p-block, 50
strongly real class, 50

TestBlockWithAbelianDefectGroup
for a block object, 39

Blocks of Character Tables 72

for character table, characteristic, and block
number, 39

UnderlyingCharacteristic
for a block object, 31

UnderlyingCharacterTable
for a block object, 31

WheelerCorrespondent
for a block object and the character table of

the supergroup, 50
for two character tables, characteristic, and

block number, 50

	Introduction to the CTBlocks Package
	Acknowledgements

	Tutorial for the CTBlocks Package
	Block invariants of covers of sporadic simple groups
	More about abelian defect groups
	Examples of block induction
	Examples about reality questions
	Examples about the Loewy length of centres of blocks

	Character theoretic functions for p-blocks
	The character theoretic setup
	Theoretical background of blocks of character tables
	Block objects for character tables
	Defect, defect classes, and defect groups
	Radical p-subgroups
	Chains of radical p-subgroups
	p-weights
	Block induction
	Reality questions about blocks
	Selecting blocks according to their invariants
	Centres of p-blocks as algebras

	Utilities
	Generalized Straight Line Programs
	Miscellaneous

	References
	Index

