Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Exercise sheet 6 (19.11.2025)

(6.1) Exercise: Homogenisation.

Let K be a field, let $\mathcal{X} := \{X_1, \dots, X_n\}$ and $\mathcal{X}^{\sharp} := \{X_0\} \stackrel{\cdot}{\cup} \mathcal{X}$ be indeterminates, for some $n \in \mathbb{N}_0$, let $A := K[\mathcal{X}]$ and $A^{\sharp} := K[\mathcal{X}^{\sharp}]$.

- a) Show that an ideal $I \subseteq A$ is prime if and only if $I^{\sharp} \subseteq A^{\sharp}$ is prime.
- b) Let $I \subseteq A^{\sharp}$ be homogeneous and prime. Show that I' = A or $I' \subseteq A$ is prime.
- c) Now assume that $I = \langle f_1, \dots, f_r \rangle \subseteq A^{\sharp}$, for some $r \in \mathbb{N}_0$, where $((f_i)')^{\sharp} = f_i$ for all i. Show that if I' = A or $I' \subseteq A$ is prime, then I = A or $I \subseteq A$ is prime.

(6.2) Exercise: Euler Identity.

Let K be a field, let $\mathcal{X} := \{X_1, \dots, X_n\}$, for some $n \in \mathbb{N}_0$, and let $A := K[\mathcal{X}]$.

a) Let $0 \neq f \in A$ be homogeneous. Show that f fulfills the **Euler Identity**

$$\sum_{i=1}^{n} X_i \cdot \frac{\partial f}{\partial X_i} = \deg(f) \cdot f.$$

b) Assume that $\operatorname{char}(K) = 0$, and let conversely $0 \neq f \in A$ fulfill the Euler Identity. Show that f is homogeneous.

(6.3) Exercise: Projective closure.

Let $L \subseteq \mathbb{C}$, let $\mathcal{Q} := \mathbf{V}_L(Y - X^2) \subseteq L^2$ be a **parabola**, and let $\mathbf{Q} := \overline{\mathcal{Q}} \subseteq \mathbf{P}^2(L)$ be its projective closure.

- a) Show that \mathbf{Q} is irreducible, and determine $\mathbf{I}^{\sharp}(\mathbf{Q})$ and the points at infinity of \mathcal{Q} . Determine the affine closed subsets $\mathbf{Q} \cap U_X$ and $\mathbf{Q} \cap U_Y$ in the '(y, z)-' and the '(x, z)-plane', respectively, where Z denotes the homogenizing coordinate.
- b) Now let $L = \mathbb{R}$. Depict \mathcal{Q} , and the affine sets $\mathbf{Q} \cap U_X$ and $\mathbf{Q} \cap U_Y$. Show that \mathbf{Q} is 'tangent' to the line at infinity $\mathbf{H}_Z = \mathbf{V}^{\sharp}(Z) \subseteq \mathbf{P}^2(\mathbb{R})$.

(6.4) Exercise: Rational parametrisations.

Let $L \subseteq \mathbb{C}$, let $\mathcal{H} := \mathbf{V}_L(X^2 - Y^2 - 1) \subseteq L^2$ be a **hyperbola**, and let $\mathbf{H} := \overline{\mathcal{H}} \subseteq \mathbf{P}^2(L)$ be its projective closure.

- a) Show that **H** is irreducible, and determine $\mathbf{I}^{\sharp}(\mathbf{H})$ and the points at infinity of \mathcal{H} . Determine the affine closed subsets $\mathbf{H} \cap U_X$ and $\mathbf{H} \cap U_Y$ in the '(y, z)-' and the '(x, z)-plane', respectively, where Z denotes the homogenizing coordinate.
- **b)** Show that $\tau: L \setminus \{\pm 1\} \to \mathcal{H} \setminus \{[-1,0]\}: t \mapsto \frac{1}{1-t^2} \cdot [1+t^2,2t]$ is well-defined and bijective, and determine its inverse. Moreover, show that τ can be extended to a bijective ('polynomial') map $\tau^{\sharp} \colon \mathbf{P}^1(L) \to \mathbf{H}$, and determine its inverse.
- c) Use this to describe the behaviour of τ around $t=\pm 1$. Similarly, using the involution on $\mathbf{P}^1(L)$ given by $[s\colon t]\mapsto [t\colon s]$, describe behaviour of τ^\sharp around $t=\infty$; recall that we write $\mathbf{P}^1(L)=L\ \dot\cup\ \{\infty\}$.
- d) Now let $L = \mathbb{R}$. Depict \mathcal{H} , and the affine sets $\mathbf{H} \cap U_X$ and $\mathbf{H} \cap U_Y$. How can τ^{-1} be understood geometrically? How does $\tau(t)$ 'travel' along \mathcal{H} when t varies? In particular, what happens for $t \to (\pm 1)^{\pm}$, $t \to 0^{\pm}$, and $t \to \pm \infty$ (in the metric topology)?