Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, **Lecture 19** (03.12.2025)

(19.1) Examples of sheaves. a) Letting $U \subseteq \mathbb{C}$ be open, with respect to the metric topology, let $\mathcal{H}(U)$ be the set of holomorphic \mathbb{C} -valued functions on U, which is a \mathbb{C} -algebra with respect to pointwise addition and multiplication. This defines a presheaf \mathcal{H} of \mathbb{C} -algebras on \mathbb{C} , whose restriction maps are given by restriction of functions.

Actually, \mathcal{H} is a sheaf: For any $U\subseteq\mathbb{C}$ open, any function on U is uniquely defined by its restrictions to any open covering of U. Conversely, since being holomorphic is defined 'locally', that is on open discs around any point, which form a basis of the metric topology, prescribing compatible holomorphic functions on an open covering of U defines a holomorphic function on U.

- **b)** Let \mathcal{V} be topological space, let $A \neq \emptyset$ be a set and let $0 \in A$.
- i) Then letting $\mathcal{U} \mapsto A$ for $\emptyset \neq \mathcal{U} \subseteq \mathcal{V}$ open, and $\emptyset \mapsto \{0\}$, and restriction maps being given as $\rho_{\mathcal{U}'}^{\mathcal{U}} = \mathrm{id}_A$ for $\emptyset \neq \mathcal{U}' \subseteq \mathcal{U} \subseteq \mathcal{V}$ open, defines a presheaf \mathcal{C}_0 on \mathcal{V} , being called the **constant presheaf** with values in A. (In other words, $\mathcal{C}_0(\mathcal{U})$ can be considered as consisting of the constant maps from \mathcal{U} to A.)

Then C_0 is not necessarily a sheaf: Assume that $|A| \geq 2$, and that \mathcal{V} is **disconnected**, that is there are $\emptyset \neq \mathcal{U}, \mathcal{W} \subseteq \mathcal{V}$ open such that $\mathcal{V} = \mathcal{U} \stackrel{.}{\cup} \mathcal{W}$. Then letting $a \in C_0(\mathcal{U}) = A$ and $b \in C_0(\mathcal{W}) = A$, where $a \neq b$, be sections over \mathcal{U} and \mathcal{W} , respectively, the compatibility condition is trivially fulfilled. But for any global section $c \in C_0(\mathcal{V}) = A$ we get $\rho_{\mathcal{U}}^{\mathcal{V}}(c) = \mathrm{id}_A(c) = c$ and $\rho_{\mathcal{W}}^{\mathcal{V}}(c) = \mathrm{id}_A(c) = c$, thus the prescribed sections cannot be obtained by restriction from a global one.

ii) Let A be equipped with the discrete topology. For $\mathcal{U} \subseteq \mathcal{V}$ open let $\mathcal{C}(\mathcal{U})$ be the set of continuous maps from \mathcal{U} to A. Together with restriction maps being given by restriction of functions this defines a presheaf \mathcal{C} on \mathcal{V} .

Note that, due to A carrying the discrete topology, a map $\varphi \colon \mathcal{U} \to A$ is continuous if and only if $\varphi^{-1}(\{a\}) \subseteq \mathcal{U}$ is open, for all $a \in A$, which in turn is equivalent to φ being **locally constant**, that is any point in \mathcal{U} has an open neighborhood on which φ is constant.

Actually, \mathcal{C} is a sheaf on \mathcal{V} , being called the **(locally) constant sheaf** with values in A: For any $\mathcal{U} \subseteq \mathcal{V}$ open, any function on \mathcal{U} is uniquely defined by its restrictions to any open covering of \mathcal{U} . Conversely, a map $\varphi \colon \mathcal{U} \to A$ is continuous if and only if the preimage of any open subset of A is open in \mathcal{U} . Now a subset of \mathcal{U} is open if and only if all its intersections with some open covering of \mathcal{U} are open. Hence prescribing compatible continuous maps on an open covering of \mathcal{U} defines a continuous map on \mathcal{U} .

(19.2) Localisation. Let R be a ring, and let $S \subseteq R$ be a multiplicatively closed subset, that is $1 \in S$ and for any $f, g \in S$ we have $fg \in S$ as well.

a) Let M be an R-module, and for $f \in R$ let $\rho_M(f) \colon M \to M \colon m \to mf$. An R-module $M_{\mathcal{S}}$ together with a 'natural' R-module homomorphism $\sigma \colon M \to M_{\mathcal{S}}$ is called the **localisation** of M at \mathcal{S} , or the **module of fractions** of M with respect to \mathcal{S} , if it fulfills the following **universal property** in Mod-R: i) The map $\rho_{M_{\mathcal{S}}}(f)$ is bijective for all $f \in \mathcal{S}$, and ii) for any R-module N such that $\rho_N(f)$ is bijective for all $f \in \mathcal{S}$, and any R-module homomorphism $\alpha \colon M \to N$, there is a unique R-module homomorphism $\widehat{\alpha} \colon M_{\mathcal{S}} \to N$ such that $\alpha = \sigma \cdot \widehat{\alpha}$.

It is immediate that the localisation of M at S is unique up to isomorphism of R-modules, if it exists at all. We show that such a localisation indeed exists:

We consider the set $M \times \mathcal{S}$, and the relation \sim given by $[m,f] \sim [m',f']$ if there is $g \in \mathcal{S}$ such that (mf'-m'f)g=0. Then \sim is an equivalence relation indeed: Reflexivity and symmetry are immediate; to show transitivity let $[m,f] \sim [m',f']$ and $[m',f'] \sim [m'',f'']$, hence there are $g,h \in \mathcal{S}$ such that (mf'-m'f)g=0=(m'f''-m''f')h, thus we get $(mf''-m''f)f'gh=mf'f''gh-(mf'-m'f)f''gh-(m'f''-m''f')fgh-m''ff'gh=0 \in M$.

The set of equivalence classes in $M \times \mathcal{S}$ with respect to \sim is denoted by M/\mathcal{S} , and the equivalence class of [m,f] is denoted by $\frac{m}{f} \in M/\mathcal{S}$. Then M/\mathcal{S} becomes an R-module by letting $\frac{m}{f} + \frac{m'}{f'} := \frac{mf' + m'f}{ff'}$ and $\frac{m}{f} \cdot g := \frac{mg}{f}$, for $g \in R$; independence of the choice of representatives is immediately checked. Then $\sigma \colon M \to M/\mathcal{S} \colon m \mapsto \frac{m}{1}$ is an R-module homomorphism. We show that $M \times \mathcal{S}$ together with σ fulfills the required universal property:

Firstly, $\rho_{M/\mathcal{S}}(g) \colon M/\mathcal{S} \to M/\mathcal{S} \colon \frac{m}{f} \mapsto \frac{mg}{f}$ is bijective, for any $g \in \mathcal{S}$, with inverse $M/\mathcal{S} \to M/\mathcal{S} \colon \frac{m}{f} \mapsto \frac{m}{fg}$.

Secondly, let $\alpha \colon M \to N$ be an R-module homomorphism, where $\rho_N(f)$ is bijective for all $f \in \mathcal{S}$. Then, for any R-module homomorphism $\widehat{\alpha} \colon M/\mathcal{S} \to N$ such that $\alpha = \sigma \cdot \widehat{\alpha}$ we have $\widehat{\alpha}(\frac{m}{f}) \cdot f = \widehat{\alpha}(\frac{m}{f} \cdot f) = \widehat{\alpha}(\frac{mf}{f}) = \widehat{\alpha}(\frac{m}{1}) = \alpha(m) \in N$, so that $\widehat{\alpha}(\frac{m}{f}) = \alpha(m) \cdot \rho_N(f)^{-1} \in N$, for $f \in \mathcal{S}$. Thus $\widehat{\alpha}$ is unique, if it exists at all. Now it is immediately checked that the latter formula indeed defines an R-module homomorphism $\widehat{\alpha}$ as desired.

b) In particular, for the regular R-module we get the **localisation** $R_{\mathcal{S}}$ of R at \mathcal{S} , or the **ring of fractions** of R with respect to \mathcal{S} . Indeed $R_{\mathcal{S}}$ becomes a ring, by letting $\frac{g}{f} \cdot \frac{g'}{f'} := \frac{gg'}{ff'}$, as is immediately checked.

Then $R_{\mathcal{S}}$ has the following universal property in the category of (commutative unital) rings: i) $\frac{f}{1} \in R_{\mathcal{S}}$ is a unit, for all $f \in \mathcal{S}$, and ii) for any ring homomorphism $\alpha \colon R \to T$, such that $\alpha(f) \in T$ is a unit for $f \in \mathcal{S}$, there is a unique ring homomorphism $\widehat{\alpha} \colon R_{\mathcal{S}} \to T$ such that $\alpha = \sigma \cdot \widehat{\alpha}$.

Indeed, firstly, $\rho_{R_{\mathcal{S}}}(f)$ being bijective, thus having inverse $\rho_{R_{\mathcal{S}}}(\frac{1}{f})$, is equivalent to saying that $\sigma(f) = \frac{f}{1} \in R_{\mathcal{S}}$ is a unit. Secondly, considering T as an R-module via α , the universal property of $R_{\mathcal{S}}$ as an R-module implies the existence of a unique R-module homomorphism $\widehat{\alpha}$ as desired; then it immediately checked that $\widehat{\alpha}$ even is a ring homomorphism.

In combination, since $\frac{f}{1} \in R_{\mathcal{S}}$ is a unit, for any $R_{\mathcal{S}}$ -module N the map $\rho_N(f)$ is bijective, having inverse $\rho_N(\frac{1}{f})$. Conversely, if $\rho_M(f)$ is bijective for all $f \in \mathcal{S}$, then M becomes an $R_{\mathcal{S}}$ -module by letting $m \cdot \frac{g}{f} := \rho_M(f)^{-1}(mg)$, as is immediately checked. In particular, the localisation $M_{\mathcal{S}}$ becomes an $R_{\mathcal{S}}$ -module by letting $\frac{m}{h} \cdot \frac{g}{f} := \frac{mg}{fh}$; thus $M_{\mathcal{S}}$ is generated by $\sigma(M)$ as an $R_{\mathcal{S}}$ -module.