GaloisGroup( L )
returns the Galois group of the field L if L is a normal extension and issues an error if not. The Galois group is a group of extension automorphisms (see ExtensionAutomorphism).
The computation of a Galois group is computationally relatively hard, and can take significant time.
gap> g:=GaloisGroup(f);
Group( ExtensionAutomorphism(AlgebraicExtension(GF(2),Z(2)^0*(y^
2 + y + 1)),RootOf(Z(2)^0*(y^2 + y + 1))+Z(2)^0) )
gap> h:=GaloisGroup(e);
Group( ExtensionAutomorphism(e,alpha^3+
3*alpha), ExtensionAutomorphism(e,-1*alpha), ExtensionAutomorphism(e,
-1*alpha^3-3*alpha) )
gap> Size(h);
4
gap> AbelianInvariants(h);
[ 2, 2 ]
GAP 3.4.4