Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, **Lecture 17** (26.11.2025)

(17.1) Principal open subsets. We keep the earlier notation. Any principal open subset can be identified (as a set) with an affine closed set (but it remains to be shown that this identification is a homeomorphism):

Let $I := \mathbf{I}_K(\mathbf{V}) \subseteq A$, and let T be an indeterminate. Then for $f \in K[\mathbf{V}] = A/I$ let $\widehat{I}_f := \langle I, fT - 1 \rangle \subseteq A[T]$, and let

$$\widehat{\mathbf{D}}_f := \mathbf{V}_L(\widehat{I}_f) = \{ [v, t] \in \mathbf{V} \times L; f(v) \cdot t = 1 \} \subseteq L^n \times L \cong L^{n+1}.$$

Let $\widehat{\pi} : \mathbf{V} \times L \to \mathbf{V} : [v, t] \mapsto v$ be the natural projection. Then $\widehat{\pi}$ restricts to a bijection $\pi : \widehat{\mathbf{D}}_f \to D_f$, having inverse $\pi^{-1} : D_f \to \widehat{\mathbf{D}}_f : v \mapsto [v, \frac{1}{f(v)}]$.

Moreover, $\widehat{\mathbf{D}}_f \subseteq L^{n+1}$ is affine closed, such that $\mathbf{I}_K(\widehat{\mathbf{D}}_f) = \widehat{I}_f$:

We have $\widehat{I}_f \subseteq \mathbf{I}_K(\widehat{\mathbf{D}}_f)$. To show the converse inclusion, let $0 \neq g = \sum_{i=0}^r g_i T^i \in \mathbf{I}_K(\widehat{\mathbf{D}}_f)$, where $r \geq 0$ and $g_i \in A$, and let $h := \sum_{i=0}^r g_i f^{r-i} \in A$. Then we have

$$f^r g - h = \sum_{i=0}^r (f^r T^i - f^{r-i}) g_i = \sum_{i=0}^r f^{r-i} ((fT)^i - 1) g_i = 0 \in A[T] / \langle fT - 1 \rangle,$$

hence $h \in \mathbf{I}_K(\widehat{\mathbf{D}}_f)$. Thus for $v \in D_f$ we have $h(v) = h(v, \frac{1}{f(v)}) = 0$. Since for $v \in \mathbf{V} \setminus D_f$ we have f(v) = 0, we conclude that $fh \in \mathbf{I}_K(\mathbf{V}) = I$. This entails $f^{r+1}g \in \langle I, fT - 1 \rangle = \widehat{I}_f$, thus $g = (1 - (fT)^{r+1})g + T^{r+1}f^{r+1}g \in \widehat{I}_f$.

Hence, recalling that $A[T]/\langle I \rangle \cong (A/I)[T]$, we have

$$K[\widehat{\mathbf{D}}_f] = A[T]/\widehat{I}_f \cong (A/I)[T]/\langle fT - 1 \rangle = K[\mathbf{V}][T]/\langle fT - 1 \rangle =: K[\mathbf{V}]_f.$$

(We will see later that this indeed coincides with the **localisation** of $K[\mathbf{V}]$ with respect to the multiplicatively closed set $\{f^r \in K[\mathbf{V}]; r \in \mathbb{N}_0\}$.)

(17.2) Regular functions: the affine case. Keeping the above notation, let $U \subseteq \mathbf{V}$ be open. Then the topology induced by the Zariski topology on \mathbf{V} is called the (K-)Zariski topology on U. Then $\{D_f \subseteq U; f \in \mathbf{I}_K(\mathbf{V} \setminus U)\}$ is a basis of the Zariski topology on U.

A function $\varphi \colon U \to L$ is called **regular** at a point $v \in U$, if there are $f, g \in A$, where $g \neq 0$, that is $\frac{f}{g} \in \mathrm{Q}(A) = K(\mathcal{X})$, such that $v \in D_g \subseteq U$ and $\varphi(u) = (\frac{f}{g})(u) := \frac{f(u)}{g(u)}$, for all $u \in D_g$; note that we may indeed assume that $D_g \subseteq U$. Moreover, φ is called **regular** on U, if it is regular at any point of U.

It is immediate that the set $\mathcal{O}_K(U)$ of regular functions on U is a K-algebra. Then U, equipped with the Zariski topology, together with the algebra $\mathcal{O}_K(U)$ of regular functions, is called a **quasi-affine** (K-)variety. If $U = \mathbf{U} \subseteq L^n$ is closed, then \mathbf{U} is called an **affine** (K-)variety. (We will show later that we actually have $\mathcal{O}_K(\mathbf{U}) \cong K[\mathbf{U}]$, so that this coincides with the earlier notion.)

(17.3) Regular functions: the projective case. Keeping the above notation, let $V \subseteq P$ be closed, and let $U \subseteq V$ be open. Then the topology induced by the Zariski topology on V is called the (K-)Zariski topology on U.

For $f \in A^{\sharp}$ homogeneous let $D_f := \mathbf{P} \setminus \mathbf{V}_L^{\sharp}(f) \subseteq \mathbf{P}$, which is open in \mathbf{P} ; in particular, the affine open subsets are given as $D_i = D_{X_i}$, for $i \in \{0, \dots, n\}$. We have $D_f \cap D_0 = D_{fX_0} = D_{f'} \subseteq L^n$, which is open in L^n ; similarly for any D_i . Any D_i is a quasi-compact topological space, having the affine principal open subsets as a basis. Hence $\mathbf{P} = \bigcup_{i=0}^n D_i$ implies that \mathbf{P} is a quasi-compact topological space as well, having the affine principal open subsets as a basis. Thus from $(g^{\sharp})' = g$, for $g \in A$, we conclude that $\{D_f \subseteq \mathbf{P}; f \in A^{\sharp} \text{ homogeneous}\}$ is a basis of the Zariski topology on \mathbf{P} .

Recall that A^{\sharp} does not induce functions on **P**, due to the use of homogeneous coordinates. But A^{\sharp} is a graded domain, so that we may consider its **graded** field of fractions, which is immediately seen to be a field indeed:

$$K(\mathcal{X}^{\sharp})_{0} := \{0\} \dot{\cup} \{\frac{f}{g} \in K(\mathcal{X}^{*}); f, g \in A^{\sharp} \setminus \{0\} \text{ homogeneous, } \deg(f) = \deg(g)\}.$$

Let $0 \neq \frac{f}{g} \in K(\mathcal{X}^{\sharp})_0$ such that $d := \deg(f) = \deg(g)$. Then for $[x_0 \colon \ldots \colon x_n] \in \mathbf{V} \cap D_g$ we have $(\frac{f}{g})(\lambda \cdot [x_0, \ldots, x_n]) = \frac{\lambda^d \cdot f(x_0, \ldots, x_n)}{\lambda^d \cdot g(x_0, \ldots, x_n)} = (\frac{f}{g})(x_0, \ldots, x_n)$, for all $\lambda \in L^*$. Hence $\frac{f}{g}$ indeed induces a function on $\mathbf{V} \cap D_g$. Having this in place:

A function $\varphi \colon U \to L$ is called **regular** at a point $v \in U$, if there is $\frac{f}{g} \in K(\mathcal{X}^{\sharp})_0$ such that $v \in D_g \subseteq U$ and $\varphi(u) = (\frac{f}{g})(u)$, for all $u \in D_g$; note that we may indeed assume that $D_g \subseteq U$. Moreover, φ is called **regular** on U, if it is regular at any point of U.

It is immediate that the set $\mathcal{O}_K(U)$ of regular functions on U is a K-algebra. Then U, equipped with the Zariski topology, together with the algebra $\mathcal{O}_K(U)$ of regular functions, is called a **quasi-projective** (K-)variety. If $U = \mathbf{U} \subseteq \mathbf{P}$ is closed, then \mathbf{U} is called a **projective** (K-)variety. (We will show later that we actually have $\mathcal{O}_K(\mathbf{U}) \cong K$, so that $\mathcal{O}_K(\mathbf{U}) \not\cong K[\mathbf{U}]$; but $\mathcal{O}_K(\mathbf{U})$ does not seem to be too useful either.)