
The MAPLE Package “Janet”:

II. Linear Partial Differential Equations

Yuri A. Blinkov1?, Carlos F. Cid2??, Vladimir P. Gerdt3? ? ?, Wilhelm Plesken2†,
and Daniel Robertz2‡

1 Department of Mathematics and Mechanics, Saratov University, 410071 Saratov, Russia
2 Lehrstuhl B für Mathematik, RWTH Aachen, Templergraben 64, D-52062 Aachen, Germany
3 Laboratory of Information Technologies, Joint Institute for Nuclear Research, 141980 Dubna,

Russia

Abstract. The MAPLE package “Janet”1 comes in two parts, the first dealing with
polynomials and commutative algebra, the second with linear PDEs. Here the second
part is described. Amongst others it contains the first MAPLE implementation of the
Involutive algorithm which brings systems of linear PDEs to a form from which a quan-
titative analysis of the space of power series solutions becomes possible.

1 Introduction

This is the second of two papers introducing the MAPLE package “Janet”.
Whereas the first part, [4], commented about polynomial systems being the spe-
cial case of linear PDEs with constant coefficients, the present part deals with
general systems of linear PDEs, also based on the Involutive algorithm in the
form presented in [11]. More precisely, our implementation fixes Janet separa-
tion of variables into multiplicative and non-multiplicative ones [15] as the input
involutive division [10] for the algorithm that produces a PDE Janet basis in
the output. By means of this technique the canonical involutive normal forms for
systems of linear partial differential equations can be produced.

Below is a list of the commands available in the PDE part of “Janet”: With
the commands in the first group one can create a Janet basis, produce normal
forms of differential expressions, print out the Janet basis with some relevant
extra information and get quantitative information about the free Taylor coeffi-
cients, called parametric derivatives. The usage with definitions and some typical
examples and comments on the algorithms will be given in section 2. The section
3 comments on compatibility conditions for right hand sides of the equations
or, equivalently in the language of modules, on syzygies and free resolutions for
modules over the ring of differential operators. The next section 4 gives further

? BlinkovUA@info.sgu.ru
?? cfcid@momo.math.rwth-aachen.de

? ? ? gerdt@jinr.ru
† plesken@momo.math.rwth-aachen.de
‡ daniel@momo.math.rwth-aachen.de
1 available at http://wwwb.math.rwth-aachen.de/Janet

examples. The first one discusses on the theoretical side a Lie algebra technique
to construct all polynomial solutions of linear PDEs with a sufficiently large sym-
metry Lie algebra and on the practical side the interaction of the present package
with the MAPLE package “jets”, cf. [1], [2]. The second example is on differential
elimination, the third on finding autonomous elements (in the context of control
theory). Finally we compare “Janet” to other MAPLE packages w. r. t. time
consumption. We give a table of timings.

We have taken big effort to produce detailed online documentation in the form of
help pages with examples, so that we can be brief in this account. Some functions
were taken over from “jets”; in particular it is possible to use the more convenient
jet notation to some extent, as will be demonstrated in this paper. It is also
possible to call the PDE-solver function of the MAPLE package “DESOLV”, cf.
[7], [21], with the output of JanetBasis as input via the function Jpdesolv. In fact,
it was one of the early successes of our “Janet” package, that various big systems
of linear PDEs coming up in the symmetry analysis of various nonlinear PDE
systems could only be solved by “pdesolv” after they had been processed by the
Janet algorithm.

The first implementation of the Involutive algorithm [11] in MAPLE was reported
in [16]. Then this algorithm was implemented in Mathematica [3]. A slightly dif-
ferent algorithmic approach inspired by [10], [11] is under development in [8] and
is also to be implemented in MAPLE. One more implementation of completion of
linear PDE systems to the Janet involutive form is done in MuPAD [13]. This
implementation combines the algebraic methods [11] with a geometric approach
to involution (see [14] and references therein).

Since an involutive system of linear PDEs is a (generally redundant) differential
Gröbner basis, the efficiency of the “Janet” package can be compared with that
of MAPLE packages “diffalg” and “Rif” which also construct differential Gröbner
bases for linear systems. In section 5 we give some timings and notes on the im-
plementation.

2 Basics

Let F be a field of meromorphic functions in x1, . . . , xn over a field of con-
stants K ⊆ C closed under all partial derivatives ∂

∂xi

for i = 1, . . . , n, e. g.

F = Q(x1, . . . , xn), and let R := F 〈 ∂
∂x1

, . . . , ∂
∂xn

〉 be a ring of operators on F

generated by F and the partial derivatives ∂
∂xi

for i = 1, . . . , n, where F acts on
itself by multiplication. Clearly, R is non-commutative and any element of R can

Basic commands:

JanetBasis InvReduce

PrincDeriv (=TabVar) HilbertSeries

SolSeries PolySol

ParamDeriv ZeroSets

Commands for special applications:

CompCond Resolution

Autonom (=Torsion) SyzOp

WeightedHilbertSeries

Commands for various invariants
derivable from HilbertSeries:

IndexRegularity CartanCharacter

HilbertPolynomial HilbertFunction

HP HF

Auxiliary Commands:

LeadingDeriv Jpdesolv

AffEqn AssertJanetBasis

Diff2Pol Pol2Diff

CmpOp JAdjoint

Diff2Op AppOp

Ind2Diff Diff2Ind

Pol2Ind AppOpInd

be written in the form

∑

i

ai

∂|i|

∂xi1
1 · · · ∂xin

n

with ai = ai(x1, . . . , xn) ∈ F and i running through a finite subset of (Z≥0)
n with

|i| :=
∑n

j=1 ij. In general K can be any subfield of C, in which one has a normal
form for elements and where addition, subtraction, multiplication, and division
can constructively be carried out. For our MAPLE implementation it means K =
Q or a finitely generated field extension of Q. Given q-tuples A1, . . . , Aa ∈ R1×q

we are concerned with the linear system of PDEs given by

Aiu = 0 (i = 1, . . . , a) with u :=

u1
...

uq

 (1)

for the unknown functions u1, . . . , uq in x1, . . . , xn (which one may think of as
dependent variables). The aim is to obtain quantitative control over the power
series solutions of (1). At this stage a trivial, nevertheless important remark will
provide the bridge between the polynomial case in part 1, cf. [4] and the present
case.

Remark 1.

R1×q → ⊕q
i=1Rui : Z 7→ Zu

is an isomorphism of left R-modules. This isomorphism maps the R-submodule

S := 〈A1, . . . , Aa〉 ≤ R1×q

of R1×q spanned by the Ai onto the submodule S ′ of ⊕q
i=1Rui which are conse-

quences of the PDE system (1). In particular, the R-factor module

M := R1×q/S

is identified with the (analytically more familiar) R-module

M ′ := ⊕q
i=1Rui/S

′,

whose presentation is given by (1).

So, when we write expressions in MAPLE, we seem to write elements in ⊕q
i=1Rui,

but we need to know them modulo S ′, i. e. as elements of M ′. It will soon be-
come clear that the knowledge of M ′ is really the (quantitative, formal) control
over the power series solutions of (1), which is our declared aim. It is achieved by
the concepts of Janet basis, multiplicative variables, and parametric derivatives.
The Janet basis B consists of finitely many elements B1, . . . , Bd ∈ R1×q, whose
equations taken together have the same set of power series solutions as the orig-
inal equations (1). Moreover, each Bi has attached multiplicative variables from
among the xi to it, such that each equation that is a consequence of (1) can be
written uniquely as an F -linear combination of the derivatives of the Bi with re-
spect to Bi-multiplicative variables. In more algebraic terms: The R-submodule S
of the free R-module R1×q spanned by A1, . . . , Aa is also spanned by B1, . . . , Bd

in such a way that the

∂|i|

∂xi1
1 · · · ∂xin

n

Bl

where i runs through the subset of those elements of (Z≥0)
n with is = 0, whenever

xs is not multiplicative for Bl, form an F -basis (in the sense of vector spaces) for
this submodule. This allows a close comparison to the polynomial case, cf. [4].
The so called monomial basis in the polynomial case corresponds to parametric

derivatives here. ∂|i|ul

∂x
i1

1
···∂x

in
n

is called a parametric derivative, if it does not occur

as the leading derivative in any of the equations Bu = 0, where B is derivative
of any of the Bi. All other derivatives of the ul are called principal. The concept
of involutive division allows to express any principal derivative in terms of the
parametric derivatives. The resulting expression is unique. Concerning the order-
ing of the derivatives of the ul, the same possibilities as in the polynomial case
are realized, the degree reverse lexicographic option with the additional option

of favouring the component with the highest degree is usually chosen. Here is a
rough description of input and output:

Input: A1, . . . , Aa ∈ Rq generating the submodule S of Rq (and a list of inde-
terminates, e. g. x1, . . . , xn.)
Output: The Janet basis B1, . . . , Bd of S by the call JanetBasis.
Subsequent commands:

TabVar or equivalently PrincDeriv reproduces each Bi, the leading term of Bi, and
the subset Mi ⊆ {x1, . . . , xn} of multiplicative variables of Bi with respect to B,
i. e. each element s of S has a unique representation as

s =
d∑

i=1

piBi with pi ∈ F 〈
∂

∂xi

|xi ∈ Mi〉.

The second name for the command explains itself from the fact that the output
allows to read off all principal derivatives, i. e. those derivatives, which do not
occur in a reduced differential expression. They are given by the derivatives of
the highest terms of the Bi with respect to Bi-multiplicative variables.
ParamDeriv enumerates all parametric derivatives.
HilbertSeries gives the generating function for the numbers of the parametric
derivatives according to their order.
With further input v ∈ ⊕q

i=1Rui the command InvReduce produces the nor-
malised representative v′ of the coset v + S ′ ∈ M ′, i. e. an expression involving
only parametric derivatives. E. g., if v is some partial higher derivative of some
ui, then v gets expressed in terms of parametric derivatives.
ZeroSets describes the points which cannot be taken as center of a power series
expansion for the solutions, i. e. lists the functions by which one has divided in
the course of the algorithm.
SolSeries computes the power series solutions of (1) up to an order given as (ad-
ditional) input.
PolySol computes the polynomial solutions of (1) up to a degree given as (addi-
tional) input.

The first example deals with linear PDEs with constant coefficients. It is com-
pletely parallel to Example (2.2) of the first part [4]. All the functions above are
demonstrated except for ZeroSets, because in the constant coefficients case one
needs not to divide by non-constant functions.

Example 1. (cf. Example (2.2) of [4])

Specification of independent and dependent variables:

> ivar:=[x,y]; dvar:=[u,v];

ivar := [x, y]

dvar := [u, v]

Tuples of polynomials and their translation into linear differential expressions
with constant coefficients, which constitute the PDE system:

> l:=[[x,-y],[y,x],[y^3,0]];

l := [[x, −y], [y, x], [y3, 0]]

> L:=Pol2Diff(l,ivar,dvar);

L := [(∂
∂x

u(x, y)) − (∂
∂y

v(x, y)), (∂
∂y

u(x, y)) + (∂
∂x

v(x, y)), ∂3

∂y3 u(x, y)]

Computation of the Janet basis:

> J:=JanetBasis(L,ivar,dvar);

J := [[(∂
∂y

u(x, y)) + (∂
∂x

v(x, y)), (∂
∂x

u(x, y)) − (∂
∂y

v(x, y)), ∂3

∂y3 u(x, y),

∂4

∂y4 v(x, y)], [x, y], [u, v]]

Details on the Janet basis: first the basis vector (equation), next the multi-
plicative variables with the numbers referring to ivar and stars indicating non-
multiplicative variables, and finally the highest term, thus allowing to read off
the principal derivatives. There are four elements in the Janet basis.

> PrincDeriv();

[(∂
∂y

u(x, y)) + (∂
∂x

v(x, y)), [x, y], ∂
∂x

v(x, y)]

[(∂
∂x

u(x, y)) − (∂
∂y

v(x, y)), [x, y], ∂
∂x

u(x, y)]

[∂3

∂y3 u(x, y), [∗, y], ∂3

∂y3 u(x, y)]

[∂4

∂y4 v(x, y), [∗, y], ∂4

∂y4 v(x, y)]

The parametric derivatives and their generating function, the Hilbert series:

> ParamDeriv(ivar,dvar);

[v(x, y), ∂
∂y

v(x, y), ∂2

∂y2 v(x, y), ∂3

∂y3 v(x, y), u(x, y), ∂
∂y

u(x, y), ∂2

∂y2 u(x, y)]

> HilbertSeries(t);

2 + 2 t + 2 t2 + t3

Normalising differential expressions:

> InvReduce(diff(u(x,y),x,x)+diff(v(x,y),y,y),J);

−(∂2

∂y2 u(x, y)) + (∂2

∂y2 v(x, y))

Commands without analogues in the polynomial case: Computing the Tay-

lor expansion of the power series solutions up to a given order (3 in this case)
and computing polynomial solutions up to a given degree (also 3 in this case).
That there are 7 free parameters for the Taylor expansion was to be expected
from the Hilbert series. That all the expansions up to order three are already
solutions is new information.

> SolSeries(J,3,’SO’);

[u(x, y) = C1 0, 0 + C2 0, 1 x + C1 0, 1 y −
1

2
C1 0, 2 x2 + C2 0, 2 x y +

1

2
C1 0, 2 y2

−
1

6
C2 0, 3 x3 +

1

2
C2 0, 3 x y2, v(x, y) = C2 0, 0 − C1 0, 1 x + C2 0, 1 y

−
1

2
C2 0, 2 x2 − C1 0, 2 x y +

1

2
C2 0, 2 y2 −

1

2
C2 0, 3 x2 y +

1

6
C2 0, 3 y3]

> SO;

[[u(x, y) = 1, v(x, y) = 0], [u(x, y) = x, v(x, y) = y], [u(x, y) = y, v(x, y) = −x],

[u(x, y) = −
1

2
x2 +

1

2
y2, v(x, y) = −xy], [u(x, y) = xy, v(x, y) = −

1

2
x2 +

1

2
y2],

[u(x, y) = −
1

6
x3 +

1

2
xy2, v(x, y) = −

1

2
x2y +

1

6
y3], [u(x, y) = 0, v(x, y) = 1]]

> PolySol(J,3,’P’):

> evalb(P=SO);

true

If in the previous example the linear PDE system with constant coefficients would
have been really big, one could proceed as follows: Find the Janet basis for the
polynomial system using InvolutiveBasisFast, cf. [4], rewrite the polynomial Janet

basis as PDE system using Pol2Diff, and tell the system that this is a PDE Janet

basis by invoking AssertJanetBasis.

The next example deals with non-constant coefficients, also demonstrating the
difficulties arising from division by non-constant functions.

Example 2. (n = 3, q = 3, non-constant coefficients) The following system de-
scribes the set of all vector fields in 3-space commuting with the infinitesimal
rotations around the z- and the y-axis:

> ivar:=[x,y,z]; dvar:=[s,t,u];

ivar := [x, y, z]

dvar := [s, t, u]

> L:=[y*diff(s(x,y,z),x)-x*diff(s(x,y,z),y)-t(x,y,z),
> y*diff(t(x,y,z),x)-x*diff(t(x,y,z),y)+s(x,y,z),
> y*diff(u(x,y,z),x)-x*diff(u(x,y,z),y),
> z*diff(s(x,y,z),x)-x*diff(s(x,y,z),z)-u(x,y,z),
> z*diff(t(x,y,z),x)-x*diff(t(x,y,z),z),
> z*diff(u(x,y,z),x)-x*diff(u(x,y,z),z)+s(x,y,z)];

L := [y(∂
∂x

s(x, y, z)) − x(∂
∂y

s(x, y, z)) − t(x, y, z),

y(∂
∂x

t(x, y, z)) − x(∂
∂y

t(x, y, z)) + s(x, y, z), y(∂
∂x

u(x, y, z)) − x(∂
∂y

u(x, y, z)),

z(∂
∂x

s(x, y, z)) − x(∂
∂z

s(x, y, z)) − u(x, y, z), z(∂
∂x

t(x, y, z)) − x(∂
∂z

t(x, y, z)),

z(∂
∂x

u(x, y, z)) − x(∂
∂z

u(x, y, z)) + s(x, y, z)]

> J:=JanetBasis(L,ivar,dvar);

J := [[
z t(x, y, z)

z − y
−

y u(x, y, z)

z − y
, −

z s(x, y, z)

z − x
+

x u(x, y, z)

z − x
,

y u(x, y, z) + z2 (∂
∂y

u(x, y, z)) − y z (∂
∂z

u(x, y, z)),

x u(x, y, z) + z2 (∂
∂x

u(x, y, z)) − x z (∂
∂z

u(x, y, z))], [x, y, z], [s, t, u]]

> TabVar();

[
z t(x, y, z)

z − y
−

y u(x, y, z)

z − y
, [x, y, z],

z t(x, y, z)

z − y
]

[−
z s(x, y, z)

z − x
+

x u(x, y, z)

z − x
, [x, y, z], −

z s(x, y, z)

z − x
]

[yu(x, y, z) + z2(∂
∂y

u(x, y, z)) − yz(∂
∂z

u(x, , y, z)), [∗, y, z], z2(∂
∂y

u(x, y, z))]

[xu(x, y, z) + z2(∂
∂x

u(x, y, z)) − xz(∂
∂z

u(x, y, z)), [x, y, z], z2(∂
∂x

u(x, y, z))]

> ZeroSets();

[[y, {y = 0}], [x z, {x = 0, z = 0}], [z, {z = 0}], [z (−y + x), {x = y, z = 0}],

[x, {x = 0}], [y z, {z = 0, y = 0}], [y z − y2, {y = z, y = 0}],

[y (z − x), {x = z, y = 0}], [z2, {z = 0}]]

> HilbertSeries(lambda);

1 +
λ

1 − λ

> ParamDeriv(ivar,dvar);

[0, 0,
1

1 − z
]

Because of the result of ZeroSets one cannot expand in (0, 0, 0). We choose
(1, 2, 3) instead:

> PolySol(J,5,[1,2,3],’d’):

> d;

[[s(x, y, z) = x, t(x, y, z) = y, u(x, y, z) = z], [s(x, y, z) = −
16

3
x +

1

6
xz2

+
1

6
y2x +

1

6
x3, t(x, y, z) = −

16

3
y +

1

6
yz2 +

1

6
yx2 +

1

6
y3, u(x, y, z) = −

16

3
z

+
1

6
z3 +

1

6
y2z +

1

6
x2z], [s(x, y, z) =

125

6
x +

1

60
x3y2 −

5

6
xz2 +

1

120
x5

+
1

60
x3z2 +

1

120
xy4 +

1

60
y2xz2 +

1

120
xz4 −

5

6
y2x −

5

6
x3, t(x, y, z) =

125

6
y

−
5

6
yz2 −

5

6
yx2 +

1

120
x4y +

1

120
yz4 −

5

6
y3 +

1

60
yx2z2 +

1

60
x2y3 +

1

120
y5

+
1

60
y3z2, u(x, y, z) =

125

6
z −

5

6
z3 +

1

60
y2z3 +

1

120
z5 +

1

60
x2z3 −

5

6
y2z

+
1

120
y4z −

5

6
x2z +

1

60
y2x2z +

1

120
x4z]]

Note, because of the Hilbert series, SolSeries would have produced 5 inde-
pendent expansions of solutions. Hence not all solutions can be expanded by poly-
nomial solutions. But since all the functions, whose Lie derivatives with the two
infinitesimal rotations are functions of

√

x2 + y2 + z2 (use the Janet-program to

prove this!), the above Hilbert series tells us, that the R[
√

x2 + y2 + z2](xDx +
yDy+zDz) is dense in the space of all (outside 0 analytic) vector fields commuting
with the two (and hence all) infinitesimal rotations.

Whatever has been said in part 1, [4], about orderings and gradings for the
variables applies in the present case as well. The role of the various components
in the polynomial case has been taken over by the dependent variables. Again
term over position is usually much more effective. Unfortunately there is no C++-
implementation for the present case available yet.

The way differential expressions are written in MAPLE is rather clumsy for typing
input as seen in the last example, whereas the constant coefficient case is dealt
with in a satisfactory manner as demonstrated in the first example. Therefore
we have taken over the jet notation from the MAPLE package “jets”, cf. [1], [2],
and provided two functions Ind2Diff and Diff2Ind to translate jet expressions into
differential expressions and back again. For instance, if u is a dependent variable
and x, y, z are the independent variables, then the jet variable uxxyz stands for the

derivative in MAPLE notation ∂4u(x,y,z)
∂x2∂y∂z

. In the subsequent examples this more
convenient way for producing input will be used.

3 Compatibility Conditions and Syzygies

In this section we discuss (local) compatibility conditions for right hand sides of
linear PDEs, a well known example being the characterisation of gradients via

the start of the Poincaré sequence. The way one goes about it, is to introduce a
name for each right hand side of an equation and to get a compatibility condition
each time the left hand side gets zero in the Involutive algorithm. Here is an
example, for which Janet already used the corresponding homogeneous system
for demonstrating his algorithm:

Example 3. We first define the system to be investigated by using jet notation:

> ivar:=[x,y,z]:dvar:=[u]:

> Lj:=[u[z,z]-y*u[x,x],u[y,y]];

Lj := [uz, z − y ux, x, uy, y]

The aim is to check for which right hand sides the system

> Lh:=Ind2Diff(Lj,ivar,dvar);

Lh := [(∂2

∂z2 u(x, y, z)) − y (∂2

∂x2 u(x, y, z)), ∂2

∂y2 u(x, y, z)]

has solutions. Therefore we introduce names a(x, y, z) and b(x, y, z) for the right
hand sides as follows and compute a Janet basis for the resulting system in the
usual manner (by carrying the new functions along):

> L:=AffEqn(Lh,ivar,[a,b]);

L := [(∂2

∂z2 u(x, y, z)) − y (∂2

∂x2 u(x, y, z)) − a(x, y, z), (∂2

∂y2 u(x, y, z)) − b(x, y, z)]

> JL:=JanetBasis(L,ivar,dvar):

Whenever a left hand side becomes zero, one gets a compatibility condition.
They are collected in the global variable COMPA. Other compatibility conditions
come from expressing the original equations in L in terms of the Janet basis
and from reducing prolongations of the elements of the Janet basis by non-
multiplicative variables. All these can be obtained with the command CompCond.
To save space, the output is turned into jet notation via the command Diff2Ind:

> Diff2Ind(CompCond(L,ivar,dvar),ivar,[a,b]);

[
1

2
bx, y, z, z y2 −

1

2
ax, y, y, y y2 −

1

2
bx, x, x, y y3 −

3

2
bx, x, x y2,

1

2
bz, z, z, z, z, z y

−
1

2
ay, y, z, z, z, z y −

3

2
bx, x, z, z, z, z y2 − ax, x, y, z, z y + ax, x, y, y, z, z y2

+
3

2
bx, x, x, x, z, z y3 − ax, x, x, x y + ax, x, x, x, y y2 −

1

2
ax, x, x, x, y, y y3

−
1

2
bx, x, x, x, x, x y4,

3

2
bx, x, x, z, z y2 −

3

2
bx, x, x, x, x y3 −

1

2
bx, y, z, z, z, z y2

+
1

2
ax, y, y, y, z, z y2 + bx, x, x, y, z, z y3 −

1

2
ax, x, x, y, y, y y3 −

1

2
bx, x, x, x, x, y y4,

1

2
by, z, z y2 −

1

2
ay, y, y y2 −

1

2
bx, x, y y3 −

3

2
bx, x y2,

3

2
bx, x, z, z y2 −

3

2
bx, x, x, x y3

−
1

2
by, z, z, z, zy

2 +
1

2
ay, y, y, z, zy

2 + bx, x, y, z, zy
3 −

1

2
ax, x, y, y, yy

3 −
1

2
bx, x, x, x, yy

4]

> HilbertSeries(t);

1 + 3 t + 4 t2 + 3 t3 + t4

Summarizing, we have a 12-dimensional affine space of solutions, whenever
a(x, y, z) and b(x, y, z) satisfy the equations above. The space of solutions of the
homogeneous system can easily be computed with JanetBasis and PolySol.

Of course, one can also check for given specific right hand sides, whether the sys-
tem allows solutions in the same way: The command CompCond should produce
zeros only, resp. the empty list. In this case, the commands SolSeries and PolySol

can be used as in the homogeneous case to look at expansions of solutions and
polynomial solutions.

It is worthwhile to have a look at the compatibility from the module point of
view. Note, M = R1×q/S can be viewed as the cokernel of the homomorphism

α : R1×a → R1×q : z 7→ zA

of left R-modules, where the rows of A ∈ Ra×q are A1, . . . , Aa. Another way
of viewing the command CompCond is that it computes the kernel of α. More
precisely, if CompCond is performed after the command JanetBasis on input with
general right hand side as above, the result can be interpreted as a homomorphism

β : R1×b → R1×a : z 7→ zB

where B ∈ Rb×a has rows corresponding (in the sense of 1) to the elements of the
output of CompCond. In particular,

R1×b β
−→R1×a α

−→ R1×q ν
−→M → 0,

where ν is the natural epimorphism, is the beginning of a free resolution of M as
left R-module.

Until now it was not necessary to introduce a proper notation for the elements of
the ring R, since we got away with describing the result of applying them to a gen-
eral function. With the matrices now, we need a proper notation, which is again
adopted from the “jets” package, cf. [1], [2], and goes as follows: An element of R
is always written in square brackets, which are part of the name. Each summand
ai

∂|i|

∂x
i1

1
···∂x

in
n

is written inside these brackets as [ai, [x1, . . . , x1
︸ ︷︷ ︸

i1

, . . . , xn, . . . , xn
︸ ︷︷ ︸

in

]].

These terms are separated by commas. Things will become clear in the next ex-
ample. Matrices over R can be constructed from tuples of differential expressions
with the command Diff2Op, the reverse command being AppOp.

Continuing with the discussion of the matrices for α and β above, one can start all
over with the matrix B and iterate to construct a free resolution of M . But there

is a way to construct the resolution in one go by using the Janet basis as relations
for M . This resolution is necessarily finite, more precisely it finishes after k steps,
if k is the maximal number of non-multiplicative variables for the members of
the Janet basis. An example follows below. There is another version of this
resolution producing only with first order differential operators for the higher
syzygies, cf. [17], which can also be realized in the package with the command
SyzOp, which works only with operator input and will not be demonstrated here.

Example 4. We start again with the following system:
> L:=[exp(y)*diff(u(x,y,z),x)-y^2*diff(u(x,y,z),y,z),
> diff(u(x,y,z),x,z)];

L := [ey (∂
∂x

u(x, y, z)) − y2 (∂2

∂z ∂y
u(x, y, z)), ∂2

∂z ∂x
u(x, y, z)]

and specify the independent and dependent variables:

> ivar:=[x,y,z]:dvar:=[u]:

> Resolution(L,ivar,dvar);

[
0 [[1, [x]]] [[−1, [z]]]

[[1, [x]]] [[y2, [y]]] [[−ey, []]]

]

,

[[−y2, [y, z]], [ey, [x]]]
[[1, [x, z]]]
[[1, [x, x]]]

The column on the right is to be compared with the Janet basis of L:

> JanetBasis(L,ivar,dvar);

[[ey(∂
∂x

u(x, y, z)) − y2(∂2

∂z∂y
u(x, y, z)), ∂2

∂z∂x
u(x, y, z), ∂2

∂x2 u(x, y, z)], [x, y, z], [u]]

4 Further Examples

The Janet package can very well be used together with the package “jets”, which
can perform all sorts of jet calculations. Here is an example:

Example 5. The aim is to construct recursively all polynomial solutions of the
heat equation by using its symmetry Lie algebra.

We use the package “jets” to set up the equation for the Lie algebra. Here
we define the independent and dependent variables and write down the equation
in “jet” notation:

> with(jets):with(Janet):

> ivar:=[x,t]; dvar:=[u];

ivar := [x, t]

dvar := [u]

> eq:=[u[x,x]+u[t]];

eq := [ux, x + ut]

We will only be interested in symmetry vector fields of the following form:

> defvec("lin",ivar,dvar);

[[[ξx(x, t), [x]], [ξt(x, t), [t]], [u ηu, u(x, t), [u]]], [x, t], [ξx(x, t), ξt(x, t), ηu, u(x, t)]]

Here is the “jets” command to set up the equations

> le:=gengen(eq,"lin",ivar,dvar);

le := [[∂
∂x

ξt(x, t), (∂
∂t

ηu, u(x, t)) + (∂2

∂x2 ηu, u(x, t)),

−(∂2

∂x2 ξx(x, t)) + 2 (∂
∂x

ηu, u(x, t)) − (∂
∂t

ξx(x, t)),

2 (∂
∂x

ξx(x, t)) − (∂
∂t

ξt(x, t)) − (∂2

∂x2 ξt(x, t))], [x, t], [ξx(x, t), ξt(x, t), ηu, u(x, t)],

[[x, t, u], [x, t, u], [], [ξx(x, t), ξt(x, t), u ηu, u(x, t)]]]

We get a Janet basis for these equations using the “Janet” package and ask
for the number of solutions:

> Jle:=JanetBasis(op(le[1..3]));

Jle := [[−(∂
∂t

ξx(x, t)) + 2 (∂
∂x

ηu, u(x, t)), ∂
∂x

ξt(x, t), 2 (∂
∂x

ξx(x, t)) − (∂
∂t

ξt(x, t)),

−(∂2

∂t2
ηu, u(x, t)), (∂2

∂t2
ξt(x, t)) + 4 (∂

∂t
ηu, u(x, t)), ∂2

∂t2
ξx(x, t)], [x, t],

[ξx(x, t), ξt(x, t), ηu, u(x, t)]]

> HilbertSeries(t);

3 + 3 t

Here we get the polynomial solutions up to degree 2 (for the Lie algebra):

> sol:=PolySol(Jle,2);

sol := [ξx(x, t) = C1 0, 0 +
1

2
C2 0, 1 x + C1 0, 1 t − 2C3 0, 1 x t,

ξt(x, t) = C2 0, 0 + C2 0, 1 t − 2C3 0, 1 t2,

ηu, u(x, t) = C3 0, 0 +
1

2
C1 0, 1 x + C3 0, 1 t −

1

2
C3 0, 1 x2]

> Cons := [C1[0,0],C1[0,1],C3[0,1], C2[0,0],C2[0,1],C3[0,0]];

Cons := [C1 0, 0, C1 0, 1, C3 0, 1, C2 0, 0, C2 0, 1, C3 0, 0]

We use a “jets” command to write down the infinitesimal symmetries explicitly:

> lvec:=genvec(sol,Cons,le[4]);

lvec := [[[1, [x]]], [[t, [x]], [
1

2
ux, [u]]], [[−2 x t, [x]], [−2 t2, [t]], [u t −

1

2
ux2, [u]]],

[[1, [t]]], [[
1

2
x, [x]], [t, [t]]], [[u, [u]]]]

We could have used “jets” to analyse the isomorphism type of the Lie algebra,
which we skip. What is important for us is the fact that the solutions of the heat
equation form a module for this Lie algebra in the following sense: if f(x, t) is
a solution of the heat equation, then taking the commutator of a vector field in

the Lie algebra with the vector field [f(x, t), [u]] yields a vector field of the form
[g(x, t), [u]], where g(x, t) also is a solution of the heat equation. (This observation
carries over to all linear PDE systems.) We start with f(x, t) = 1 and take the
commutators with the basis of the Lie algebra:

> l:=[[1, [u]]];

l := [[1, [u]]]

> map(s->ldvec(s,l,ivar,dvar),lvec);

[0, [[−
1

2
x, [u]]], [[−t +

1

2
x2, [u]]], 0, 0, [[−1, [u]]]]

So the second and the third basis vector of the Lie algebra seem to do some-
thing useful:

> for i from 1 to 4 do
> ldvec(l,lvec[2],ivar,dvar);l:=ldvec(l,lvec[3],ivar,dvar) od;

[[
1

2
x, [u]]]

l := [[t −
1

2
x2, [u]]]

[[
3

2
x t −

1

4
x3, [u]]]

l := [[3 t2 − 3 x2 t +
1

4
x4, [u]]]

[[
15

2
x t2 −

5

2
x3 t +

1

8
x5, [u]]]

l := [[15 t3 −
45

2
x2 t2 +

15

4
x4 t −

1

8
x6, [u]]]

[[
105

2
x t3 −

105

4
x3 t2 +

21

8
x5 t −

1

16
x7, [u]]]

l := [[105 t4 − 210 x2 t3 +
105

2
x4 t2 −

7

2
x6 t +

1

16
x8, [u]]]

It seems that we get always two linearly independent polynomial solutions of
lower degree i for i > 0. This can be checked by applying the Janet algorithm
to the heat equation itself (or by hand, of course):

> J:=JanetBasis(Ind2Diff(eq,ivar,dvar),ivar,dvar):

> HilbertSeries(t);

1 + 2 t + 2
t2

1 − t

We leave it to the reader to prove that the above commutation routine gen-
erates all polynomial solutions out of the constant solution.

The next example demonstrates differential elimination.

Example 6. Specification of independent and dependent variables:

> ivar:=[x,y,z];dvar:=[u,v];

ivar := [x, y, z]

dvar := [u, v]

The PDE system:

> L:=Ind2Diff([u[z,z]-y*v[x,x], u[y,y]+z*v[y,z]],ivar,dvar);

L := [(∂2

∂z2 u(x, y, z)) − y (∂2

∂x2 v(x, y, z)), (∂2

∂y2 u(x, y, z)) + z (∂2

∂z ∂y
v(x, y, z))]

We want to find an equation for v alone. Computation of the Janet basis
with the degree reverse lexicographic ordering with position over term:

> J:=JanetBasis(L,ivar,dvar,2);

J := [[(∂2

∂z2 u(x, y, z)) − y (∂2

∂x2 v(x, y, z)), (∂2

∂y2 u(x, y, z)) + z (∂2

∂z ∂y
v(x, y, z)),

(∂3

∂z2 ∂y
u(x, y, z)) − (∂2

∂x2 v(x, y, z)) − y (∂3

∂y ∂x2 v(x, y, z)),−2 (∂3

∂z2 ∂y
v(x, y, z))

− 2(∂3

∂y ∂x2 v(x, y, z)) − y (∂4

∂y2 ∂x2 v(x, y, z)) − z (∂4

∂z3 ∂y
v(x, y, z))], [x, y, z], [u, v]]

So the last equation in the Janet basis is an equation just for v. We want
to check whether every solution for this equation can be complemented by a
function u such that one gets a solution of the original equations. Therefore, the
parametric derivatives (still in the same ordering) are computed:

> ParamDeriv(ivar,dvar);

[
z

1 − x
+

1

1 − x
+

y z

1 − x
+

y

1 − x
,

x2 y

(1 − x) (1 − z)
+

x2

(1 − x) (1 − z)
+

x

(1 − y) (1 − z)
+

1

(1 − y) (1 − z)
]

Now the Janet basis and the parametric derivatives for the equation for v
are computed, also in the degree reverse lexicographical ordering.

> J:=JanetBasis([J[1][4]],ivar,[v]);

J := [[−2 (∂3

∂z2 ∂y
v(x, y, z)) − 2 (∂3

∂y ∂x2 v(x, y, z)) − y (∂4

∂y2 ∂x2 v(x, y, z))

− z (∂4

∂z3 ∂y
v(x, y, z))], [x, y, z], [v]]

> ParamDeriv(ivar,[v]);

x2 y

(1 − x) (1 − z)
+

x2

(1 − x) (1 − z)
+

x

(1 − y) (1 − z)
+

1

(1 − y) (1 − z)

Comparison with the second component of the corresponding result for the
original equations above shows that any holomorphic solution v of the last equa-
tion comes up in a solution of the original equations.

We leave it as an exercise to interchange the role of u and v, i. e. to eliminate
u and to compare the corresponding generalised Hilbert series. To get an idea

on the coupling between u and v it is helpful to compare the Hilbert series for
the original equations and for the separated system having the two equations,
one for u and one for v. (Of course, one has to take the same ordering for both
cases.)

There is also a different kind of differential elimination, which tries to find a PDE
system involving differentiation with respect to fewer variable. For this one has
to use the rather expensive lexicographical ordering.

The final example demonstrates the command Autonom, which is tantamount
to Torsion. In the module language it finds the torsion submodule, gives a presen-
tation of it, and the Hilbert series with respect to the degrevlex ordering. In the
PDE-language it finds the functions killed by some linear differential operator.
Autonomous elements are relevant in control theory, cf. [18] and [19], or [22] for
the constant coefficient case.

Example 7. The PDE system:

> ivar := [s,t]; dvar := [u,v,w];

ivar := [s, t]

dvar := [u, v, w]

> R := Ind2Diff([u[s]+v[t]-w, u+v[s,t]+w], ivar, dvar);

R := [(∂
∂s

u(s, t)) + (∂
∂t

v(s, t)) − w(s, t), u(s, t) + (∂2

∂t ∂s
v(s, t)) + w(s, t)]

> Torsion(R, ivar, dvar);

[[T1(s, t) = u(s, t) + (∂
∂t

v(s, t)), T2(s, t) = −u(s, t) − (∂
∂t

v(s, t))],

[− T1(s, t) − T2(s, t), T1(s, t) + (∂
∂s

T1(s, t))], 1 +
s

1 − s
]

5 Timings and Implementation

For implementation issues we refer to the first part [4]. The essential differences of
the differential version JanetBasis of the Involutive algorithm [5] to the polynomial
one merely lie in the handling of differential expressions.

We compared “Janet” to other MAPLE packages. These packages were “dif-
falg” [6], [12] and “Rif” [20]2. Note that “Janet” consists of MAPLE code only,
i. e. no precompiled code (C++ etc.) was run in the timing for column “Janet”.

The examples were taken from the data bases of Gerdt, Blinkov, Yanovich
(http://invo.jinr.ru) and Faugère (http://www-calfor.lip6.fr/~jcf).
They were converted to systems of linear homogeneous PDEs with constant co-
efficients using the standard association [11] and then run in MAPLE 8.

The computations were done on a machine with 2 GB RAM and 2 processors
with 1 GHz each. The calculation was stopped after 50000 seconds.

2 The input to rifsimp was the same as to the other packages, i. e. differential expressions.

Janet Rif diffalg

cyclic6 2426 s > 50000 s 24249 s
des18 3 1849 s 526 s 373 s
eco7 653 s 104 s 78 s
eco8 7851 s 1718 s 883 s
extcyc4 96 s 75 s 17 s
extcyc5 18179 s > 50000 s 49894 s
katsura6 1915 s 1523 s 929 s
katsura7 24395 s > 50000 s > 50000 s
noon5 579 s 458 s 155 s
noon6 27138 s 16406 s 6312 s
redcyc6 2434 s 1847 s > 50000 s
reimer5 5069 s > 50000 s 3469 s
wang16 81 s 20 s 19 s

6 Acknowledgements

The contribution of two authors (Yu.A.B. and V.P.G.) was partially supported by
the grant 01-01-00708 from the Russian Foundation for Basic Research and grant
2339.2003.2 from the Russian Ministry of Industry, Science and Technologies.

References

1. Barakat, M.: Jets. A MAPLE-Package for Formal Differential Geometry. 1 – 12 in [9]

2. Barakat, M. and Hartjen, G.: Jets. A MAPLE-Package for Variational and Jet Calculus. Submitted

3. Berth, M. and Gerdt, V. P.: Computation of Involutive Bases with Mathematica. Proc. Third Inter-
national Workshop on Mathematica System in Teaching and Research (Siedlce, Poland, September
5-7, 2001), Institute of Mathematics & Physics, University of Podlasie (2001) 29–34

4. Blinkov, Y. A., Cid, C. F., Gerdt, V. P., Plesken, W. and Robertz, D.: The MAPLE Package
“Janet”: I. Polynomial Systems. These Proceedings

5. Blinkov, Y. A., Gerdt, V. P. and Yanovich, D. A.: Construction of Janet bases II. Polynomial
Bases. 249 – 263 in [9]

6. Boulier, F., Lazard, D., Ollivier, F. and Petitot, M.: Computing Representations for Radicals of
Finitely Generated Differential Ideals. Proceedings of ISSAC’95, ACM Press (1995) 158 – 166

7. Carminati, J. and Vu, Khai T.: Symbolic computation and differential equations; Lie symmetries.
J. Symb. Comp. 29 (2000) 95 – 116

8. Chen, Y. F. and Gao, X. S.: Involutive directions and new involutive divisions. Comp. Math. Appl.

41 (7-8) (2001) 945 – 956

9. Ganzha, V. G., Mayr, E. W. and Vorozhtsov, E. V. (eds.): Computer Algebra in Scientific Com-
puting CASC 2001. Springer-Verlag, Berlin (2001)

10. Gerdt, V. P. and Blinkov, Y. A.: Involutive bases of polynomial ideals. Mathem. and Computers

in Simulation 45 (1998) 519 – 541

11. Gerdt, V. P.: Completion of linear differential systems to involution. In: Computer Algebra in
Scientific Computing / CASC’99, V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov (Eds.), Springer-
Verlag, Berlin (1999) 115 – 137

12. Hubert, E.: Factorization free decomposition algorithms in differential algebra. J. Symb. Comp. 29

(2000), No. 4–5, 641 – 662

13. Hausdorf, M. and Seiler, W.: Involutive bases in MuPAD I: Involutive divisions. mathPAD 11

(2002), 51 – 56

14. Hausdorf, M. and Seiler, W.: An Efficient Algebraic Algorithm for the Geometric Completion to
Involution. Applicable Algebra in Engineering, Communication and Computing 13 (2002) 163 –
207

15. Janet, M.: Leçons sur les Systèmes des Équationes aux Dérivées Partielles. Cahiers Scientifiques
IV, Gauthier-Villars, Paris (1929)

16. Mityunin, V.: Implementation of the differential involutive algorithms in the computer algebra
system Maple V5. Proc. IMACS Conference on Applications of Computer Algebra ACA 2000, St.
Petersburg (2000) 38–39

17. Pommaret, J.-F.: Partial Differential Equations and Group Theory. Kluwer Academic Publishers
(1994)

18. Pommaret, J.-F.: Partial Differential Control Theory. Vol. I: Mathematical Tools, Vol II: Control
Systems. Kluwer Academic Publishers (2001)

19. Quadrat, A.: Analyse algébrique des systèmes de contrôle linéaires multidimension-
nels. Thèse de Doctorat, Ecole Nationale des Ponts et Chaussées, Paris (1999), cf.
http://www-sop.inria.fr/cafe/Alban.Quadrat

20. Reid, G. J., Wittkopf, A. D. and Boulton, A.: Reduction of systems of nonlinear partial differential
equations to simplified involutive forms. Eur. J. Appl. Math. 7 (1996) 635 – 666

21. Vu, Khai T. and Carminati, J.: DESOLV for Maple V Release 5. School of Computing and Math-
ematics, Deakin University, Geelong, Victoria, Australia, released June 2000

22. Zerz, E.: Topics in Multidimensional Linear System Theory. Lecture Notes in Control and Inform.
Sciences 256, Springer (2000)

