Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Exercise sheet 8 (03.12.2025)

(8.1) Exercise: Localisation.

Let R be a ring, let $S \subseteq R$ be multiplicatively closed, and let M be an R-module.

- a) Show that a localisation $M_{\mathcal{S}}$ of M at \mathcal{S} is unique up to isomorphism.
- **b)** Let \sim be the relation on $M \times \mathcal{S}$ given by letting $[m, f] \sim [m', f']$ if there is $g \in \mathcal{S}$ such that (mf' m'f)g = 0. Show that \sim is an equivalence relation.
- c) Show that the set of equivalence classes $M/S := (M \times S)/\sim$ becomes an R-module, such that there is a natural R-module homomorphism $\sigma \colon M \to M/S$. Moreover, show that M/S, together with σ , is a localisation of M at S indeed.
- d) Show that the localisation $R_{\mathcal{S}}$ of R at \mathcal{S} becomes a ring again, and derive the universal property of $R_{\mathcal{S}}$ in the category of rings from its universal property in the category of R-modules.
- e) Show that $\frac{f}{1} \in R_{\mathcal{S}}$, where $f \in \mathcal{S}$, acts bijectively on any $R_{\mathcal{S}}$ -module. Conversely, if any $f \in \mathcal{S}$ acts bijectively on M, show that M becomes an $R_{\mathcal{S}}$ -module.

(8.2) Exercise: Localisation functors.

Let R be a ring, and let $S \subseteq R$ be multiplicatively closed.

- a) Let $\alpha \colon M \to N$ be a homomorphism of R-modules. Show that there is a unique homomorphism $\alpha_{\mathcal{S}} \colon M_{\mathcal{S}} \to N_{\mathcal{S}}$ of $R_{\mathcal{S}}$ -modules, called the **localisation** of α at \mathcal{S} , such that $\alpha \cdot \sigma_N = \sigma_M \cdot \alpha_{\mathcal{S}}$, where $\sigma_{\mathcal{T}}$ denotes the natural map.
- b) Show that localisation at S induces covariant functors $?_S$: Mod- $R \to \text{Mod-}R_S$ and $?_S$: mod- $R \to \text{mod-}R_S$, where Mod-? and mod-? denotes the category of all modules and of finitely generated modules, respectively. Is the map $?_S$: Hom $_R(M,N) \to \text{Hom}_{R_S}(M_{R_S},N_{R_S})$ injective? Is it surjective?
- c) Let $M \stackrel{\alpha}{\longrightarrow} N \stackrel{\beta}{\longrightarrow} P$ be an **exact sequence** of R-modules, that is we have $\operatorname{im}(\alpha) = \ker(\beta)$. Show that $M_S \stackrel{\alpha_S}{\longrightarrow} N_S \stackrel{\beta_S}{\longrightarrow} P_S$ is an exact sequence of R_S -modules; in other words, $?_S$ is an **exact functor**. In particular, conclude that α_S is injective if α is so, that α_S is surjective if α is so, and that $M_S/N_S \cong (M/N)_S$ as R_S -modules.
- d) If $M' \leq M$ and $M'' \leq M$ are R-submodules, show that $(M' \cap M'')_{\mathcal{S}} = (M')_{\mathcal{S}} \cap (M'')_{\mathcal{S}} \subseteq M_{\mathcal{S}}$. Similarly, if $\{M_i \leq M; i \in \mathcal{I}\}$ are R-submodules, where \mathcal{I} is an index set, show that $(\sum_{i \in \mathcal{I}} M_i)_{\mathcal{S}} = \sum_{i \in \mathcal{I}} (M_i)_{\mathcal{S}} \leq M_{\mathcal{S}}$. In which sense can the various localised modules be considered as submodules of $M_{\mathcal{S}}$?

(8.3) Exercise: Varying the denominator set.

Let R be a ring, let $S, T \subseteq R$ be multiplicatively closed subsets, let $S' := \sigma_T(S) \subseteq R_T$ and $T' := \sigma_S(T) \subseteq R_S$, and let M be an R-module.

- a) Show that there are a natural ring homomorphism $\rho: R_{\mathcal{T}} \to (R_{\mathcal{S}})_{\mathcal{T}'}$, and a natural homomorphism of $R_{\mathcal{T}}$ -modules $\tau: M_{\mathcal{T}} \to (M_{\mathcal{S}})_{\mathcal{T}'}$. In which sense does $(M_{\mathcal{S}})_{\mathcal{T}'}$ become an $R_{\mathcal{T}}$ -module?
- **b)** Show that if S' consists of units in R_T , then ρ and τ are an isomorphism of rings and R_T -modules, respectively. What happens in the case $S \subseteq T$? What happens if T' consists of units in R_S as well?
- c) Let $f,g \in R$, and let R_f denote the localisation of R at $\{f^k \in R; k \in \mathbb{N}_0\}$. Show that there are a natural ring isomorphism $(R_f)_g \cong R_{fg}$, and a natural isomorphism of R_{fg} -modules $(M_f)_g \cong M_{fg}$.