Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Exercise sheet 7 (26.11.2025)

(7.1) Exercise: Veronese embeddings.

Let $K \subseteq L$ be a field extension, where L is infinite, and let \mathbf{P}^n be the projective space over L, for some $n \in \mathbb{N}_0$. Let $\{M_0, \ldots, M_N\}$ be the set of monomials of degree $d \in \mathbb{N}_0$ in the indeterminates $\mathcal{X} := \{X_0, \ldots, X_n\}$. Letting $N := \binom{n+d}{n} - 1$, we consider the d-th **Veronese embedding**

$$\varphi \colon \mathbf{P}^n \to \mathbf{P}^N \colon [x_0 \colon \dots \colon x_n] \mapsto [\dots \colon M_i(x_0, \dots, x_n) \colon \dots].$$

- a) Show that φ is well-defined and injective.
- b) Show that the image $\varphi(\mathbf{P}^n) \subseteq \mathbf{P}^N$ is closed and irreducible.
- c) Show that $\varphi(\mathbf{P}^n)$ is homeomorphic via φ to \mathbf{P}^n .
- d) Show that the twisted cubic in \mathbf{P}^3 coincides with the image of the 3-uple embedding $\mathbf{P}^1 \to \mathbf{P}^3$, for a suitable choice of coordinates.

Hint. Consider the kernel of the homomorphism of K-algebras

$$K[Y_0,\ldots,Y_N]\to K[X_0,\ldots,X_n]\colon Y_i\mapsto M_i.$$

(7.2) Exercise: Segre embedding.

Let $K \subseteq L$ be a field extension, where L is infinite, and let \mathbf{P}^n and \mathbf{P}^m be projective spaces over L, for some $n, m \in \mathbb{N}_0$. Letting N := (n+1)(m+1) - 1, we consider the map

$$\varphi \colon \mathbf{P}^n \times \mathbf{P}^m \to \mathbf{P}^N \colon [[x_0 \colon \dots \colon x_n], [y_0 \colon \dots \colon y_m]] \mapsto [\dots \colon x_i y_i \colon \dots].$$

- a) Show that φ is well-defined and injective; it is called the **Segre embedding**.
- b) Show that the image $\varphi(\mathbf{P}^n \times \mathbf{P}^m) \subseteq \mathbf{P}^N$ is closed and irreducible.

Hint. Consider the kernel of the homomorphism of K-algebras

$$K[Z_{ij}; i \in \{0, \dots, n\}, j \in \{0, \dots, m\}] \to K[X_0, \dots, X_n, Y_0, \dots, Y_m]: Z_{ij} \mapsto X_i Y_i$$

(7.3) Exercise: The quadric surface.

Let $K \subseteq L$ be a field extension, where L is infinite, and let $A^{\sharp} = K[W, X, Y, Z]$. We consider the **quadric surface** $\mathbf{V} := \mathbf{V}_{L}^{\sharp}(XY - ZW) \subseteq \mathbf{P}^{3}$.

- a) Determine $\mathbf{I}_K^{\sharp}(\mathbf{V}) \leq A^{\sharp}$, and show that \mathbf{V} coincides with the image of the Segre embedding $\varphi \colon \mathbf{P}^1 \times \mathbf{P}^1 \to \mathbf{P}^3$, for a suitable choice of coordinates.
- b) Show that **V** conains two sets of lines $\{\mathbf{L}_i; i \in \mathcal{I}\}$ and $\{\mathbf{M}_j; j \in \mathcal{J}\}$, each parametrized by \mathbf{P}^1 , where \mathcal{I} and \mathcal{J} are index sets, such that $\mathbf{L}_i \cap \mathbf{L}_k = \emptyset$ whenever $i \neq k$, and $\mathbf{M}_j \cap \mathbf{L}_l = \emptyset$ whenever $j \neq l$, while $\mathbf{L}_i \cap \mathbf{M}_j$ is a singleton set, for all i and j. Here, a **line** in \mathbf{P}^3 is an intersection of two distinct hyperplanes.
- c) Show that V contains further space curves, distinct from the above lines. Deduce that the Zariski topology on V is not homeomorphic via φ to the product topology of the Zariski topologies on $P^1 \times P^1$.