Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, **Lecture 15** (24.11.2025)

(15.1) Example: The twisted cubic. Let $K = L = \mathbb{C}$, and let n = 3, hence we have $A = \mathbb{C}[X, Y, Z]$ and $A^{\sharp} = \mathbb{C}[W, X, Y, Z]$. We consider the projective closed set $\mathbf{W} := \mathbf{V}^{\sharp}(I) \subseteq \mathbf{P} = \mathbf{P}^{3}(\mathbb{C})$, where $I := \langle XZ - Y^{2}, YW - X^{2} \rangle \subseteq A^{\sharp}$.

Note that the graded \mathbb{C} -algebra automorphism of A^{\sharp} given by $X \leftrightarrow Y$ and $W \leftrightarrow Z$ leaves I invariant, so that it induces a graded \mathbb{C} -algebra automorphism of A^{\sharp}/I and thus of $\mathbb{C}[\mathbf{W}] = A^{\sharp}/\mathbf{I}^{\sharp}(\mathbf{W}) = A^{\sharp}/\sqrt{I}$. (But we do not know yet what an 'automorphism' of a projective variety should be.)

i) We observe that $\mathbf{W} \cap \mathbf{H}_0 = \mathbf{V}^{\sharp}(XZ - Y^2, YW - X^2, W) = \mathbf{V}^{\sharp}(W, X, Y) = \{[0:0:0:1]\}$. Hence \mathbf{W} either has no irreducible component contained in \mathbf{H}_0 , or $\{[0:0:0:1]\}$ is the only one. We will exclude the latter case by showing (on the fly) that $\{[0:0:0:1]\}$ is contained in a larger closed irreducible subset.

We proceed to examine the affine closed set $\mathbf{W} \cap \mathbb{C}^3 = \mathbf{V}(I')$, where we have $I' = \langle XZ - Y^2, Y - X^2 \rangle = \langle X(Z - X^3), Y - X^2 \rangle \leq A$. Then both $P := \langle Z - X^3, Y - X^2 \rangle \leq A$ and $Q := \langle X, Y - X^2 \rangle = \langle X, Y \rangle \leq A$ divide I'.

ii) We show that P is prime: To this end, we consider the homomorphism of \mathbb{C} -algebras $\varphi^*\colon A/P\to \mathbb{C}[T]\colon X\mapsto T,Y\mapsto T^2,Z\mapsto T^3$, which is well-defined by the definition of P. Moreover, we have a homomorphism of \mathbb{C} -algebras $\psi^*\colon \mathbb{C}[T]\to A/P\colon T\mapsto X$. Then we have $\psi^*(\varphi^*(X))=X$, and $\psi^*(\varphi^*(Y))=X^2=Y$, and $\psi^*(\varphi^*(Z))=X^3=Z$, thus $\varphi^*\psi^*=\mathrm{id}_{A/P}$. Similarly, we get $\varphi^*(\psi^*(T))=T$, thus $\psi^*\varphi^*=\mathrm{id}_{\mathbb{C}[T]}$. This shows that $A/P\cong \mathbb{C}[T]$ is a domain.

Let $V := \mathbf{V}(P) \subseteq \mathbb{C}^3$, which is irreducible. Then φ^* is the comorphism associated with the isomorphism $\varphi \colon \mathbb{C} \to V \colon t \mapsto [t, t^2, t^3]$.

Similarly, $A/Q \cong \mathbb{C}[Z]$ is a domain, hence Q is prime. Let $U := \mathbf{V}(Q) = \{0\} \times \{0\} \times \mathbb{C} \subseteq \mathbb{C}^3$, that is the 'z-axis'; we have the isomorphism $\mathbb{C} \to U : z \mapsto [0,0,z]$.

We show that $P \cap Q = I'$: We have $I' \subseteq P \cap Q$. From $P = \mathbf{I}(V)$ and $Q = \mathbf{I}(U)$ we get $\mathbf{I}(V \cup U) = P \cap Q = PQ$. Since $Y - X^2 \in I'$ we have $PQ = \langle X(Z - X^3) \rangle = \{0\} \leq A/I'$. Thus we infer that $PQ \subseteq I'$, so that $I' = PQ = P \cap Q = \mathbf{I}(V \cup U)$.

Hence we have the decomposition $\mathbf{W} \cap \mathbb{C}^3 = \mathbf{V}(I') = \mathbf{V}(\mathbf{I}(V \cup U)) = V \cup U$ into irreducible components, where $V \cap U = \mathbf{V}(P + Q) = \mathbf{V}(\langle X, Y, Z \rangle) = \{[0, 0, 0]\}.$

Letting $\mathbf{V} := \overline{V} = \mathbf{V}^{\sharp}(P^{\sharp})$ and $\mathbf{U} := \overline{U} = \mathbf{V}^{\sharp}(Q^{\sharp})$ we have the decomposition $\mathbf{W} = \mathbf{V} \cup \mathbf{U} \cup \{[0:0:0:1]\}$ into irreducible closed subsets, where it remains to be decided whether the last piece is redundant. Being homogenisations of prime ideals, both P^{\sharp} and Q^{\sharp} are prime. In order to determine P^{\sharp} and Q^{\sharp} explicitly, we apply homogenisation, recalling that we have to apply homogenisation not only to a generating set of the ideal in question, but to all its elements:

iii) We determine $Q^{\sharp} \subseteq A^{\sharp}$: From $Q = \langle X, Y \rangle = \{Xf + Yg \in A; f, g \in A\} \subseteq A$

we get $Q^{\sharp} = \langle X, Y \rangle \triangleleft A^{\sharp}$. Thus we have

$$\mathbf{U} = (\mathbf{U} \cap \mathbb{C}^3) \dot{\cup} (\mathbf{U} \cap \mathbf{H}_0) = \{ [1 \colon 0 \colon 0 \colon z] \in \mathbf{P}; z \in \mathbb{C} \} \dot{\cup} \{ [0 \colon 0 \colon 0 \colon 1] \},$$

having homogeneous coordinate algebra $\mathbb{C}[\mathbf{U}] = A^{\sharp}/Q^{\sharp} \cong \mathbb{C}[W,Z] = \mathbb{C}[\mathbf{P}^1]$. Indeed we have the homeomorphism $\mathbf{U} \to \mathbf{P}^1 \colon [w \colon 0 \colon 0 \colon z] \mapsto [w \colon z]$. (We are tempted to call it an 'isomorphism', but so far we do not even have a definition of a 'morphism' between projective varieties.)

iv) We proceed to determine $P^{\sharp} \subseteq A^{\sharp}$: We have $\langle YW - X^2, ZW^2 - X^3 \rangle \subseteq P^{\sharp}$. But we have $Z = X^3 = XY \in A/P$ and $Y^2 = X^4 = XZ \in A/P$, which implies that $Z - XY \in P$ and $Y^2 - XZ \in P$. Hence we have $ZW - XY \in P^{\sharp}$ and $Y^2 - XZ \in P^{\sharp}$ as well. Letting

$$J := \langle Y^2 - XZ, ZW - XY, YW - X^2 \rangle \subseteq P^{\sharp} \leq A^{\sharp},$$

we observe that $ZW^2-X^3=XYW-XYW=0\in A^\sharp/J$, making this generator redundant. We guess that we actually have $J=P^\sharp$, and set out to show this:

To this end, we consider the epimorphism of \mathbb{C} -algebras

$$\alpha \colon A^{\sharp} \to \mathbb{C}[S,T]_{3\mathbb{N}_0} := \bigoplus_{d \in \mathbb{N}_0} \mathbb{C}[S,T]_{3d} \colon W \mapsto S^3, X \mapsto S^2T, Y \mapsto ST^2, Z \mapsto T^3.$$

Then we observe that $J \subseteq \ker(\alpha) \subseteq A^{\sharp}$. We show that equality holds:

Since α is a homomorphism of graded algebras, with respect to the grading of $\mathbb{C}[S,T]_{3\mathbb{N}_0}$ indicated above, we infer that $\ker(\alpha) \subseteq A^{\sharp}$ is a homogeneous ideal. Since $J \subseteq A^{\sharp}$ is homogeneous as well, both A^{\sharp}/J and $A^{\sharp}/\ker(\alpha)$ are graded algebras. Thus we have $J = \ker(\alpha)$, if and only if for all $d \geq 0$ we have

$$\dim_{\mathbb{C}}((A^{\sharp})_d/J_d) \leq \dim_{\mathbb{C}}((A^{\sharp})_d/\ker(\alpha)_d) = \dim_{\mathbb{C}}(\mathbb{C}[S,T]_{3d}) = 3d+1.$$

Now $(A^{\sharp}/J)_d$ is generated as a \mathbb{C} -vector space by the cosets of the monomials in A^{\sharp} of degree d. Taking the (**binomial**) generators of J into account, it is immediate that the following cosets suffice:

$$\{W^iZ^j; i+j=d\} \ \dot{\cup} \ \{W^iZ^jX; i+j=d-1\} \ \dot{\cup} \ \{W^iZ^jY; i+j=d-1\}.$$

This set has cardinality (d+1)+2d=3d+1, showing $\dim_{\mathbb{C}}((A^{\sharp})_d/J_d)\leq 3d+1$.

From $J = \ker(\alpha) \leq A^{\sharp}$, since $\mathbb{C}[S,T]_{3\mathbb{N}_0} \subseteq \mathbb{C}[S,T]$ is a domain, we conclude that $J \leq A^{\sharp}$ is prime. Thus $J' = P = (P^{\sharp})'$ yields $\mathbf{V}^{\sharp}(J) = \overline{\mathbf{V}(J')} = \overline{\mathbf{V}(P)} = \overline{\mathbf{V}(P)} = \overline{\mathbf{V}(P^{\sharp})'} = \mathbf{V}^{\sharp}(P^{\sharp}) = \mathbf{V}$, entailing $J = \mathbf{I}^{\sharp}(\mathbf{V}^{\sharp}(J)) = \mathbf{I}^{\sharp}(\mathbf{V}^{\sharp}(P^{\sharp})) = P^{\sharp}$.

From this we get the **twisted cubic** (space curve)

$$\mathbf{V} = (\mathbf{V} \cap \mathbb{C}^3) \dot{\cup} (\mathbf{V} \cap \mathbf{H}_0) = \{ [1:t:t^2:t^3] \in \mathbf{P}; t \in \mathbb{C} \} \dot{\cup} \{ [0:0:0:1] \},$$

having homogeneous coordinate algebra $\mathbb{C}[\mathbf{V}] = A^{\sharp}/P^{\sharp} \cong \mathbb{C}[S,T]_{3\mathbb{N}_0}$.

v) In conclusion, we have $\mathbf{W} = \mathbf{V} \cup \mathbf{U}$, the latter being the irreducible components of \mathbf{W} , where $\mathbf{V} \cap \mathbf{U} = \{[1:0:0:0], [0:0:0:1]\}.$

Moreover, we have $\mathbf{I}^{\sharp}(\mathbf{W}) = \mathbf{I}^{\sharp}(\overline{\mathbf{W} \cap \mathbb{C}^{3}}) = \mathbf{I}(\mathbf{W} \cap \mathbb{C}^{3})^{\sharp} = (I')^{\sharp}$ and $\mathbf{I}^{\sharp}(\mathbf{W}) = \mathbf{I}^{\sharp}(\mathbf{V}) \cap \mathbf{I}^{\sharp}(\mathbf{U}) = P^{\sharp} \cap Q^{\sharp} = P^{\sharp}Q^{\sharp}$, thus we get $(I')^{\sharp} = P^{\sharp} \cap Q^{\sharp} = P^{\sharp}Q^{\sharp}$.

Finally, since $I \subseteq (I')^{\sharp} = P^{\sharp} \cap Q^{\sharp}$, computing in $A^{\sharp}/I = A^{\sharp}/\langle XZ - Y^2, YW - X^2 \rangle$ yields $P^{\sharp}Q^{\sharp} = \langle Y^2 - XZ, ZW - XY, YW - X^2 \rangle \langle X, Y \rangle = \langle ZW - XY \rangle \langle X, Y \rangle \subseteq A^{\sharp}/I$, where $XZW - X^2Y = Y^2W - Y^2W = 0 \in A^{\sharp}/I$ and $YZW - XY^2 = X^2Z - X^2Z = 0 \in A^{\sharp}/I$ yields $P^{\sharp}Q^{\sharp} = \langle XZW - X^2Y, YZW - XY^2 \rangle = \{0\} \subseteq A^{\sharp}/I$. Thus we get $I = (I')^{\sharp} = P^{\sharp} \cap Q^{\sharp} = P^{\sharp}Q^{\sharp} = \mathbf{I}^{\sharp}(\mathbf{W})$.

Remark. A couple of comments concerning part (iv) is in order:

- a) The ideal $\widetilde{J} := \langle YW X^2, ZW^2 X^3 \rangle \leq A^{\sharp}$ encountered as the 'first approximation' of P^{\sharp} is indeed properly contained in P^{\sharp} : We have $\mathbf{V}^{\sharp}(\widetilde{J}) \cap \mathbf{H}_0 = \mathbf{V}^{\sharp}(YW X^2, ZW^2 X^3, W) = \mathbf{V}^{\sharp}(X, W) = \{[0:0:y:z] \in \mathbf{P}; [y:z] \in \mathbf{P}^1\},$ while $\mathbf{V}^{\sharp}(P^{\sharp}) \cap \mathbf{H}_0 = \mathbf{V} \cap \mathbf{H}_0 = \{[0:0:0:1]\}.$ (Recall that $(\widetilde{J})' = P = (P^{\sharp})',$ so that $\mathbf{V}^{\sharp}(\widetilde{J}) \cap \mathbb{C}^3 = \mathbf{V}(P) = \mathbf{V}^{\sharp}(P^{\sharp}) \cap \mathbb{C}^3.$)
- b) In order to avoid a specially tailored argument to determine a generating set of P^{\sharp} from a generating set of P, we may proceed computationally as follows: We compute a Gröbner basis of P with respect to a degree-driven monomial order, then its homogenisation generates P^{\sharp} ; actually it is a Gröbner basis of P^{\sharp} with respect to a certain extension of the given monomial order from \mathcal{X} to \mathcal{X}^{\sharp} . Here, we get $P = \langle Y^2 XZ, XY Z, X^2 Y \rangle \unlhd A$, so that we again obtain $P^{\sharp} = \langle Y^2 XZ, XY ZW, X^2 YW \rangle \unlhd A^{\sharp}$.