
The MAPLE Package “Janet”:

I. Polynomial Systems

Yuri A. Blinkov1?, Carlos F. Cid2??, Vladimir P. Gerdt3? ? ?, Wilhelm Plesken2†,
and Daniel Robertz2‡

1 Department of Mathematics and Mechanics, Saratov University, 410071 Saratov, Russia
2 Lehrstuhl B für Mathematik, RWTH Aachen, Templergraben 64, D-52062 Aachen, Germany
3 Laboratory of Information Technologies, Joint Institute for Nuclear Research, 141980 Dubna,

Russia

Abstract. The MAPLE package “Janet”? comes in two parts, the first dealing with
polynomials and commutative algebra, the second with linear PDEs. Here the first part,
called “Involutive”, is described. Amongst others it contains a MAPLE and a C++
implementation of the involutive technique for polynomial modules as an alternative for
conventional Gröbner basis techniques.

1 Introduction

This is the first of two papers introducing the MAPLE package “Janet”. The
package contains the first MAPLE implementation of the Involutive algorithm
[4], [5] in the form presented in [6], [7] and covers both the polynomial and the
linear differential cases. More precisely, our implementation fixes Janet separa-
tion of variables into multiplicative and non-multiplicative ones [8] as the input
involutive division [4] for the algorithm that produces a Janet basis in the out-
put. By means of this technique the canonical involutive normal forms for systems
of linear partial differential equations can be produced. In this first paper we shall
only describe a version of implementation of the algorithm for polynomial systems
and various related algorithms dealing with commutative algebra. Theoretically
speaking, the polynomial version is obtained from the more general differential
version [6] if one restricts to linear systems of PDEs with constant coefficients, cf.
[10] for more details. From the point of view of implementation, however, quite
some effort has been taken to optimise the polynomial version, so that it is highly
competitive with the fastest implementations of the classical Buchberger algo-
rithm for computing Gröbner bases, cf. [1] for time comparisons. To make the
package usable for bigger systems, C++ routines for the most important func-
tions have been built in. Without the C++ code the package has about 4500 lines
of MAPLE code.

? BlinkovUA@info.sgu.ru
?? cfcid@momo.math.rwth-aachen.de

? ? ? gerdt@jinr.ru
† plesken@momo.math.rwth-aachen.de
‡ daniel@momo.math.rwth-aachen.de
? available at http://wwwb.math.rwth-aachen.de/Janet



Below is a list of the commands available in the polynomial part of “Janet”:

Basic commands:

InvolutiveBasis PolInvReduce
PolTabVar PolHilbertSeries
FactorModuleBasis

Commands for special applications:

PolMinPoly Syzygies
PolResolution PolRepres
Relations PolWeightedHilbertSeries
NotHas/Has

Commands for various invariants
derivable from PolHilbertSeries:

PolIndexRegularity PolDimension
PolHilbertPolynomial PolHilbertFunction
PolHP PolHF
PolCartanCharacter

Auxiliary Commands:

LeadingMonomial Stats
AddRhs

With the commands in the first group one can create a Janet basis, produce
normal forms of elements of the residue class module, print out the Janet basis
with some relevant extra information and get quantitative information about the
module as well as an explicit basis, even in the infinite dimensional case. The us-
age with definitions and some typical examples and comments on the algorithms
will be given in section 2, more details on steering the main function are given in
the subsequent section 3. The section 4 comments on relations between generators
(corresponding to compatibility conditions in the PDE case). Again we proceed
in the scheme definitions, algorithms, examples. The following section 5 describes
various elimination techniques by giving examples, i. e. computing intersections
of modules, finding annihilators, finding ring relations. We have taken big effort
to produce detailed online documentation in the form of help pages with exam-
ples, so that we can be brief in this account. Finally, the last section 6 provides
the results of several comparisons of “Involutive” to other MAPLE packages and
some notes on the implementation.

2 Basics

Let R := K[x1, . . . , xn] be the polynomial ring over the field K in the indetermi-
nates x1, . . . , xn. In general K can be any field, in which one has a normal form
for elements and where addition, subtraction, multiplication, and division can
constructively be carried out. For our MAPLE implementation it means K = Q



or a finitely generated field extension of Q. Given q-tuples A1, . . . , Aa ∈ Rq, two
problems are treated:

1. Find a K-basis for the R-module M := Rq/S, where S is the submodule of
Rq generated by A1, . . . , Aa.

2. Given t ∈ M , express t in terms of this basis.

Note the special case q = 1, where S becomes an ideal and M a residue class ring
of R. This is also the case most relevant to polynomial equations. However, the
general case is also often relevant in physical situations, e. g. for linear systems of
PDEs with constant coefficients, where either the xi become partial derivatives
or alternatively are the variables after applying Laplace transform.

The above task is dealt with by the involutive algorithmic technique, which is
first applied to create a Janet basis B for M that allows to read off a K-basis
for M , and then apply the involutive reduction with respect to the Janet basis
to have an algorithm for task 2. The Janet basis B is a finite subset of S which
is more than a Gröbner basis: it does not only have the property that one can
constructively represent any element of S as a linear combination of the elements
of B, but the concept of multiplicative variables restricts the coefficients of the
linear combinations in such a way that not only the coefficients become unique
but also the algorithmic procedure to obtain them leaves no space for a long way
round but forces every move by strict rules. Like in the ordinary Gröbner basis
case the result depends to some extent on an ordering of the monomial K-basis
of Rq. Various possibilities are realized, the degree reverse lexicographic option
with the additional option of favouring the component with the highest degree is
usually chosen. Here is a rough description of input and output:

Input: A1, . . . , Aa ∈ Rq generating the submodule S of Rq (and a list of indeter-
minates, e. g. x1, . . . , xn.)
Output: The Janet basis B1, . . . , Bd of S by the call InvolutiveBasis.
The subsequent call PolTabVar reproduces each Bi, the leading term of Bi, and
the subset Mi ⊆ {x1, . . . , xn} of multiplicative variables of Bi with respect to B,
i. e. each element s of S has a unique representation as

s =
d∑

i=1

piBi with pi ∈ K[xi|xi ∈ Mi].

The further subsequent call FactorModuleBasis produces a subset of all monomial
K-basis vectors (0, . . . , 0, xα1

1
· · · xαn

n , 0, . . . , 0) (with degree α1 + · · · + αn) of Rq

whose residue classes modulo S form a K-basis of M = Rq/S.
The command PolHilbertSeries gives the generating function for the numbers of
these basis vectors according to their degrees.
Finally, with further input v ∈ Rq the command PolInvReduce produces the



normalised representative of the coset v + S ∈ M i. e. the unique K-linear com-
bination v of the basis vectors above with v + S = v + S.

Example 1. (q = 1, infinite dimensional residue class ring)
Specification of variables:

> var:=[x,y,z];

var := [x, y, z]

Ideal generators:

> L:=[x^2+y^2-1,x^2+z^2-2];

L := [x2 + y2 − 1, x2 + z2 − 2]

Computation of the Janet basis:

> J:=InvolutiveBasis(L,var);

J := [−z2 + 1 + y2, x2 + z2 − 2, −z2 x + x + y2 x]

Janet basis with multiplicative variables and leading terms:

> PolTabVar();

[−z2 + 1 + y2, [∗, y, z], y2]

[x2 + z2 − 2, [x, y, z], x2]

[−z2 x + x + y2 x, [∗, y, z], y2 x]

The expansion via the geometric series of the following result yields the sum
of the monomials forming a K-basis for the vector space complement of the
ideal in the polynomial ring K[x, y, z]. Essentially, this is given without further
computation.

> F:=FactorModuleBasis(var);

F :=
x

1 − z
+

x y

1 − z
+

1

1 − z
+

y

1 − z

The count for the basis vectors according to their degrees?? (note, since (1−t)
is the highest power of (1 − t) occurring in the denominators, the (maximal)
dimension of the variety is 1):

> PolHilbertSeries(t);

1 + 3 t + 4 t2 +
4 t3

1 − t

Computing the normalised representative of the coset of x3:

> PolInvReduce(x^3,J,var);

−z2 x + 2 x

Example 2. (q = 2, finite dimensional residue class module)

> var:=[x,y];

?? One gets the same result (in a different expansion) by substituting t for x, y, z in F .



var := [x, y]

> L:=[[x,-y],[y,x],[y^3,0]];

L := [[x, −y], [y, x], [y3, 0]]

> J:=InvolutiveBasis(L,var,2);

J := [[0, x2 + y2], [0, x y2], [0, y4], [y, x], [x, −y]]

> PolTabVar();

[[0, x2 + y2], [x, y], [x2, 2]]

[[0, x y2], [∗, y], [x y2, 2]]

[[0, y4], [∗, y], [y4, 2]]

[[y, x], [∗, y], [y, 1]]

[[x, −y], [x, y], [x, 1]]

> FactorModuleBasis(var);

[[0, 1], [0, y], [0, x], [0, y2], [0, x y], [0, y3], [1, 0]]

> PolHilbertSeries(t);

2 + 2 t + 2 t2 + t3

> PolInvReduce([x^2,y^2],J,var);

[0, x y + y2]

3 Modifications and Extensions

There are quite a few possibilities to modify the above computations: In Involu-

tiveBasis various orderings for the monomial basis can be chosen. The standard
choice is the degree reverse lexicographical ordering for the monomials itself. A
second possibility is the pure lexicographical ordering, which might be slow for
big examples, but is often used for elimination purposes. In both cases the or-
dering of the variables is implicitly declared by the declaration of the variables.
In the proper module case, i. e. q > 1, one can in addition choose the ordering
of the tuples. The default strategy is “term over position”, i. e. the leading term
of a tuple is the highest among the leading terms of the components. In case it
is not unique the first one is chosen. The strategy “position over term”, where
the leading term is the leading term of the first non-zero component, is also pos-
sible. In any case one can modify the natural succession of the components by
a permutation. The default strategy “term over position” is usually much more
effective, but the other strategy is sometimes useful, when one computes resolu-
tions. Note, all of these modifications might lead to different Janet bases. Other
changes implied are the multiplicative variables and the grading of the residue
class module. This latter point shows up in the commands FactorModuleBasis and
PolHilbertSeries.



Example 3. (Influence of the orderings)

First we work with the degree reverse lexicographical ordering (note x > y):

> var:=[x,y];

var := [x, y]

> L:=[x-y^3];

L := [x − y3]

> J:=InvolutiveBasis(L,var);

J := [−x + y3]

> FactorModuleBasis(var);

1

1 − x
+

y

1 − x
+

y2

1 − x
> PolHilbertSeries(t);

1 + 2 t + 3 t2 + 3
t3

1 − t

Now we work with the pure lexicographical ordering (note still x > y):

> J1:=InvolutiveBasis(L,var,1);

J1 := [x − y3]

> FactorModuleBasis(var);

1

1 − y
> PolHilbertSeries(t);

1 +
t

1 − t

The grading is determined by the filtering according to the degrees of the mono-
mials in the basis computed by FactorModuleBasis, which again results from the
information contained in PolTabVar. There is yet another possibility to modify
this grading, i. e. the choice of the leading terms. One can assign a natural number
di as degree to the variable xi and in the proper module case q > 1 a non-negative
integer ci to the ith standard R-basis vector ei := (0, . . . , 0, 1, 0, . . . , 0). The de-
gree of the term xα1

1
· · · xαn

n ei is then ci+
∑

αjdj instead of
∑

αj in the old regime.
When choosing the leading term, this degree is taken into account first, and, in
case there are two terms of the same new degree, the old regime is applied for
the final decision. If in doubt, one can use the function LeadingMonomial. Note a
subtle point at this stage: The functions FactorModuleBasis and PolHilbertSeries

start from the information contained in PolTabVar which does no longer know
anything about these modified degrees. If one wants the true Hilbert series of
the graded ring with the grading according to the new degrees, one has to use the
function PolWeightedHilbertSeries, which takes the degrees as part of its input.



The final point in this section concerns speed. For some, but not all of the com-
mands above, there are C++-versions available, which of course can be called
from within MAPLE.

Command: Fast version:

InvolutiveBasis InvolutiveBasisFast
PolInvReduce PolInvReduceFast

For these commands up to now only the defaults work. Moreover, the C++-
versions assume that the field of constants is the field of rational numbers, whereas
the MAPLE-version can deal with extensions of the rationals, e. g. with purely
transcendental extensions, which is often useful, cf. Example 8. For big examples,
the C++-versions are faster by a factor 1000. If one wants to see the Hilbert

series or continue to work with some other of the MAPLE programs, the command
AssertInvBasis produces the data contained in PolTabVar, and one can proceed.

4 Syzygies

Having discussed the cokernel M := Rq/S of an R-module homomorphism Ra →
Rq in the last two sections, the main issue here will be the kernel of such a map
here, i. e. the relations between the generators of S. The idea for their computation
is to introduce right hand sides. We redo Example 2 with right hand sides.

Example 4. (Syzygies in Example 2)

> var:=[x,y];

var := [x, y]

Introduce names for the generators of the module and take them as right hand
sides:

> L:=[[x,-y]=a,[y,x]=b,[y^3,0]=c];

L := [[x, −y] = a, [y, x] = b, [y3, 0] = c]

Now the Janet basis also has a right hand side, expressing the basis vectors
as a combination of the original generators:

> J:=InvolutiveBasis(L,var);

J := [[y, x] = b, [x, −y] = a, [y3, 0] = c, [0, y4] = c x − a y3]

Now also a coset representative can be given a name and the standard repre-
sentative will also be given together with its expression in terms of the original
representative and the original generators of the submodule:

> PolInvReduce([x^2,y^2]=u,J,var);



[−y2, y2] = −b y − a x + u

Finally the relations between the original generators can be computed:

> Syzygies(L,var);

[c x2 − a y3 x − b y4 + c y2]

If one iterates the computation of the syzygies, i. e. computes the second, third,
and higher syzygies, one gets a free resolution. This can be done in one go by
the command PolResolution, as the next example shows. However the resolution
starts with the Janet basis and not with the original relations.

Example 5. (Resolution in Example 2)

> var:=[x,y]:

Enter generators without right hand side and compute the Janet basis: (with
ordering position over term):

> L:=[[x,-y],[y,x],[y^3,0]]:

> J:=InvolutiveBasis(L,var,2);

J := [[0, x2 + y2], [0, x y2], [0, y4], [y, x], [x, −y]]

The following command computes a free resolution of the residue class module
M (even without invoking the last command first), where, however, one does not
work with the original generators of S but with the Janet basis, cf. the rows of
the second matrix. The rows of the first matrix give the relations between the
rows of the second matrix. In general, the procedure stops after k steps, where
k is the maximal number of non-multiplicative variables of the original Janet

basis.

> PolResolution(L,var);












−1 0 0 x −y
0 −y2 x 0 0

−y2 x 1 0 0



 ,









0 x2 + y2

0 x y2

0 y4

y x
x −y

















5 Further Examples

In this section some examples demonstrating the use of the Janet algorithm
will be presented. The first example concerns the intersection of submodules of
Rq. We employ the well known technique by Zassenhaus, cf. [9]: If S1, S2 are
submodules of Rq, then S1 ∩ S2 is the kernel of the projection

R2q → Rq : (a, b) 7→ a



restricted to 〈(s1, s1), (s2, 0)|s1 ∈ S1, s2 ∈ S2〉. The degrevlex ordering with posi-
tion over term preference for the module case provides the Janet basis for the
intersection automatically as the subsequent example demonstrates in the case
q = 1.

Example 6. The intersection of the ideals generated by L1 and L2 is computed
as follows:

> var:=[x,y]:

> L1:=[x^6-y^6]:

> L2:=[x^9-y^9]:

> l12:=map(a->[a,a],L1):

> l21:=map(a->[a,0],L2):

> L:=[op(l12),op(l21)];

L := [[x6 − y6, x6 − y6], [x9 − y9, 0]]

> J:=InvolutiveBasis(L,var,2);

J := [[0, x12 − y12 + x9 y3 − y9 x3], [x6 − y6, x6 − y6], [−y9 + y6 x3, −x9 + y6 x3],

[−y9 x + y6 x4, −x10 + y6 x4], [−y9 x2 + y6 x5, −x11 + y6 x5]]
> N:=map(a->if a[1]=0 then a[2] fi,J);

N := [x12 − y12 + x9 y3 − y9 x3]

N is already a Janet basis for the intersection. Here a check:

> JN:=InvolutiveBasis(N,var);

JN := [x12 − y12 + x9 y3 − y9 x3]

Up to this point everything works also for non-principal ideals. Since in the
present case the two ideals to be intersected were principal, JN[1] is the least
common multiple of L1[1] and L2[1]. Here is the greatest common divisor:

> simplify(L1[1]*L2[1]/JN[1]);

x3 − y3

The next example concerns the computation of the annihilator of the module
M = Rq/S, i. e. the ideal of all a ∈ R with aM = 0. Obviously this is the
intersection of the q ideals Ii ⊆ R such that

{0} ⊕ · · · ⊕ {0}
︸ ︷︷ ︸

i−1

⊕Ii ⊕ {0} ⊕ · · · ⊕ {0}
︸ ︷︷ ︸

q−i

⊆ S

with i = 1, . . . , q. Note, the command InvolutiveBasis with option “position over
term” yields a Janet basis for Iq immediately. Since the procedure for taking
intersections of ideals was already demonstrated above, the following example
is for a module invariant under the cyclic permutation of the positions so that
InvolutiveBasis yields the Janet basis for the intersection in one go.



Example 7. Computation of the annihilator of R3/S where S is generated by L

below.

> var:=[x,y,z]:

> L:=[[x^2,y,z],[y,z,x^2],[z,x^2,y],[x+y,x+y,x+y]]:

> J:=InvolutiveBasis(L,var,2);

J := [[0, 0, x5 − z y x + z2 x − x3 z + x4 y − z y2 + z2 y − x2 y z − x3 y + y2 x + y3 − x2 y2], [0, 0,

−2 x2 y z − y3 z + x4 y2 + y3 − x2 y2 + y4 − x2 y3 + z2 y2 − x2 z2 + x4 z − x2 y2 z + z3

+ x4 y], [0, −z x + y x + y2 − z y, −x3 + y x + y2 − x2 y],

[0, x2 − y2 + z y − y, −z + x2 − y2 + x2 y], [0, −z3 + z2 y − z y + z2,

−x4 y + z y2 − x2 z2 − y2 + 2 x2 z − x4 + x2 y − y3 + x2 y2 − z2 + x2 y z],

[0, z y2 − z3 − y2 + z2, −z y + x2 z + 2 z y2 − x4 y − x2 z2 − y2 + x2 y − y3 + x2 y2],

[0, y3 − z3, −x4 y + 2 z y2 − x2 z2], [z, y2 − z y + y, y + z − x2 + y2 − x2 y], [y, z, x2],

[x, x + y − z, x + y − x2]]

> N:=map(a->if (a[1]=0 and a[2]=0) then a[3] fi,J);

N := [x5 − z y x + z2 x − x3 z + x4 y − z y2 + z2 y − x2 y z − x3 y + y2 x + y3 − x2 y2,−2 x2 y z

− y3 z + x4 y2 + y3 − x2 y2 + y4 − x2 y3 + z2 y2 − x2 z2 + x4 z − x2 y2 z + z3 + x4 y]

Since L and hence also S is closed under cyclic permutation of the three
components, N is a Janet basis for the annihilator of S. (The first and second
components give the same ideal as the third, which was picked here.) Here is a
confirmation for the first component:

> map(n->PolInvReduce([n,0,0],J,var),N);

[[0, 0, 0], [0, 0, 0]]

The next example demonstrates the use of the Involutive algorithm for rings
rather than modules: By a trick it is able to produce ring relations.

Example 8. Obviously, the three polynomials x2 + y2, x2y2, x3y − y3x are alge-
braically dependent. To find a relation between them, three new variables a, b,
c are introduced and the following computation is carried out over the field of
rational functions in a, b, c over rationals:

> var:=[x,y];

var := [x, y]

> L:=[x^2+y^2-a,x^2*y^2-b,x^3*y-y^3*x-c];

L := [x2 + y2 − a, x2 y2 − b, x3 y − y3 x − c]

> J:=InvolutiveBasis(L,var,"N");

J := [−a c3 + b a3 c − 4 b2 a c]



This result means that L generates all of R. It can also be interpreted as a
relation between the three original polynomials.

The conventional way to proceed in the last example would have been to have
a, b, c as additional variables and to work with 5 variables over the rationals using
the elimination order to get rid of x and y. This is more time consuming, but in
principle it always works, whereas the above trick only gives a first relation.

Example 9. Conventional method to redo the previous example:

> var:=[x,y,a,b,c];

var := [x, y, a, b, c]

> L:=[x^2+y^2-a,x^2*y^2-b,x^3*y-y^3*x-c]:

> J:=InvolutiveBasis(L,var,1);

J := [b a2 − 4 b2 − c2, b a2 y − 4 b2 y − c2 y, y2 b a2 − 4 y2 b2 − c2 y2,

y3 b a2 − 4 y3 b2 − c2 y3, b + y4 − a y2, c x + a y3 − a2 y + 2 b y,

c a x + y3 a2 − a3 y + 2 b a y, c a2 x + y3 a3 − a4 y + 8 b2 y + 2 c2 y,

c y3 a − c a2 y + b x a2 − 4 b2 x + 2 c y b, c y x + 2 b y2 − b a,

c a y x + 2 b y2 a − 4 b2 − c2, −4 b x y + 2 c y2 − c a + a2 x y, c y2 x + 2 b y3 − b a y,

b x y2 −
c y3

2
+

c a y

2
−

b x a

2
, −2 b x + a y2 x + c y, y3 x +

c

2
−

a x y

2
, x2 + y2 − a]

> NotHas(J,var,[x,y]);

[b a2 − 4 b2 − c2]

Note, this result differs by a factor ac from the result obtained in the previous
example.

Further examples of the package Janet may be found in [2].

6 Timings and Implementation

The main function InvolutiveBasis is an implementation of the Involutive basis
algorithm in [1]. However, the “Janet trees” [1] were not built in for lack of
availability of such data structures in MAPLE. The MAPLE implementation
manages with two lists, one of which contains an intermediate involutive basis
and the other one keeping the so called “prolongations” which are still to be
reduced modulo the involutive basis. An important technical issue concerning
the efficiency in MAPLE 8 was to empty MAPLE’s “remember tables” in order
to prevent memory overflow.



We include here a table summerizing comparisons of “Involutive” to other
MAPLE packages. These packages were “Groebner” and “Rif” [12]? ? ?. Note that
“Involutive” consists of MAPLE code only, i. e. no precompiled code (C++ etc.)
was run in the timing for column “Involutive”. We have also added a column
“C++” which contains the corresponding time to run the respective example by
InvolutiveBasisFast followed by AssertInvBasis, i. e. by calling the C++ implemen-
tation and loading the result into MAPLE.

The examples were taken from the data bases of Gerdt, Blinkov, Yanovich
(http://invo.jinr.ru) and Faugère (http://www-calfor.lip6.fr/~jcf) and
were run in MAPLE 8.

The computations were done on a machine with 2 GB RAM and 2 processors
with 1 GHz each. The calculation was stopped after 50000 seconds.

Groebner Involutive C++ Rif

cyclic6 657 s 425 s 1 s > 50000 s
des18 3 26 s 242 s 1 s 45 s
eco7 9 s 76 s 1 s 53 s
eco8 97 s 1164 s 1 s > 50000 s
extcyc4 3 s 23 s 1 s 210 s
extcyc5 914 s 3991 s 2 s > 50000 s
katsura6 50 s 160 s 1 s > 50000 s
katsura7 514 s 5687 s 2 s > 50000 s
noon5 21 s 118 s 2 s 139 s
noon6 580 s 2250 s 8 s 24789 s
redcyc6 > 50000 s 347 s 1 s 16986 s
reimer5 53 s 554 s 2 s > 50000 s
wang16 2 s 21 s 1 s 10 s

7 Acknowledgements

The contribution of two authors (Yu.A.B. and V.P.G.) was partially supported by
the grant 01-01-00708 from the Russian Foundation for Basic Research and grant
2339.2003.2 from the Russian Ministry of Industry, Science and Technologies.

References

1. Blinkov, Y. A., Gerdt, V. P. and Yanovich, D. A.: Construction of Janet bases II. Polynomial
Bases. 249 – 263 in [3]

2. Cid, C. F. and Plesken, W.: Invariants of finite groups and involutive division. 122 – 135 in [3]
3. Ganzha, V. G., Mayr, E. W. and Vorozhtsov, E. V. (eds.): Computer Algebra in Scientific Com-

puting CASC 2001. Springer-Verlag, Berlin (2001)
4. Gerdt, V. P. and Blinkov, Y. A.: Involutive bases of polynomial ideals. Mathem. and Computers

in Simulation 45 (1998) 519 – 541

? ? ? The input to rifsimp was the same as to the other packages, i. e. no differential expressions, but
polynomials.



5. Gerdt, V. P. and Blinkov, Y. A.: Minimal involutive bases. Mathem. and Computers in Simulation

45 (1998) 543 – 560
6. Gerdt, V. P.: Completion of Linear Differential Systems to Involution, In: Computer Algebra in

Scientific Computing / CASC’99, V.G.Ganzha, E.W.Mayr, E.V.Vorozhtsov (eds.), Springer-Verlag,
Berlin (1999) 115 – 137

7. Gerdt, V. P.: Involutive Division Technique: Some Generalizations and Optimizations. Journal of

Mathematical Sciences 108(6), (2002) 1034 – 1051
8. Janet, M.: Leçons sur les Systèmes des Équationes aux Dérivées Partielles. Cahiers Scientifiques

IV, Gauthier–Villars, Paris 1929
9. Laue, R., Neubüser, J. and Schoenwaelder, U.: Algorithms for finite soluble groups and the SOGOS

system. In: Computational Group Theory: Proc. London Math. Soc. Symposium, Durham 1982 M.
Atkinson (Ed.), Academic Press, Florida (1984) 195 – 247

10. Plesken, W.: Janets Algorithm. In Symmetry and Perturbation Theory SPT2002. S. Abenda, G.
Gaeta, S. Walcher (Eds.), to appear World Scientific (2003)

11. Pommaret, J.-F.: Partial Differential Equations and Group Theory. Kluwer Academic Publishers
(1994)

12. Reid, G. J., Wittkopf, A. D. and Boulton, A.: Reduction of Systems of Nonlinear Partial Differential
Equations to Simplified Involutive Forms. Eur. J. Appl. Math. 7 (1996) 635 – 666


