FactorArg( U, N )
Let N be a normal subgroup of an ag group U. Then FactorArg returns
a record with the following components with can be used as argument for
Exponents.
isFactorArg:true.
factorNum:
factorDen:
identity:
generators:
operations:FactorArgOps.
Note that FactorArg is bound to AgGroupOps.mod.
gap> d8 := Subgroup( s4, [ a, c, d ] );
Subgroup( s4, [ a, c, d ] )
gap> c2 := Subgroup( s4, [ d ] );
Subgroup( s4, [ d ] )
gap> M := d8 mod c2;;
gap> d8.1 * d8.2 * d8.3;
a*c*d
gap> Exponents( M, last );
[ 1, 1 ]
gap> d8 := AgSubgroup( s4, [ a*c, c, d ], false );
Subgroup( s4, [ a*c, c, d ] )
gap> M := d8 mod c2;;
gap> Exponents( M, a*c*d );
[ 1, 0 ]
GAP 3.4.4