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1 Introduction
The aim of this poster is to demonstrate different aspects (from theoretical background to practical useful-

ness) of the algorithms, implemented in the computer algebra system SINGULAR ::PLURAL (or just PLURAL for
short). You can regard it as a one-page introduction to the system. More detailed information and packages for
download you can find at our homepagehttp://www.singular.uni-kl.de/plural .

2 Computational Objects

2.1 Algebras
LetK be a field. Consider an algebraA = K〈x1, . . . , xn | xjxi = cijxixj+dij ∀ i < j 〉with dij ∈ A, cij ∈ K∗.

It is calleda G–algebra(in n variables) if the following conditions hold:

1) There exists a monomial well–ordering<A such that∀ i < j lm(dij) <A xixj,

2) Nondegeneracy conditionsare fulfilled, that is∀ 1 ≤ i < j < k ≤ n

cikcjk · dijxk − xkdij + cjk · xjdik − cij · dikxj + djkxi − cijcik · xidjk = 0.

A GR–algebra is a factor ofG–algebra inn variables by a proper two–sided ideal.

Commutative rings in SINGULAR provide us with the information on the ground fieldK, variables
(x1, . . . , xn) and the monomial ordering<. As a set of data,G–algebra is represented in PLURAL as an ex-
tension of the data typering by the two strictly upper-triangularn × n matricesC = (cij) andD = (dij) with
entries as in the definition.

Theorem 1.[3] Let A be aG–algebra inn variables. Then

• A has a Poincaŕe–Birkhoff–Witt (PBW) basis basis{xα1
1 xα2

2 . . . xαn
n | αi ∈ N ∪ {0}},

• A is noetherian,

• A is an integral domain,

• gl. dim A ≤ n.

Example 2.GR–algebras

• commutative and quasi–commutative polynomial algebras

• algebras of solvable type, PBW algebras, some iterated Ore extensions

• universal enveloping algebras of finite dimensional Lie algebras

• positive (resp. negative) parts of quantized enveloping algebras

• many quantum algebras and nonstandard quantum deformations

• Weyl algebras and most of various flavors of their quantized versions

• Witten’s deformation ofU(sl2), Smith algebras and conformalsl2–algebras

• Clifford algebras, exterior algebras; some diffusion algebras and many more

Using the library"center.lib" (V.Levandovskyy, O.Motsak, 2003, to appear) we are able to compute all
the central elements ofG–algebras up to given degree. The next version of the library will feature an algorithm for
computing a minimal generating set of the center up to given degree. The functionality of the library allowed us to
compute the central element of the degree 6 in the algebraU(g2) (as far as we know, it has never been computed
before). We give more details in the section 3.1.

2.2 Ideals and modules
The data typeideal corresponds to a left ideal in theGR–algebra. Some procedures liketwostd interpret
an ideal in the argument as a set of two–sided generators.

The data typemodule corresponds to the left submodule of a free module of finite rank overGR–algebra.

With the help of PLURAL we are able to compute Gröbner bases of modules with respect to a wide variety of
monomial orderings (commandstd ), what is especially useful for performing the elimination. The hardest
problems, known to us, are elimination problems. We have the built-in commandeliminate , which chooses
an elimination ordering heuristically. It is also possible to construct an elimination ordering ”by hands” while
defining an algebra and use the commandstd for solving the sophisticated elimination problems.

The functionality of PLURAL includes also computations of modules of syzygies (commandsyz ) and several
kinds of free resolutions (commandsnres , mres andminres ). In addition to the commandeliminate ,
there will be more functions likeintersect for basic operations with modules.

3 Applications

3.1 Magic numbers inU(g2)
The universal enveloping algebra of the smallest exceptional Lie algebraU(g2) is generated by the 14 vari-

ablesx1, x2, . . . , x6, y1, y2, . . . , y6, hα, hβ (we denotex1 := xα, x2 := xβ, y1 := x−α, y2 := x−β) subject to
numerous relations which we do not list here.

Figure 1: The root system ofg2, generated by the simple rootsα andβ

The centerZ(U(g2)) = K[Z2, Z6], generated by the polynomialsZ2 andZ6 of degree 2 and 6 respectively.
The first one is easy to write down:Z2 = x1y1+3x2y2+x3y3+x4y4+3x5y5+3x6y6+h2

α+3hαhβ+3h2
β−5hα−9hβ,

but the second one,Z6 = 4x1x
2
2y1y

2
2 + · · ·− 240hα− 480hβ, consists of 754(!) monomials. We publish its explicit

form on our homepage as well as other big objects appearing in our examples.

Using the standard PLURAL library lieA.lib you can set upU(g2) overQ in a fast and simple way:
LIB "lieA.lib";
def UG2=g2();
setring UG2;

==>

// characteristic : 0
// number of vars : 14
// block 1 : ordering dp
// : names x(1) x(2) x(3) x(4) x(5) x(6) y(1) y(2) y(3) y(4) y(5) y(6) Ha Hb
// block 2 : ordering C
// noncommutative relations:
// x(2)x(1)=x(1)*x(2)-x(3)
// ......................
// Hby(6)=y(6)*Hb-y(6)

Consider the two–sided idealI, generated by the3rd power of the image of the shortest positive rootα of the
Lie algebrag2 and compute the left Gröbner basis ofI, using a proprietary algorithm for it.
ideal I=x(1)ˆ3;
I=system("twostd",I);
size(I);

==> 106

As we see, it consists of 106 elements. Now we will check whether the moduleM := U(g2)/I is finite–
dimensional and if it so, we compute itsK-base.
vdim(I);

==> 50 // so, M is finite--dimensional module

kbase(I);

==> 1, x1, x2, x3, x4, x5, x6, y1, y2, y3, y4, y5, y6, hα, hβ, x1x6, x1y6, x1hα, x1hβ, x2hα, x3hα, x3hβ, x3y5, x4hα, x4hβ, x4y4,
x5hβ, x5y3, x6hβ, x6y1, y1hα, y1hβ, y1y6, y2hα, y3hα, y3hβ, y4hα, y4hβ, y5hβ, y6hβ, hαhβ, h

2
α, h

2
β,

x1hαhβ, x3hαhβ, x4h
2
β, y1hαhβ, y3hαhβ, y4h

2
β, hαh

2
β (We show the output in LaTeX form for better readability)

It is time to compute the first syzygy modulesyz(I) of I and look on its size
module S=syz(I);
size(S); // size() returns the number of generators

==> 3244

We would like to check what kind of connection exists between central elements and the idealI. Let us compute
the normal forms ofZ2 andZ6 with respect toI.
NF(Z2,I);

==> 2x4y4 + 2h2α + 6hαhβ + 7h2β − 2hα − 3hβ

NF(Z6,I);

==> 0 // Z6 lies in I !

We have designed an algorithm for computing the intersection of an ideal with the subalgebra. Using it,
we obtain thatI ∩ Z(U(g2)) is equal to the ideal〈Z2

2 − 6Z2, Z6〉. In particular, the centerZ(U(g2)/I) of the
factor–algebraU(g2)/I equalsK[Z2]/〈Z2

2 − 6Z2〉 ∼= K⊕K · NF(Z2, I).

3.2 Combined computations
While working in mixed commutative and noncommutative setting, it is quite comfortable to use all the

commutative functionality of SINGULAR ([2]). It is in particular useful in problems, involving sequences of non-
commutative preprocessings and commutative postprocessings. We illustrate this by computing one–dimensional
representations of the algebrasU ′

q(so3).
The Fairlie–Odesskii algebraU ′

q(so3) ([1]) is an associative unital algebra with generating elementsI1, I2,

I3 and defining relationsq1/2I1I2 − q−1/2I2I1 = I3, q1/2I2I3 − q−1/2I3I2 = I1, q1/2I3I1 − q−1/2I1I3 = I2,
whereq 6= 0,±1, is a complex number, calleddeformation parameter. In the limit q → 1, the algebraU ′

q(so3)
reduces to the enveloping algebraU(so3). All of these algebras are, of course,G–algebras.

Lemma 3.Let A be aG–algebra overK, generated byx1, . . . , xn. Thena := (a1, . . . , an) ∈ Kn is a one–
dimensional representation ofA if and only if the idealma := 〈x1 − a1, . . . , xn − an〉 is proper inA.

From the lemma it becomes clear how to compute all the one–dimensional representations of a given algebra.
Below is the PLURAL code for computing such representations ofU ′

q(so3) in three cases. We equip every case
with the string, setting value of minimal polynomial forq := Q2 in the PLURAL language.

A) U ′
q(so3); there is no string withminpoly sinceq is a free parameter;

B) U ′
q(so3); minpoly=Qˆ4+Qˆ2+1; that isq is a3rd primitive root of unity;

C) Uq(so3); minpoly=Q-1; simulates the limitq → 1.
ring r=(0,Q),(I1,I2,I3,a,b,c),dp; // here Qˆ2=q
minpoly=...; // here goes the string from one of the above cases
matrix C[6][6]; matrix D[6][6]; int i,j;
for(i=1;i<6;i++)
{

for(j=i;j<=6;j++) {C[i,j]=1;}
}
C[1,2]=Q2; C[1,3]=1/Q2; C[2,3]=Q2;
D[1,2]=-Q*I3; D[1,3]=1/Q*I2; D[2,3]=-Q*I1;
system("PLURAL",C,D);
option(redSB); option(redTail); // any output will be completely reduced
ideal pRep=I1-a,I2-b,I3-c;
ideal Rep=eliminate(pRep,I1*I2*I3); // now Rep is in K[a,b,c]
LIB "primdec.lib";
list Lrep=minAssChar(Rep); // we need the minimal associated primes
for (i=1;i<=size(Lrep);i++)
{Lrep[i]=simplify(Lrep[i],1);}
Lrep;

Note, that all the cases share the same trivial presentation(0, 0, 0) which we ignore below.

A) Let t = q1/2

q−1. There are four nontrivial one–dimensional representations :

Rep1 = {
(

(−1)it, (−1)jt, (−1)i+jt
)
| 1 ≤ i < j ≤ 4}.

B) Let t1 = 2q1/2+1
3 , t2 = 2q1/2−1

3 . There are eight nontrivial one–dimensional representations:

Rep1 = {
(

(−1)itm, (−1)jtm, (−1)i+jtm

)
| 1 ≤ i < j ≤ 4, m = 1, 2}.

C) There are no nontrivial one–dimensional representations.

4 Remarks on Implementation
The authors have written an article [4] about the system PLURAL . Here are the crucial points to mention:

•we use generalized ”Product” and ”Chain” criteria in Buchberger’s algorithm

• various flavors ofgeobuckets([5]) are used for the reduction, multiplication and other operations

• PLURAL will become a dynamical module for SINGULAR
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