CoxeterGroup( WF ):Quite a few functions defined for domains, permutation groups or Coxeter groups have been implemented to work with Coxeter cosets.
Elements, Random, Representative, Size, in:CoxeterGroup( WF ).
ConjugacyClasses( WF ):CoxeterGroup(WF). Then the classes are defined to be the
W-orbits on W F_0, where W acts by conjugation (they coincide
with the W F_0-orbits, W F_0 acting by the conjugation); by the
translation wmapsto wphi^{-1} they are sent to the
phi-conjugacy classes of W.
PositionClass( WF , x ):i such that x is an element of
ConjugacyClasses(WF)[i] (to work fast, the classification of
Coxeter groups is used).
FusionConjugacyClasses( WF1, WF ):CoxeterSubCoset.
Print( WF ):WF.name is bound then this is printed, else
this function prints the coset in a form which can be input back
into GAP.
InductionTable( HF, WF ):Harish-Chandra induction in the basis of almost characters:
gap> WF := CoxeterCoset( CoxeterGroup( "A", 4 ), (1,4)(2,3) );
CoxeterCoset(CoxeterGroup("A", 4), (1,4)(2,3))
gap> Display( InductionTable( CoxeterSubCoset( WF, [ 2, 3 ] ), WF ) );
tt | 111 21 3
________________
11111 tt | 1 . .
2111 tt | . 1 .
221 tt | 1 . .
311 tt | 1 . 1
32 tt | . . 1
41 tt | . 1 .
5 tt | . . 1
Lusztig induction from a diagonal Levi:
gap> HF := CoxeterSubCoset( WF, [1, 2],
> LongestCoxeterElement( CoxeterGroup( WF ) ) );;
gap> Display( InductionTable( HF, WF ) );
tt | 111 21 3
_________________
11111 tt | -1 . .
2111 tt | -2 -1 .
221 tt | -1 -2 .
311 tt | 1 2 -1
32 tt | . -2 1
41 tt | . 1 -2
5 tt | . . 1
A descent of scalars:
gap> W := CoxeterCoset( CoxeterGroup( "A", 2, "A", 2 ), (1,3)(2,4) );
CoxeterCoset(CoxeterGroup("A", 2, "A", 2), (1,3)(2,4))
gap> Display( InductionTable( CoxeterSubCoset( W, [ 1, 3 ] ), W ) );
tt | 11 2
__________
111 tt | 1 .
21 tt | 1 1
3 tt | . 1
CartanName( WF ):phi on the components is put in brackets if of length
k greater than 1, and is preceded by the order of phi^k on it,
if this is not 1. For example "2(A2xA2)" denotes 2 components
of type A_2 permuted by F_0, and such that phi^2 induces the
non-trivial diagram automorphism on any of them, while 3D4 denotes
an orbit of length 1 on which phi is of order 3.
gap> W := CoxeterCoset( CoxeterGroup( "A", 2, "G", 2, "A", 2 ),
> (1,5,2,6) );
CoxeterCoset(CoxeterGroup("A", 2, "G", 2, "A", 2), (1,5,2,6))
gap> CartanName( W );
"2(A2xA2)xG2"
PrintDynkinDiagram( WF ):CoxeterGroup(WF) together with the
information how WF.phi acts on it.
gap> W := CoxeterCoset( CoxeterGroup( "A", 2, "A", 2 ), (1,3,2,4) );
CoxeterCoset(CoxeterGroup("A", 2, "A", 2), (1,3,2,4))
gap> PrintDynkinDiagram( W );
phi permutes the next 2 components
phi^2 acts as (1,2) on the component below
A2 1 - 2
A2 3 - 4
ChevieClassInfo( WF ), see the explicit description in
ChevieClassInfo for Coxeter cosets.
ChevieCharInfo:
CharParams( WF )
CharName( WF )
Note that some functions for elements of a Coxeter group work naturally
for elements of a Coxeter coset: CoxeterWord, PermCoxeterWord,
CoxeterLength, ReducedInCoxeterCoset, LeftDescentSet,
RightDescentSet, etcldots
GAP 3.4.4