Group:
Print:
SchurElements:
CharTable:irreducibles contains the values of the irreducible
characters of the algebra on certain basis elements T_w where w
runs over the elements in the component classtext. Thus, the value
are now polynomials in the parameters of the algebra.
gap> G := ComplexReflectionGroup( 4 );
ComplexReflectionGroup(4)
gap> v := X( Cyclotomics );; v.name := "v";;
gap> CH := Hecke( G, v );
Hecke(ComplexReflectionGroup(4),v)
gap> Display( CharTable( CH ) );
H(G4)
2 3 3 1 1 2 1 1
3 1 1 1 1 . 1 1
1a 2a 3a 3b 4a 6a 6b
2P 1a 1a 3b 3a 2a 3a 3b
3P 1a 2a 1a 1a 4a 2a 2a
phi_{1,0} 1 v^6 v v^2 v^3 v^2 v^10
phi_{1,4} 1 1 A /A 1 /A A
phi_{1,8} 1 1 /A A 1 A /A
phi_{2,1} 2 (-2)v^3 v+(E(3)) v^2+(E(3)^2) . (E(3))v (E(3)^2)v^5
phi_{2,3} 2 (-2)v^3 v+(E(3)^2) v^2+(E(3)) . (E(3)^2)v (E(3))v^5
phi_{2,5} 2 -2 -1 -1 . 1 1
phi_{3,2} 3 (3)v^2 v-1 v^2-1 -v . .
A = E(3)
= (-1+ER(-3))/2 = b3
This function requires the package "chevie" (see RequirePackage).
Previous Up Top
Index
GAP 3.4.4