Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Exercise sheet 3 (29.10.2025)

(3.1) Exercise: Topological spaces.

- a) Recall that a maximal (closed) irreducible subset of a topological space $\mathcal V$ is called an irreducible component. Show that any irreducible subset of $\mathcal V$ is contained in an irreducible component, and ideduce that $\mathcal V$ is the irredundant union of its irreducible components.
- b) A topological space is called **quasi-compact**, or has the **Heine–Borel property**, if any open cover has a finite subcover. Show that any Noetherian topological space is quasi-compact.
- c) A topological space \mathcal{V} is called **Hausdorff**, if for any $x \neq y \in \mathcal{V}$ there are open neighbourhoods $\mathcal{U}_x \subseteq \mathcal{V}$ and $\mathcal{U}_y \subseteq \mathcal{V}$ of x and y, respectively, such that $\mathcal{U}_x \cap \mathcal{U}_y = \emptyset$. Show that \mathcal{V} is Hausdorff Noetherian if and only if it is finite and **discrete**, that is all subsets of \mathcal{V} are open.

(3.2) Exercise: A generalised Nullstellensatz.

Let K be a field which is *not* algebraically closed, let A be a finitely generated polynomial K-algebra, and let $I \subseteq A$.

- a) Show that there is $g \in A$ such that $V_K(I) = V_K(g)$.
- **b)** Show that $\mathbf{V}_K(I) \neq \emptyset$ if and only if $\mathbf{V}_K(f) \neq \emptyset$ for all $f \in I$. (This holds for algebraically closed fields as well, by Hilbert's Nullstellensatz.)

Hint. Show first that there is $h \in A$ such that $V_K(h) = \{0\}$.

(3.3) Exercise: Radical membership test.

Let T be an indeterminate, let R be a ring, let $I \subseteq R$, and let $f \in R$. Show that $f \in \sqrt{I}$ if and only if $\langle I, fT - 1 \rangle = R[T]$.

(3.4) Exercise: Hypersurfaces.

Let $K \subseteq L$ be a field extension such that L is algebraically closed, let A be a finitely generated polynomial K-algebra, and let $f = \prod_{i=1}^r f_i^{a_i} \in A$, where $r \in \mathbb{N}$ and $a_i \in \mathbb{N}$, and the $f_i \in A$ are pairwise non-associated and irreducible. Determine the irreducible components of the hypersurface $\mathbf{V}_L(f)$.

(3.5) Exercise: Linear subspaces.

Let K=L be an infinite field, and let $A:=K[X_1,\ldots,X_n]$ for some $n\in\mathbb{N}_0$. a) Let $V\leq K^n$ be a K-subspace. Show that $V=\mathbf{V}_K(f_1,\ldots,f_m)$ for some $m\leq n$, where $f_j=\sum_{i=1}^n a_{ji}X_i$ for some $a_{ji}\in K$. How is m related to $\dim_K(V)$? b) Let m be chosen minimal. Show that $\mathbf{I}_K(V)=\langle f_1,\ldots,f_m\rangle\lhd A$, that V is irreducible, and that K[V] is a polynomial algebra in n-m indeterminates.

(3.6) Exercise: Irreducible components.

Let K be an algebraically closed field, let A := K[X,Y,Z], and let $\mathbf{V} := \mathbf{V}_K(X^2 - YZ, XZ - X)$. Determine the irreducible components of \mathbf{V} . Moreover, compute the coordinate algebra of \mathbf{V} and of its irreducible components.