LeftCellRepresentation( W , cell )
returns a list of matrices giving the left cell representation of the
Iwahori-Hecke algebra W. The argument cell is a pair with first
component a list of reduced words which form a left cell, and second
component the corresponding matrix of highest coefficients of the
corresponding Kazhdan-Lusztig polynomials. Typically, cell is an entry
from the result of the function LeftCells.
gap> v := X( Cyclotomics ) ;; v.name := "v";;
gap> W := Hecke(CoxeterGroup( "H", 3), v^2, v );
Hecke(CoxeterGroup("H", 3),[ v^2, v^2, v^2 ],[ v, v, v ])
gap> c := LeftCells( CoxeterGroup( W ) );;
gap> List( c, i -> Length( i[ 1 ] ) );
[ 1, 6, 5, 8, 5, 6, 1, 5, 8, 5, 5, 6, 6, 5, 8, 5, 5, 8, 5, 6, 6, 5 ]
gap> LeftCellRepresentation(W,c[3]);
[ [ [ -v^0, v, 0*v^0, 0*v^0, 0*v^0 ],
[ 0*v^0, v^2, 0*v^0, 0*v^0, 0*v^0 ],
[ 0*v^0, v, -v^0, v, 0*v^0 ],
[ 0*v^0, 0*v^0, 0*v^0, v^2, 0*v^0 ],
[ 0*v^0, 0*v^0, 0*v^0, 0*v^0, v^2 ] ],
[ [ v^2, 0*v^0, 0*v^0, 0*v^0, 0*v^0 ], [ v, -v^0, v, 0*v^0, 0*v^0 ],
[ 0*v^0, 0*v^0, v^2, 0*v^0, 0*v^0 ],
[ 0*v^0, 0*v^0, v, -v^0, v ],
[ 0*v^0, 0*v^0, 0*v^0, 0*v^0, v^2 ] ],
[ [ -v^0, v, 0*v^0, 0*v^0, 0*v^0 ],
[ 0*v^0, v^2, 0*v^0, 0*v^0, 0*v^0 ],
[ 0*v^0, 0*v^0, v^2, 0*v^0, 0*v^0 ],
[ 0*v^0, 0*v^0, 0*v^0, v^2, 0*v^0 ],
[ 0*v^0, 0*v^0, 0*v^0, v, -v^0 ] ] ]
This function requires the package "chevie" (see RequirePackage).
GAP 3.4.4