Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Lecture 13 (18.11.2025)

(13.1) Homogenisation of ideals. a) We keep the above notation. Given $f \in A^{\sharp}$, the specialisation epimorphism of K-algebras $A^{\sharp} \to A$ defined by $X_0 \mapsto 1$ yields the **dehomogenisation** $f' := f(1, X_1, \ldots, X_n) \in A$. Conversely, for $0 \neq f \in A$ we let $f^{\sharp} := X_0^{\deg(f)} \cdot f(\frac{X_1}{X_0}, \ldots, \frac{X_n}{X_0}) \in A^{\sharp}$ be its **homogenisation** with respect to X_0 ; for completeness we let $0^{\sharp} := 0$. Then we have $X_0 \nmid f^{\sharp}$ for $0 \neq f \in A$, and multiplicativity $(fg)^{\sharp} = f^{\sharp}g^{\sharp}$ holdds for $f, g \in A$.

For $0 \neq f \in A$ we have $(f^{\sharp})' = (X_0^{\deg(f)} \cdot f(\frac{X_1}{X_0}, \dots, \frac{X_n}{X_0}))' = f(X_1, \dots, X_n) = f$. Conversely, for $0 \neq f \in A^{\sharp}$ homogeneous, letting $\nu(f) = \nu_{X_0}(f) := \deg(f) - \deg(f') \in \mathbb{N}_0$, that is $X_0^{\nu(f)}$ is the highest power of X_0 dividing f, we have $(f')^{\sharp} = f(1, X_1, \dots, X_n)^{\sharp} = X_0^{\deg(f')} \cdot f(1, \frac{X_1}{X_0}, \dots, \frac{X_n}{X_0}) = X_0^{-\nu(f)} \cdot f(X_0, X_1, \dots, X_n)$.

b) In terms of ideals, for $I \subseteq A^{\sharp}$ homogeneous let $I' := \{f' \in A; f \in I\} \subseteq A$ be its **dehomogenisation**, and conversely for $I \subseteq A$ let $I^{\sharp} := \langle f^{\sharp} \in A^{\sharp}; f \in I \rangle \subseteq A^{\sharp}$ be its **homogenisation**.

For $I \subseteq A$ we have $(I^{\sharp})' = (\langle f^{\sharp} \in A^{\sharp}; f \in I \rangle_{A^{\sharp}})' = \langle (f^{\sharp})' \in A; f \in I \rangle_{A} = I$. Conversely, for $I \subseteq A^{\sharp}$ homogeneous we have $(I')^{\sharp} = \{f' \in A; f \in I\}^{\sharp} = \langle (f')^{\sharp} \in A^{\sharp}; f \in I \rangle_{A^{\sharp}} = \langle X_{0}^{-\nu(f)} \cdot f \in A^{\sharp}; f \in I \text{ homogeneous} \rangle_{A^{\sharp}};$ in particular we have $I \subseteq (I')^{\sharp}$, such that for any $f \in (I')^{\sharp}$ homogeneous we have $X_{0}^{\nu(f)} \cdot f \in I$.

Proposition. i) An ideal $I \subseteq A$ is radical if and only if $I^{\sharp} \subseteq A^{\sharp}$ is so. ii) A homogeneous ideal $I \subseteq A^{\sharp}$ is radical if and only if $I' \subseteq A$ is so.

Proof. i) Let $I^{\sharp} \subseteq A^{\sharp}$ be radical, and let $f \in \sqrt{I} \subseteq A$. Then we have $f^k \in I$ for some $k \in \mathbb{N}$. Thus we get $(f^{\sharp})^k = (f^k)^{\sharp} \in I^{\sharp} = \sqrt{I^{\sharp}}$. This implies $f^{\sharp} \in I^{\sharp}$, so that $f = (f^{\sharp})' \in (I^{\sharp})' = I$.

Conversely, let $I \subseteq A$ be radical, and let $f \in \sqrt{I^\sharp} \subseteq A^\sharp$ homogeneous. Then we have $f^k \in I^\sharp$ for some $k \in \mathbb{N}$. Thus we get $(f')^k = (f^k)' \in (I^\sharp)' = I = \sqrt{I}$. This implies $f' \in I$, so that $(f')^\sharp = X_0^{-\nu(f)} \cdot f \in I^\sharp$, thus $f \in I^\sharp$.

ii) Let $I \subseteq A^{\sharp}$ be radical, and let $f \in \sqrt{I'} \subseteq A$. Then we have $f^k \in I'$ for some $k \in \mathbb{N}$. Thus we get $(f^{\sharp})^k = (f^k)^{\sharp} \in (I')^{\sharp}$. Since $\nu(f^{\sharp}) = 0$ we conclude that actually $(f^{\sharp})^k \in I = \sqrt{I}$. This implies $f^{\sharp} \in I$, so that $f = (f^{\sharp})' \in I'$.

Conversely, let $I' \unlhd A$ be radical, and let $f \in \sqrt{I} \unlhd A^\sharp$ homogeneous. Then we have $f^k \in I$ for some $k \in \mathbb{N}$. Thus we get $(f')^k = (f^k)' \in I' = \sqrt{I'}$. This implies $f' \in I'$, so that $(f')^\sharp = X_0^{-\nu(f)} \cdot f \in (I')^\sharp$. Since $\nu(X_0^{-\nu(f)} \cdot f) = 0$ we conclude that actually $X_0^{-\nu(f)} \cdot f \in I$, thus $f \in I$.

- (13.2) Projective closure. Keeping the above notation, we consider $U_0 = \mathbf{P} \setminus \mathbf{H}_0$, which is open with respect to the Zariski topology on \mathbf{P} . Recall that U_0 can be identified with L^n via (de)homogenisation $L^n \to U_0$: $v = [x_1, \ldots, x_n] \mapsto [1:x_1:\ldots:x_n] =: v^{\sharp}$ and $U_0 \to L^n: v = [x_0:\ldots:x_n] \mapsto [\frac{x_1}{x_0},\ldots,\frac{x_n}{x_0}] =: v'$.
- a) We show that the topology on L^n induced by the Zariski topology on \mathbf{P} and the Zariski topology on L^n coincide; in other words, the identification $L^n \to U_0$ is a homeomorphism, and thus $U_0 \subseteq \mathbf{P}$ is called an **affine open** subset:

For $I \subseteq A^{\sharp}$ homogeneous we have $\mathbf{V}_L^{\sharp}(I) \cap L^n = \{v \in L^n; v^{\sharp} \in \mathbf{V}_L^{\sharp}(I)\} = \{v \in L^n; f'(v) = 0 \text{ for all } f \in I \text{ homogeneous}\} = \mathbf{V}_L(I'); \text{ thus any closed subset of } L^n \text{ with respect to the induced topology is Zariski closed. Conversely, for } I \subseteq A$ we have $\mathbf{V}_L^{\sharp}(I^{\sharp}) \cap L^n = \mathbf{V}_L((I^{\sharp})') = \mathbf{V}_L(I); \text{ thus any Zariski closed subset of } L^n \text{ is closed with respect to the induced topology.}$

In particular, if L is infinite, from $\mathbf{V}_L^{\sharp}(\mathbf{I}_K^{\sharp}(\mathbf{P})) = \mathbf{P}$ we get $\mathbf{V}_L(\mathbf{I}_K^{\sharp}(\mathbf{P})') = L^n$, so that $\mathbf{I}_L^{\sharp}(\mathbf{P})' = \{0\}$, entailing $\mathbf{I}_L^{\sharp}(\mathbf{P}) = \{0\}$; thus we have $K[\mathbf{P}] \cong A^{\sharp}$.

b) We compare affine closed sets and projective closed sets: For $I \subseteq A$ and $V := \mathbf{V}_L(I) \subseteq L^n$ affine closed, let $\overline{V} \subseteq \mathbf{P}$ be its **projective closure**, that is the smallest projective closed subset containing V.

Letting $\mathbf{W} := \mathbf{V}_L^{\sharp}(I^{\sharp}) \subseteq \mathbf{P}$, being projective closed such that $\mathbf{W} \cap L^n = \mathbf{V}_L((I^{\sharp})') = \mathbf{V}_L(I) = V$, we get $\overline{V} \subseteq \mathbf{W}$, hence $V \subseteq \overline{V} \cap L^n \subseteq \mathbf{W} \cap L^n = V$, so that $\overline{V} \cap L^n = V$. (We will comment on the relationship $\overline{V} \subseteq \mathbf{W}$ below.) The elements of $\overline{V} \setminus V \subseteq \mathbf{P} \setminus L^n = \mathbf{H}_0$ are called the **points at infinity** of V; recall that \overline{V} is irreducible if and only if V is irreducible.

Conversely, if $\mathbf{V} \subseteq \mathbf{P}$ is projective closed and irreducible, such that $\mathbf{V} \not\subseteq \mathbf{H}_0$, we have $\emptyset \neq \mathbf{V} \cap L^n \subseteq \mathbf{V}$ open, and hence dense, entailing $\overline{\mathbf{V} \cap L^n} = \mathbf{V}$. In conclusion, we have shown that mapping $V \mapsto \overline{V}$ yields a bijection

$$\{V \subseteq L^n \text{ closed, irreducible}\} \to \{\mathbf{V} \subseteq \mathbf{P} \text{ closed, irreducible}; \mathbf{V} \not\subseteq \mathbf{H}_0\},$$

whose inverse is given by $\mathbf{V} \mapsto \mathbf{V} \cap L^n$.

In general, if $V = \bigcup_{i=1}^r V_i \subseteq L^n$ are the irreducible components of V, then we have $\overline{V} = \bigcup_{i=1}^r \overline{V}_i \subseteq \mathbf{P}$, where the \overline{V}_i are irreducible, and since $\overline{V}_i \cap L^n = V_i$ the decomposition of \overline{V} is irredundant, so that the \overline{V}_i are the irreducible components of \overline{V} . Hence the above bijections extend to bijections between the set of affine closed subsets of L^n , and the set of projective closed subsets of \mathbf{P} having no irreducible component being contained in the hyperplane at infinity.