Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, **Lecture 14** (19.12.2025)

(14.1) Projective closure. We keep the earlier notation, and let L be infinite.

From $\mathbf{V}_L^{\sharp}(\mathbf{I}_K^{\sharp}(\mathbf{P})) = \mathbf{P}$ we get $\mathbf{V}_L(\mathbf{I}_K^{\sharp}(\mathbf{P})') = L^n$, so that $\mathbf{I}_L^{\sharp}(\mathbf{P})' = \{0\}$, entailing $\mathbf{I}_L^{\sharp}(\mathbf{P}) = \{0\}$; thus we have $K[\mathbf{P}] \cong A^{\sharp}$.

Both L^n , having coordinate algebra A, and \mathbf{P} , having homogeneous coordinate algebra A^{\sharp} , are irreducible, so that $\mathbf{P} \cap L^n = L^n$ implies that the projective closure of L^n is $\overline{L^n} = \mathbf{P}$. (In contrast, if L is finite and K = L, then singleton sets are closed, so that \mathbf{P} carries the discrete topology.)

- (14.2) Vanishing ideal of projective closures. We proceed to describe the vanishing ideals of projective closures: To this end, let $\mathbf{V} \subseteq \mathbf{P}$ be projective closed having no irreducible component contained in \mathbf{H}_0 , and let $V := \mathbf{V} \cap L^n \subseteq L^n$, being affine closed such that $\overline{V} = \mathbf{V}$.
- i) If $I \subseteq A^{\sharp}$ is homogeneous such that $\mathbf{V} = \mathbf{V}_{L}^{\sharp}(I)$, then we have $V = \mathbf{V} \cap L^{n} = \mathbf{V}_{L}(I')$, saying that a defining ideal of V is given as the dehomogenisation of any defining ideal of \mathbf{V} . In particular, if L is algebraically closed, the vanishing ideal of \mathbf{V} is given as the dehomogenisation of the vanishing ideal of \mathbf{V} .
- ii) Let conversely $I \subseteq A$ such that $V = \mathbf{V}_L(I)$, and let $\mathbf{W} := \mathbf{V}_L^{\sharp}(I^{\sharp}) \subseteq \mathbf{P}$. Then we have already seen that $\mathbf{W} \cap L^n = \mathbf{V}_L((I^{\sharp})') = \mathbf{V}_L(I) = V$, implying that $\mathbf{V} = \overline{V} \subseteq \mathbf{W}$. If L is algebraically closed we show that actually $\mathbf{V} = \mathbf{W}$, by showing that any projective closed set containing V already contains \mathbf{W} :

Let $J \subseteq A^{\sharp}$ homogeneous such that $\mathbf{U} := \mathbf{V}_{L}^{\sharp}(J)$ contains V, that is we have $V \subseteq \mathbf{U} \cap L^{n} = \mathbf{V}_{L}(J')$. Thus we have $J' \subseteq \mathbf{I}_{K}(V) = \sqrt{I} \subseteq A$. Hence for any $f \in J$ we have $(f^{k})' = (f')^{k} \in I$, for some $k \in \mathbb{N}$. This implies $(X_{0}^{-\nu(f)} \cdot f)^{k} = ((f^{k})')^{\sharp} \in I^{\sharp}$, thus $X_{0}^{-\nu(f)} \cdot f \in \sqrt{I^{\sharp}} = \mathbf{I}_{K}^{\sharp}(\mathbf{W})$. This entails $f \in \mathbf{I}_{K}^{\sharp}(\mathbf{W})$, hence $J \subseteq \mathbf{I}_{K}^{\sharp}(\mathbf{W})$, thus $\mathbf{W} = \mathbf{V}_{L}^{\sharp}(\mathbf{I}_{K}^{\sharp}(\mathbf{W})) \subseteq \mathbf{V}_{L}^{\sharp}(J) = \mathbf{U}$.

Thus, if L is algebraically closed, a defining ideal of \mathbf{V} is given as the homogenisation of any defining ideal of V; in particular, the vanishing ideal of \mathbf{V} is given as the homogenisation of the vanishing ideal of V. The latter assertions do not necessarily hold if L is not algebraically closed:

Example. Let $K = L = \mathbb{R}$ and n = 2, hence $A^{\sharp} = \mathbb{R}[T, X, Y]$. Let $I = \langle X^2 + Y^4 \rangle \leq A$. Then we have $V = \mathbf{V}(I) = \{[0, 0]\}$, so that $\overline{V} = V = \{[1: 0: 0]\}$. But we have $I^{\sharp} = \langle T^2 X^2 + Y^4 \rangle$, so that $\mathbf{V}^{\sharp}(I^{\sharp}) = \{[1: 0: 0], [0: 1: 0]\}$.