ReducedInCoxeterCoset( W , w )
w is an automorphism of the Coxeter group W or of a parent group of
W, given as a permutation of the roots. ReducedInCoxeterCoset returns
the unique element in the right coset W.w which sends all roots of W
to positive roots.
gap> W := CoxeterGroup("F", 4 );;
gap> H := ReflectionSubgroup( W, [ 1, 2, 9, 16 ] );;
gap> PrintDynkinDiagram( H );
D4 9
\
1 - 16
/
2
gap> w := PermCoxeterWord( W, [ 3, 2, 3, 4, 3, 2 ] );;
gap> f := ReducedInCoxeterCoset( H, w );;
gap> CoxeterWord( W, f );
[ 4, 3 ]
gap> H.rootInclusion{[ 1 ..4 ]};
[ 1, 2, 9, 16 ]
The triality automorphism of D_4:
gap> OnTuples( H.rootInclusion{[ 1 .. 4 ]}, f );
[ 1, 9, 16, 2 ]
This function requires the package "chevie" (see RequirePackage).
GAP 3.4.4