Non-commutative Subsystems of SINGULAR

Viktor Levandovskyy

Lehrstuhl D für Mathematik, RWTH Aachen University, Germany

Viktor.Levandovskyy@math.rwth-aachen.de

On this poster, \mathbb{K} stands for a field, **Im** for leading monomial function with respect to some monomial ordering on a monoid.

SINGULAR:PLURAL

Status: SINGULAR: PLURAL by Greuel, Levandovskyy, Motsak and Schönemann is distributed together with SINGULAR as its integral part since version 3-0-0 from 2005 on.

Algebras supported: GR-algebras, that is factors of G-algebras by two-sided ideals. Note, that among other, common algebras of linear operators with polynomial coefficients can be realized as GR-algebras.

SINGULAR:LETTERPLACE

Status: SINGULAR: LETTERPLACE by Levandovskyy and Schönemann with contributions by La Scala: algorithms for homogeneous input are distributed 2009 with SINGULAR version 3-1-0 from 2009 on.

General inhomogeneous algorithms are under beta-testing.

Definition

Let $\mathbf{A} = \mathbb{K} \langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle / \mathbf{I}$, \mathbf{I} is the the two-sided ideal, generated by $\{x_j x_i - c_{ij} x_i x_j - d_{ij} \mid 1 \leq i < j \leq n\}$, where $c_{ij} \in \mathbb{K}^*$ and $d_{ij} \in \mathbb{K} \langle x_1, \ldots, x_n \rangle$. WLOG d_{ij} are given in standard monomials $x_1^{\alpha_1} \dots x_n^{\alpha_n}$. A is called a G-algebra, if • $C_{ik}C_{jk} \cdot d_{ij}X_k - X_kd_{ij} + C_{jk} \cdot X_jd_{ik} - C_{ij} \cdot d_{ik}X_j + d_{jk}X_i - C_{ij}C_{ik} \cdot X_id_{jk}$ reduces to zero modulo I for all 1 < i < j < k < n and • there exists a monomial ordering \prec on $\mathbb{K}[x_1, \ldots, x_n]$, such that for each i < j,

such that $d_{ij} \neq 0$, one has $lm(d_{ij}) \prec x_i x_j$.

Functionality: all global monomial orderings are supported;

- fast arithmetics for left and two-sided ideals and submodules implemented;
- Gröbner bases, syzygies, transformation matrices and free resolutions;
- all Gröbner basics implemented; 14 libraries provided.

New: After redesign in 2007 it supports smart algebra backends (via specialized) context-depending implementations) such as SINGULAR:SCA.

Highlights

Gelfand-Kirillov dimension of modules, slim Gröbner bases (by M. Brickenstein), centers and centralizers in *GR*-algebras, free resolutions of left modules.

Subpackages: D-modules suite ([dmod, dmodapp, dmodvar, bfun].lib), control theory package (control.lib, involut.lib, jacobson.lib).

Support: Joint project (KR 1907/3-1; LE 2697/2-1), funded by the German DFG for 2010-2013 with Prof. Dr. M. Kreuzer (Passau).

Algebras supported:

Associative finitely presented \mathbb{K} -algebras (including free algebras) over a field.

Functionality: Two-sided Gröbner basis of an ideal up to a given degree bound via Letterplace Gröbner basis algorithm of La Scala and Levandovskyy;

• fpadim.lib by G. Studzinski: computation of a \mathbb{K} -dimension and of a \mathbb{K} -basis of a module are provided; • freegb.lib: letterplace arithmetics and tools.

Highlights

Fast new algorithms for Gröbner bases over associative finitely presented \mathbb{K} -algebras.

Currently under development:

- Generalized Letterplace Gröbner basis algorithms

Currently under development:

- further memory usage and reductions improvements
- non-commutative homological algebra nchomalg.lib
- studies of non-commutative factorization ncfactor.lib
- better syzygies and resolutions with the methods of Schreyer and of La Scala and Stillman, as well as other functionality.

SINGULAR:SCA

Status: SINGULAR:SCA by Greuel, Motsak and Schönemann is distributed together with SINGULAR starting from version 3-0-3 (2007) on.

Algebras supported: factor algebras of $C \otimes_{\mathbb{K}} E$, where C is a central localization (at the complement of a prime ideal) of polynomial graded commutative algebra (where for two graded elements **a**, **b** one has $ba = (-1)^{|a||b|}ab$) and **E** is an exterior algebra.

(a) for an inhomogeneous two-sided ideal (beta-testing), (b) for a left ideal in a finitely presented algebra.

- Enhancements of Letterplace Gröbner basis algoritm,
- SAGE-LETTERPLACE interconnection (B. Erocal et al.).

SINGULAR:LOCAPAL **SINGULAR** locapal

Status: SINGULAR: PLURAL: LOCAPAL by Levandovskyy and Schönemann (with contributions by O. Motsak and C. Koutschan) is under beta-testing.

Algebras supported: OLGAs, that is an Ore Localization of a **G**-Algebra, where the Ore localization is taken with respect to a **commutative** integral subalgebra of a **G**-algebra without 0. Among other, common algebras of linear operators with *rational* coefficients are supported.

Functionality: provides very fast polynomial arithmetic and intrinsic implementations of standard bases over \mathbb{Z}_2 -graded commutative algebras (utilizing the presence of zero-divisors) and also fast Gröbner bases, syzygies, free resolutions, ideal and submodule arithmetics over them.

The support of mixed monomial orderings on the commutative part of a graded commutative algebra allows to work within its central localizations.

Highlights: sheafCohBGG2 from sheafcoh.lib provides much faster sheaf cohomology computation via Bernstein-Gel'fand-Gel'fand correspondence.

Currently under development: preimage of a graded two-sided ideal under a graded algebra homomorphism between graded commutative algebras.

Definition

Let **A** be a **G**-algebra in variables $x_1, \ldots, x_m, y_1, \ldots, y_n$. Suppose, that $B \subset A$ is a G-algebra in variables x_1, \ldots, x_m . If $S := B \setminus \{0\}$ is an Ore set in **A** and **A** admits an elimination ordering $Y \succ X$, then $S^{-1}A$ exists and is called an OLGA. Note, that computations in an OLGA $S^{-1}A$ are algorithmic (but often complicated).

Functionality: Provides two different methods for fraction-free computation of a Gröbner basis. Allows to compute: • a left Gröbner basis of an ideal resp. a submodule of a free module, a left syzygy module, a left normal form, • an $S^{-1}B$ -dimension (holonomic rank in case $S^{-1}B \cong \mathbb{K}(X)$).

Connected: jacobson.lib provides fraction-free computation of a diagonal form for matrices over an Ore principal ideal domain.

Non-commutative Subsystems of SINGULAR