Computer algebra
Friedrich-Schiller-Universitat Jena, SS 2005

Jurgen Miiller

Contents

1 Computational complexity L. 1
2 Integer arithmetic 0oL 5
3 Fast Fourier transform 10
4 Resultants 18
5 Lattice base reduction Lo oo 31
6 Polynomial factorization over finite fields 39
7 Polynomial factorization over the integers 47
8 Exercises (in German) 55
9 References 66

1 Computational complexity

We introduce the standard model of algorithmic computing, namely performing
operations on finite strings of symbols out of a finite alphabet, which are thought
of as being written onto an infinite tape, using a machine running back and forth
on the tape, reading and writing symbols according to a specified program.

By Church’s Hypothesis this idea precisely covers the intuitive notion of
algorithmic computability. One of the early occurrences of this type of questions
is Hilbert’s 10th problem on the decidability of the solubility of Diophantine
equations, see [6]; it was solved to the negative by Matijasevich (1972).

(1.1) Definition. An alphabet is a finite set X # (. The free monoid X* :=
Unen, A" is called the set of words over X. A subset £ C X™* is called a
(formal) language. For w € X™ let [(w) = n € Ny be the length of w. We
have X0 = {e}, where € is the empty word.

(1.2) Definition. See [16].

A (deterministic) Turing machine over an alphabet X is a triple 7 :=
[X UY,S, 7], where Y is a working alphabet, in particular containing a blank
symbol _ €). an accepting symbol 1, a rejecting symbol 0, and a failure
symbol (). Moreover, S is a finite set of states, in particular containing an initial
state sg and a halting state s.., and there is the transition function

T (X UY) % (S\ {500}) — (X UY) x {—, 1,5} x S.

T acts on the set (XY UY)* x S x (X U Y)* of configurations as follows: The
initial configurations are given as [_, sg, u], where u € X* is called an input;
an input of several u1,...,u, € X* is encoded as u;_us_..._u, € (X UY)*.

Let [v,s,w] be a configuration, where s € S\ {sa0}. If € £ v,w € (X U Y)*, let

v—vxandw—yw where z,y € X U Y; if v =¢, let v/ := € and = := _; if
w=¢, let w' : =€ and y := _. Then 7 induces the transition
[v, ¢, 2w, if7r(y,s)=1[z71,51
[v,8,w] — < [vz, &, W', if r(y,s) = [z,—, 5],
[, &, xzw], ifT(y,s)=[z,,5]

For a configuration [v, s, w] no transition is defined and 7 halts. We assume
that for all inputs leading to such a halting configuration we are in one and
the same of the following cases, depending on whether we consider decision
problems or function problems: Either we have w € 1(X U Y)* or w €
0(X U Y)*, i. e. T accepts or rejects the input, respectively; or we have
w € PX UY)* orw € w_(X UY)*, where w € X* i. e. T fails or outputs
w'.

(1.3) Example. Let X := {1} and S := {50, 1,5}, and let 7 be given by
the following transition function 7:

R 1 |
so || [L—s1] [1,—,s0]
S1 [_7_)7800] [17<_781]

Hence e. g. upon input 11 € X2 we obtain:

sl = __sofl_ o~ __1[se] _ =
sl e sl e [si] 111 e s U1,

and for € € X9 we obtain:

By Sy R e

Thus it is easily seen that 7 computes the successor function Ng — N: n — n+1,
where Ny is given in unary encoding. For the successor function in binary
encoding, see Exercise (8.1).

(1.4) Definition. a) A language £ C X* is called decidable (recursive),
if there is a Turing machine 7 deciding L, i. e. 7 halts for all w € X*, and
accepts w if and only if w € £, otherwise rejects w.

A language £ C X* is called recursively enumerable, if there is a Turing
machine 7 accepting L, i. e. 7 halts for w € X'* if and only if w € L.

Note that if £ is decidable, then it is recursively enumerable: Let 7 decide L,
then 7" accepting L is a copy of 7, except that whenever 7 rejects an input,
then 7" enters an infinite loop.

b) A Turing machine 7 deciding a language £ C X* is called to run in time
F{N,N+1,...} — Ry, if 7 halts after at most f(I(w)) transitions, for all
w € X* such that {(w) > N. The complexity class TIME(f) C Pot(X™) is
the set of all languages being decidable in time f.

In particular, we have the complexity class P := (J, oy TIME(n +— n*) of lan-
guages being decidable in polynomial time, and the complexity class EXP :=
Uren TIME(n — c"k) of languages being decidable in exponential time, where
¢ > 1; note that this does not depend on the choice of ¢ > 1.

(1.5) Definition. a) A non-deterministic Turing machine over an alpha-
bet X is a triple 7 := [X U Y, S, 7], where X U Y and S are as in (1.2), while
the transition function

7 (X UY) x (S {500}) — Pot ((XUJ)) x {1, =} ><S)

allows for choices and thus branching. Let the non-determinateness be
defined as dr := max{|7(z,s)|;z € X UY,s € S\ {sx}} € N. The machine

7T halts if no further transition in either branch is possible. We assume that
for all inputs 7 on halting either accepts or rejects, or outputs; for acceptance,
rejection or the output one of the branches is chosen randomly.

b) A language £ C X'* is called non-deterministically decidable, if there is
a non-deterministic Turing machine 7 deciding £, i. e. 7 halts for all w € X,
and we have w € L if and only if there is a branch accepting w, otherwise
all branches reject w; note the asymmetry in the treatment of acceptance and
rejection. The complexity class NTIME(f) is the set of all languages being
non-deterministically decidable in time f.

In particular, we have the complexity class NP := [, .y NTIME(n = n*) of lan-
guages being decidable in non-deterministic polynomial time. Let coNP be
the complexity class of languages £ C X* such that (X*\ L) € NP. Analogously,
let coP be the complexity class of languages £ C X* such that (X*\ £) € P.
Obviously we have coP = P C NP N coNP.

The most outstanding open problem of computational complexity theory is the
Conjecture: We have P # NP and NP # coNP as well as P #£ NP N coNP.

(1.6) Proposition. We have NTIME(f) C .., TIME(n — /(™). Thus in
particular we have NP C EXP.

Proof. See [13, Thm.2.6] or Exercise (8.3). i

(1.7) Proposition. Given a language £L C X*, where |X| > 2, then we have
L € NP if and only if there is a relation R C X* x X* such that:

i) We have £ = {w € X*;[w,v] € R for some v € X*}.

ii) There is k¥ € N such that [(v) < I(w), for all [w,v] € R.

iii) Letting L := {w_v;[w,v] € R} C X*_X"*, we have L € P.

Given w € L, an element v € X'* such that [w,v] € R is called a polynomial
certificate for w.

Proof. Let R be as in the assertion. Then L is decided by a non-deterministic
Turing machine, which for w € A'* first finds a certificate v € A* of polynomial
length I(v) < I(w)*, hence in polynomial time, and then decides in polynomial
time whether [w,v] € R. Hence we have £ € NP.

Conversely, let £ € NP be decided by the non-deterministic Turing machine 7,
running in polynomial time and having non-determinateness d7. Each finite
sequence choices of 7 can be encoded dz-adically into an element of Ny, and
hence |X|-adically into an element of X*. Thus we define R C X* x X* by
letting [w,v] € R if and only if v € X* is the encoding of a sequence of choices
of an accepting computation for w € X*. Hence by construction of R we have
i) and ii). Moreover, for w_v it can be checked in linear time whether v indeed
encodes an accepting computation for w, hence we also have iii). i

(1.8) Definition. a) A (one-sided) Monte-Carlo machine for a language
L C X* is a non-deterministic Turing machine 7 halting for all w € X™*, having
an error bound 0 < ¢ < 1 such that 7 accepts w € £ in at least a fraction of
€ of the branches, while 7 rejects w ¢ L in all branches.

Hence acceptance is correct, but rejection might be incorrect with an error
probability 1 — e. Note that we may fix an error bound 0 < ¢y < 1 a priorly: If
€ < €g, then 7 is repeated k times, until (1 —€)* < (1 — €).

b) The complexity class RP of languages being decidable in randomized poly-
nomial time is the set of languages possessing a Monte-Carlo machine running
in polynomial time. Hence we have P C RP C NP.

Let coRP be the complexity class of languages £ C X* such that (X*\ £) € RP.
Let ZPP := RP N coRP be the complexity class of languages being decidable in
randomized polynomial time with zero probability error:

For £ € ZPP let 7' and 7" be Monte-Carlo machines for £ and X* \ L, re-
spectively, both with error bound 0 < € < 1. A Las-Vegas machine for L is a
non-deterministic Turing machine 7 defined as follows: 7 runs both 7’ and 7",
if 7" accepts then 7T accepts, if 7" accepts then 7 rejects, and otherwise repeats
this. Hence it is not guaranteed that 7 halts, but if it halts then the answer is
correct. Moreover, 7 halts after at most k repetitions with a probability of at
least 1 — (1 — ¢€)*.

c) The complexity class BPP of languages being decidable in polynomial time
with bounded probability error is the set of languages possessing a non-
deterministic Turing machine 7, called a two-sided Monte-Carlo machine,
running in polynomial time halting for all w € &A™, having an error bound
% < e < 1 such that 7 accepts w € L in at least a fraction of € of the branches,
and 7 rejects w € L in at least a fraction of € of the branches.

Note that we may fix an error bound % < €y < 1 a priorly, by running 7

repeatedly, k times say, and accepting an input if and only if it is accepted

by a strict majority of the runs. This is seen as follows: The i-th run of 7

on w € L is considered as a random variable X; assuming the values 1 and 0

with probability € and 1 — ¢, respectively. Letting X := Zle X; be the sum
k

of the independent random variable X;, rejection is equivalent to X < 3, or

equivalently Zle(l — X;) = k—X > % note that E(1 — X;) = 1 —e. Let
¥ :=min{1, %}, hence 0 < 9 < 1; note that 22&:1) > 1 if and only if € > %.
This yields (149)(1—¢€) < 3, and thus by Chernoff’s bound, see Exercise (8.4),

we have Pk — X > 4] < Pk — X > (1 +9)(1 — e)k] < e=37*(1-9% Hence we
have Plk — X > %] < 1 — ¢y whenever k > %

Finally, we have BPP = coBPP and RP U coRP C BPP, while it is conjectured
that BPP € NP holds.

(1.9) Definition. a) Let X be an alphabet and let R C X* x X* be a relation.
The function problem associated to R is, given w € X*, find a solution

v € X* such that [w,v] € R, if such a v exists at all, otherwise report failure.
A Turing machine 7 solves the function problem R, if 7 halts for all w € X,
and outputs a solution, if any solution exists at all, and fails otherwise.

There are straightforward notions of running time and complexity classes. More-
over, this immediately generalizes to non-deterministic Turing machines, and
there is a straightforward notion of Mlonte-Carlo machines for function prob-
lems. Note that the latter are usually called Las-Vegas machines for function
problems, which does not seem appropriate, since the straightforward notion of
Las-Vegas machines does not make sense.

b) The function problems associated to £ € NP are the function problems
associated to the polynomial certificate relations R for £. Let FNP be the com-
plexity class of function problems associated to languages in NP. In particular,
function problems in FNP are solvable by non-deterministic Turing machines
running in polynomial time. Let FP C FNP be the complexity class of function
problems being solvable by Turing machines running in polynomial time; it is
conjectured that FP £ FNP holds.

c) A language £ C X* reduces in polynomial time to a language £’ C X*,
if there is a function problem in FP, associated to a relation R C X* x X*, such
that for all w € X'* there is v € X* such that [w,v] € R, i. e. failure does not
occur, and for all [w,v] € R we have w € L if and only if v € L.

A Turing machine deciding £’ is called an oracle for £. Languages £ and £’
are called polynomial time equivalent, if £ reduces in polynomial time to
L' and vice versa. Given a complexity class C of languages, £ € C is called C-
complete if each £ € C reduces in polynomial time to £’. Given a complexity
class C of languages, a function problem is called C-hard if each £ € C reduces
in polynomial time to that function problem.

2 Integer arithmetic

(2.1) Definition. Let D C Ny such that {N,N+1,...} C D for some N € Ny,
and let f: D — R be an eventually positive function, i. e. we have f(n) > 0
for all n > N.

Let O(f) be the set of eventually positive functions g: D — R such that the
sequence [%;n > N] C Ry is bounded. Let o(f) be the set of eventually
positive functions g: D — R such that lim,,_, o, % = 0; hence g € O(f). These
symbols are also called Landau symbols.

Let g: D — R be an eventually positive function. Then the functions g and
f are called asymptotically equivalent g ~ f, if lim,_ % = 1; hence

f € 0(g) and g € O(f).

For h: R — R let h(O(f)) := {hog: D — R;g € O(f)} and h(o(f)) :=
{hog: D — R;g € o(f)}. Moreover, we use a straightforwardly generalized

notation for functions in several variables, or for functions defined on subsets of
R unbounded to the right.

E. g. we have Stirling’s formula lim,,_, o, nn”'\;;r_n =1, see [5, Formula 96.2], and

thus n! ~ (2)"-v/2mn. Hence we have In(n!) ~ n(In(n) —1)+ 3 -In(n) +In(v/27),
and thus In(n!) ~ nln(n).

E. g. letting w(n) := |{p € N;p < n,p prime}| € Ny, for n € N, by the Prime
Number Theorem, see [4, Ch.22], we have m(n) ~ TR

(2.2) Definition. The number of digits to the base 1 # z € N necessary
to represent n = Z?:o n;z* € N, where n; € {0,...,z — 1}, is given as the
bit length b,(n) := 1+b =1+ |log,(n)] = 1+ H?}EZ;J, where || denote
lower Gaussian brackets. Note that for n € Z we only need an additional
sign. Hence for the input length of n € Z into a Turing machine we have

1+ b.(Jn]) € O(In(n)).

The computational complexity of integer arithmetic is counted in bit opera-
tions, i. e. and, or, exclusive or, not and shift on bit strings, hence for the base
z = 2. More generally, typical generalized bit operations could be Byte op-
erations, word operations and long word operations with respect to the
bases z = 28, z = 232 and z = 2%, respectively. Using multiple string Turing
machines, see Exercise (8.2), it is easily seen that the time needed for these
operations indeed is polynomial in the input length 1+ b.(|n|).

Hence we treat bit operations as oracles. An algorithm using integer arithmetic,
whose input up to signisn € N, is called an L, .~time algorithm, for 0 < a <1
and ¢ > 0, if it needs Ly := O(ecn(m) (In(n(m)' ™) pit operations. Hence
for &« = 0 we have L, . = O(In°(n)), thus the algorithm runs in polynomial
time with respect to bit operations, and thus is a polynomial time algorithm.
Moreover, for a = 1 we have L, . = O(e¢™(")) = O(n®), thus the algorithm runs
in exponential time with respect to bit operations, and thus is a exponential time
algorithm. Finally, for 0 < o < 1 we have cz®In'"%(z) € o(z), see Exercise
(8.5), thus the algorithm runs in subexponential time with respect to bit
operations, i. e. it needs O(eh(ln(”))) bit operations, for some eventually positive
function h(z) € o(x).

(2.3) Algorithm: Ring operations.

These in general are addition, subtraction and multiplication, as well as division
by units; the latter of course do not play a role for integers.

a) Addition is described as follows: Let n > m € N and b := b,(n), for some

b—1 1

R Ul i o _ j
1 # z € N. Hence we have n = 3 /" n;2", and we may assume m = > _._,m;2,

by letting m; := 0 for j € {b,(m),...,b—1}:

1.6 0.

2. forke[0,...,b—1] do
Sp— N +mg+0

if s, > 2 then
S < S — 2
61
else § — 0
3. Sb<—(5
4. return [sg,. .., Sp]

Hence we have n+m = ZZ:O s12%. For each k this needs a fixed number of bit
operations, and hence needs O(b,(n)) = O(In(n)) bit operations. For subtrac-
tion see Exercise (8.7); again this needs O(max{b,(n),b,(m)}) bit operations.

b) Multiplication is described as follows: Let m,m € N and b, := b.(n)
as well as b, := b,(m). Hence we have nm = Zf;al Z?Tz”glnimjz”j =

bp+bpy,—1 (Zmin{bnfl,k)}
k=0 l=max{0,k—by,+1}

1. forkel0,...,b, + b, —1] do s — 0
2. forie0,...,b, —1] do
00
for j €[0,...,by, — 1] do
s 8sipjtnmj+d FHFs=(s modz)+[I] 2
Siy; < s mod z

nymy,_;) - 2F. Using the former formula yields:

S
6 — 2]
Sitby, < O
3. return [Sg, ..., Sb, +by,—1]
bpn+bm—1 k . C .
Hence we have nm = >~," siz". For each i and j this needs a fixed number

of bit operations, thus needs O(b,(n)b.(m)) = O(In(n) In(m)) bit operations.

(2.4) Algorithm: Karatsuba (1962).

Let k € Ng and b = 2%, as well as 1 # z € N and m,n € N such that m,n < 2°,
hence we have b, (m),b.(n) < b. Let m = m’ - 23 +m” and n = n’ - 28 +n”,
where 0 < m/,m”,n’,n" < z5. Then we have m-n = m/'n/z® + (m'n" +m/n’) -
2% +m/n”, where m'n” +m'n’ = m/n’ +m’n" + (m' —m")(n" —n’), and in

particular |m’ —m”|,|n’ —n”| < z%. Let K(m,n,b) be defined as follows:

1. if b =1 then return mn

2. if b>1 then
r<—K(m'7n'7%)
s<—K(m”,n”,%)

t— K(|m’ _m//|,|n1_n// 7%)

3. return rzP + (r+s£t) 2% +s

Hence by induction with respect to b € N we have K(m,n,b) = mn. We
show that this divide and conquer technique needs O(b'°2(3)) bit opera-
tions. Since we may assume that n > m and % < b,(n) < b, this amounts to

O((21n(n))'°823)) = O((In(n))'*#2(3)) bit operations; note that log,(3) < 13

Let x(b) € N be the number of bit operations needed to compute K(-,-,b).

Then we have £(1) = 1, and for b > 1 we have 3 calls of K(-,-,2) as well as
additions and shifts, thus r(b) = 3k(2) + ~b, for some v > 0. By induction we
got £(b) = 3 k(L) + b SFTHE) = 8k 442k BT gk oy (3K -
2F) = (29 + 1) - 38 — 42F+1. Hence we have x(b) € O(3F) = O(3"&() =
O((210g2(3))108§2(b)) — O(blogz(?’)).

v

(2.5) Algorithm: Quotient and remainder.

Let m > n € N, hence there are unique ¢, € Ny such that r < n and m = gn+r.
Note that in particular to compute in the ring Z/(n) we need the computation
of remainders.

Let V' := b,(m) and b" := b,(n), for some 1 # z € N. Replacing [m,n| by a
suitable multiple [km, kn|, for some 1 < k < z, we may assume that ny/_; >
| 5]. Moreover, after replacing n by nz! for some | € Ny, i. e. after a suitable
shift, we may assume that we have b,(n) = b and b,(m) € {b,b+ 1}, where
be {b' b +1}. To compute g, we compute ¢’ := mln{L%J z—1}. We
show that ¢/ —2 < ¢q < ¢’

We have ny_1¢' > mpz+mp—1 — (np—1—1). Hence m—¢'n < m—¢’ nb 12 <
m — (mpz + mp_1)2°7 1 4+ (1 — 1)2°7F = (g — 1)1 + Z; OmjzJ <
np—12°~1 < n. As we have ¢ < z — 1 anyway, we conclude ¢ < ¢’. Moreover, we
have ¢’ < e :’:b,l < —T=randq=|7| > T —1. Assume to the contrary that
3<¢ —q< 5= —(%—1) = %—1—1 Thus we have ™ > 2-(ny_1 — 1),
and hence z =4 >¢ -3 >q=[T]|>2-(np_1 —1) > 2z — 3, a contradiction.
Thus ¢’ — 2 < gq. i

Computing [km, kn] needs O(b’) bit operations, the shifts need O(b” (b' —b")) bit
operations. To compute the quotient ¢ at most 3 trials are necessary, as b,(¢’) =
1 the trial multiplication to compute ¢'n needs O(b) = O(b’) bit operations, and
the addition r := m — gn as well needs O(b’) bit operations. This amounts to
O(max{t/,b" (b’ —b")}) bit operations, where b”(b" — ") > &’ whenever b’ > b";
as m > n this hence needs O(In(m) In(n)) € O(In*(m)) bit operations.

(2.6) Algorithm: Binary modular exponentiation.
Let e,n € Nand m € {0,...,n — 1}.

l.r«1
2. while e > 0 do
if 1 = emod 2 then » < rm mod n

e—[5].
m «— m? mod n.

3. return r.

Using the binary representation of e € N shows that » € {0,...,n — 1} such
that » = m® mod n. Moreover, as ba(e) € O(ln(e)) and both multiplication
and computing remainders need O(In*(n)) bit operations, we need O(In(e) -

In?(n)) bit operations; note that the classical exponentiation algorithm needs
O(e - In?(n)) bit operations, and hence needs exponential time.

(2.7) Algorithm: Extended Euclidean algorithm.
Let m,n € N.

1. To < m, S()<—]., t0<—0
2. T <N, 81<—0, tlFl
3.0 1
4. while r; # 0 do

Tit1 < Ti—1 mod T

q; — L”r—’lj # quotient and remainder

Si+1 < Si—1 — ¢;iS;

tit1 < i1 — qity

1—1+1
5. return [7‘1'_1, Si—1, ti—l]
We have rg = sym +ton and r1 = sym+t1n, and by induction on ¢ > 1 we have
Tiv1 = ric1—qirs = (Si—1m—+ti_1n)—q;-(ssm~+t;n) = s;.1m—+t;1n. As we have
r; < r;—1 for all ¢ > 1, the algorithm halts, after step i := [4+ 1 say, returning
[r1,s1,t1]) =: [d, s,t]. The number [of steps needed is discussed in Exercise (8.10).
Thus we have d = sm + tn, and hence ged(m,n) | d. Conversely, running the
algorithm reversely shows that d | r; for all ¢ > 0, hence d | m,n and thus
d | ged(m,n). Thus [d,s,t] C Z such that 0 < d = ged(m,n) = sm + tn; the
elements s,t € Z are called Bezout coefficients. Note that the computation
of the coeflicients s; and t; can be left out, the remaining algorithm is called the
Euclidean algorithm.

Let 1 # z € N. For ¢ € {1,...,1} we need O(b,(r;)b.(g;)) bit operations
to compute [g;,7;]. As by(g;) = 1+ [log,(¢;)], we have O(Zﬁ:1 b.(q:)) =
O(bz(l_[é:1 qi)) € O(by(ro)). Hence computing the quotients and remainders
needs O(X_, b.(ri)b-(g5)) € O(b(r1) - Sy b2(ai)) € O(ba(r4)b(ro) bt op-
erations. To compute the linear combination needs O(Zézl b.(q:)b.(s;)) bit op-
erations, where in turn b,(s;) € O(b;(si—1) + b.(gi—1)), hence we have b.(s;) €
O(Z;;ll b.(g;)), yielding O(Zizl 22;11 b.(qi)b.(g;)) bit operations. As above
we from this obtain O(325_) Y2, b=(4)b=(4:)) C O()7 ba(a;)ba(rs) €
O(b.(r1) - Zé;ll b.(g;)) € O(b(r1)b.(ro)) bit operations. Thus this needs
O(b(r1)bs(r9)) = O(b,(m)by(n)) bit operations; if m > n this hence needs
O(In*(m)) bit operations.

(2.8) Remark: Polynomial arithmetic.

Let R be a commutative ring and let R[X] be the polynomial ring over R in the
indeterminate X. For 0 # f = Z?:o fiX'" € R[X], where f; € Rand f; # 0, let
deg(f) := d denote its degree. The computational complexity of polynomial
arithmetic is usually measured in ring operations in R, related to the degrees of
the polynomials in R[X] involved. Hence in general this is not directly related

10

to the number of bit operations needed, since coefficient growth in R has to
be taken into account, e. g. for R = Z; it directly relates to the number of bit
operations needed in the case of a finite ring R, e. g. for Z/(n) or for finite
fields ;. The algorithms for integer arithmetic straightforwardly generalize to
polynomial arithmetic by letting z := X, and even have a tendency to become
slightly easier, see Exercise (8.16):

Let 0 # f,g € R[X], where deg(f) > deg(g). Addition f + g and subtraction
f — g need O(deg(f)) ring operations, while multiplication f - g, using the
classical technique, needs O(deg(f)?) ring operations. The Karatsuba algorithm
generalizes to multiplication f - g, where deg(f),deg(g) < 2* for some k € Ny;
hence if deg(f) > deg(g) it needs O(deg(f)'°%2(3)) ring operations. Given e € N
and assuming deg(f) < deg(g), to compute r € R[X] such that » = 0 or
deg(r) < deg(g), and f¢ =r mod g, needs O(In(e) - deg(g)?) ring operations.

Let 0 # g € R[X] such that its leading coefficient lc(g) := gqeg(g) € R* is a unit
in R. Hence for f € R[X] there exist unique ¢, € R[X] such that » = 0 or
deg(r) < deg(g), fulfilling f = qg + r. We may assume deg(f) > deg(g), hence
to compute [¢,7] C R[X] needs O(deg(f) - (deg(f) —deg(g))) € O(deg(f)?) ring
operations in I; note that only gqeg(y) € I2* has to be inverted, and that q can be
computed without guessing. Finally, R[X] is Euclidean if and only if R is a field;
in this case the extended Euclidean algorithm generalizes to 0 # f,g € R[X],
and needs O(deg(f) - deg(g)) ring operations.

3 Fast Fourier transform

(3.1) Definition. Let R be a commutative ring and let n € N. An element
w € Ris called a primitive n-th root of unity, if w™ = 1 and w* — 1 is neither
0 nor a zero-divisor in R, for all k € {1,...,n—1}.

Note that w € R*, and if R is an integral domain, then the condition on w* — 1
amounts to w® # 1, forall k € {1,....,n —1}. E. g. (, := 5 € C is the
standard primitive n-th root of unity in C. E. g. if ¢ € N is a prime power,
then by Artin’s Theorem we have F;; = Z/(q— 1), which has an element of order
n if and only if n | ¢ — 1, thus the finite field F, has a primitive n-th root of
unity if and only if n | ¢ — 1.

E. g. the ring (Z/(8)) does not have primitive square roots of unity: We have
(Z/(8))* = {£1,£3} = (Z/(2))?, hence for all 1 # u € (Z/(8))* we have u? = 1,
but v — 1 is a zero-divisor.

(3.2) Lemma. Let R be a commutative ring and let n € N.

a) Let w € R such that w™ =1 and w? — 1 is neither 0 nor a zero-divisor, for
all prime divisors p | n. Then w is a primitive n-th root of unity.

b) Let w € R be a primitive n-th root of unity, let k € {1,...,n — 1} and

m = m € N. Then w* is a primitive m-th root of unity; in particular w=!

is a primitive n-th root of unity. Finally, we have Z?;OI wt = 0.

11

Proof. Recall that X? — 1= (X® — 1)- 2" X% € R[X], foralla | b€ N.
a) We have to show that w* — 1 is neither 0 nor a zero-divisor, for all k €
{1,...,n —1}: Let d := ged(k,n) = xk + yn € N, for suitable z,y € Z. Thus
we have d <n and d | n, hence there is a prime divisor p | n such that d | 7.
Hence we have w® —1 | w™ —1 = w® ¥ _1 =4 1 | w? —1, and since the
latter is neither 0 nor a zero-divisor, this also holds for the former.

b) From n | gcdk(z oy = km we have (wk)™ = 1. Assume that (w*)? —1is 0
or a zero-divisor for some j € {1,...,m — 1}, then we have n | kj, hence m =

m | 4, a contradiction. Finally, we have (w* — 1)-2?;01 wk = wkn —1 =0,

. o .. -1
and since w® — 1 is neither 0 nor a zero-divisor we conclude Y i w™* = 0.

(3.3) Definition. Let R be a commutative ring and let n € N. Note that R™
becomes an R-algebra by componentwise addition and multiplication.

a) Let R[X]., := {f = Z?:_Ol fiX" € R[X];deg(f) < n} U {0}. Hence we
have an isomorphism of free R-modules k: R® — R[X|<n: [fo,..., faz1] —

E?:_Ol fiX*%. Moreover, we have the natural isomorphism of free R-modules
v: R X]<n, — R[X]/(X™ — 1); note that X™ — 1 is monic. The R-algebra
structure of R[X]/(X™ — 1) is transported back to R™ via v as follows:

For f = Y1) fiX" and g = 3" g; X7 let h = Y13 e X* € R[X]<, such
that fg = h mod (X™—1). Then we have fg = Z?;Ol Z;Z(} fig; X7, and thus
computing mod(X"™ — 1) yields hy := 37, iy 10q » fig;. We write fxg =
h € R[X]|<n as well as [fo, .-, fa—1]*[g0,- - - gn-1] := [ho, .- ., An_1], called the
associated (positive) wrapped convolution on R[X]., and R™, respectively.
Note that if deg(f) + deg(g) < n, then we have f x g = fg.

b) Let w € R be a primitive n-th root of unity. Then the concatenation
dp: R™ — R™ of k: R™ — R[X].,, and the n-point evaluation map R[X]., —
R™: f [f(wY),..., f(w"1)] is called the discrete Fourier transform: We
have 8, [fo, ..., fa—1] — S0 fiwh) G € {0, n=1Y] = [fo, -, fo1]-Au,
where A, 1= [w";4,7 €{0,...,n—1}];; € R™*™.

To evaluate f = Z?:_Ol fiX? € R[X]<, for an arbitrary argument w € R, we
use the Horner scheme:

1. s<0

2. forien—1,n—2,...,00do s —s-w+ f;

3. return s

Hence we have s = f(w), needing O(n) ring operations. Thus to compute
[fo,- s fn1]d. classically, we have to evaluate f = S°7—' fi X for the n argu-
ments w,...,w" "1, where each evaluation needs O(n) ring operations, hence
amounting to O(n?) ring operations. We can do better than that:

(3.4) Algorithm: Fast Fourier transform (FFT), Cooley-Tukey (1965).
Let n € N be even, let w € R be a primitive n-th root of unity, and let f =

12

Z?;Ol fiX* € R[X]<,. Then there are ¢,r, ¢ .1’ € R[X]<» such that f =
q- (X2 —1)+r =¢q (X2 +1)+7. Letting f = f' - X2 + f”, where
fr= Y2 fapXt € R[X]en and f7 = Y2, fiX' € R[X]<s, we have
f=(f"+f)=f (X% —=1), hence f = f"+ f mod (X% — 1), thus r = f" + f’,
and similarly f — (f” — f') = /(X% + 1), hence f = f” — f' mod (X% + 1),
thus ' = f"” — f'.

From 0 = w"—1 = (w? —1)(w? +1), since w? —1 is neither 0 nor a zero-divisor,
we conclude w? = —1. Hence for k € {0,..., 2 — 1} we find f(w?*) = g(w?*) -
(WP)F — 1)+ r(@?) = g™ - @A = 1) 4 1) = (™) and fPFH) =
q/(w2k+1) . ((w2k+1)% +1) _|_7,/(w2k+1) _ q'(w2k+1) . ((wnkw% +1) +r1(w2k+1) _
' (WHH) = /(- w?*) = " (w?*), where 7"(X) :=r'(wX) € R[X]<z.

Let I € Ng and n = 2%, let w € R be a primitive 2!-th root of unity, and let
F(f,w,n) be defined as follows:
1. if n =1 then return [fo]

e Z?:Bl(fi + fgﬂ')Xi
e D5 (- fpre X
[T0, 72,y Tn_o] — F(r,w?, 2
11,73,y Tn_1] — F(r" w?
return [ro, ..., Tp—1]

)
2)

o w N

Hence we have F(f,w,n) = [fo,..., fn_1]0.; note that w? is a primitive 5-th
root of unity, for n > 1. Let xk(n) € N be the number of ring operations needed
to compute F(-,-,n). Hence we have (1) = 1, and for n > 1 we have 2 calls
of F(-,-, %), as well as O(n) ring operations to compute r and 7. Hence we
have k(n) = 2k(%5) + yn, for some v > 0. Thus by induction we find x(n) =
26(%)+yn = 2(26(2)+ 5)+yn = 46(2)+2yn = ... = 2'4+ynl = n+ynlogy(n),
hence k(n) € O(nln(n)).

(3.5) Proposition. The discrete Fourier transform §,, is a homomorphism of
R-algebras (R™,x) — (R™,-). Moreover, we have d,-1d, = n - idgn, hence if
n € R* then ¢, is an isomorphism.

Proof. We show that ([fo,..., fn=1] * [90,- -+ 9n-1])00w = [fo, -, frn-1]0w -
[0, -y 9n-1]0,: For f = E?:_Ol fiX? and g = Z;L:_Ol g; X7 we have fg =
f*gmod (X™ — 1), hence there is ¢ € R[X] such that fxg= fg+ q(X™ —1).
Thus (f * g)(w*) = f(w")g(w") + q(w*)((W*)" = 1) = f(w*)g(w"), for k €
{0,...,n —1}. Hence [(f * g)(w°),...,(f* 9)(")] = [f(@"),..., f(w")]
[9(w°), ..., g(w")],

Since w™! also is a primitive n-th root of unity, J,-1: R® — R" is a discrete
Fourier transform. We show that A ,-1A, =n-idgn: For 4,5 € {0,...,n— 1}
we have [A, 1A] = Sr s w Wk = ST wU =Dk Thus for i # j we have
[Ay-1A4]i; = 0, while for i = j we obtain [A,-1A,]; = n. i

13

(3.6) Theorem. Let R support FFT, i. e. we have 2 € R* and R has primi-
tive 2!-th roots of unity for all I € No; this holds e. g. for R = Z[%, Cu;l eN] C
Q[¢y;1 € N] € Q* € Q. Then to compute the wrapped convolution f * g, for
f,9 € R[X]<p, needs at most O(nln(n)) ring operations. In particular, to com-
pute the product fg, for f,g € R[X] such that deg(fg) < deg(f) + deg(g) <n
needs at most O(nln(n)) ring operations.

Proof. Let | € Ny such that 271 < n < 2!, and let w € R be a prim-
l . l .
itive 2-th root of unity. Let f = Z?:?Jl fiX" and g = Z?:_Ol g; X7 and

f *g = Zil:_ol thk Then we have ([foa SR 2’—1]50.2 : [907 s 792’—1]50.2)5;1 =
([fos- - far—1) * [g0s- -+ 921-1))065 = [ho,...,ha_1]. Since componentwise
multiplication needs O(2!) ring operations, and both discrete Fourier transfor-
mations &, and J;! = 27! 6,1 need O(2' - 1) ring operations, this amounts to
O(2! - 1) = O(n1In(n)) ring operations. i

Note that if 2 ¢ R*, then after replacing 6, by d,,-1 no division in R is needed
at all, and we obtain 2! - (f * g) instead, where [is as in the above proof.

(3.7) Algorithm: Schénhage-Strassen (1971), polynomial version.
Let R be a commutative ring such that 2 € R*, and let n = 2! for some [€ N.
For 0 # f,g € R[X] such that deg(fg) < deg(f) + deg(g) < n, to compute
fg € R[X], it is sufficient to compute the negative wrapped convolution
h € R[X]<p such that fg = hmod (X" + 1). Thus we may assume we have
given f,g € R[X]<n, and aim to compute h € R[X]|.,; the idea is to impose
additional primitive roots of unity:

Let m := 220 and t := 2 = 2031 and let f = S/2) fiX™ and g =
> Z69;X™, for suitable f;,g; € R[X]<p. Moreover let f' := Y ij fiY' €
R[X,Y] and ¢ := Z;;(l)ngj € R[X,Y], thus we have f = f/(X,X™) and
g = ¢ (X, X™). It suffices to compute b’ € (R[X])[Y]<¢ such that f'¢’ =
R’ mod (Y 4+ 1): From f'g’ = ' + ¢ (Y + 1), for some ¢ € R[X,Y], w

get fg = f1(X,X™)g (X,Xm) = (X, X™) + ¢(X,X™)(X™ + 1), hence
fg=n (X, X™)mod (X" +1).

A comparison of coefficients at Y, for i > ¢, yields degy(¢') < degy(f'g") <
degx (f") + degx(¢') < 2m, and thus degy(h') < 2m as well. Hence h' can
be computed in R[X,Y]/(X?*™ + 1,V +1) = (R[X]/(X?™ + 1))[Y]/(Y! + 1).
Using the natural map ~: R[X] — R[X]/(X?™ 4+ 1), let f/ := Zf;é fiYi e
(RIX]/(X?™ + 1))[Y] and ¢/ := 3" _ g;Y7 € (R[X]/(X?™ +1))[Y]. It suffices
to compute A/ € (R[X]/(X?™ 4+ 1))[Y]<; such that f’¢’ = B’ mod (Y +1).
The element X € R[X]/(X?™ + 1) is a primitive 4m-th root of unity: We
have X-" = —1 and X' = 1, and since 4m = 22“%], it suffices to consider
XM o1=-2¢ R[X]/(X?™ + 1), which being a unit is neither 0 nor a zero-

divisor. If [is even, we have t = m and w := X is a primitive 2¢-th root of
unity in R[X]/(X?™ + 1), while if [is odd, we have t = 2m and w := X is

14

a primitive 2¢-th root of unity. Hence in both cases we have w® = —1. Thus
the above congruence is equivalent to f/(wY)g’(wY) = A/(wY) mod (Y* — 1) in
(RIX]/(X2m + 1))[Y].

Thus computing 7’ amounts to wrapped convolution in (R[X]/(X?™ +1))[Y] s,
based on FFT for ¢ = 2(21 € R*, where multiplication in R[X]/(X2™ +1) again
is negative wrapped convolution in R[X]<2,,, which is done by recursion for

[>3;forl <2 ihe classi_cal or the Karatsuba multiplication algorithm is used.
Finally we get //(Y) =/ (w™!(wY)) and h = W/(X, X™). i

(3.8) Example. Let R := F5 as well as f := 3+ 2X + X* € F5[X] and
g:=2+4X + X? +2X3 € F5[X]. Hence we may take | = 3, thus n = 8 as
well as m = 2 and t = 4. Moreover, we have f' = (3 +2X) +Y? € F5[X,Y]
and ¢’ = (2+4X) + (1+2X)-Y. We have w = X € F5[X]/(X*+ 1), and thus
ff=3+2X+Y%and ¢ =2+4X +1+2X Y € (F5[X]/(X* + 1))[Y], hence
FwY)=F(X-V)=3+2X+X2-Y?and ¢/ (wY) =2 +4X + X +2X2.Y ¢
(F5[X]/(X*+1))[Y]. Classical multiplication yields f'(wY)g'(wY) = K/ (wY) =
(3+2X+X2.V?) (2+4X+X +2X2-Y) =1+ X + 3X2+3X + 3X2 + 4X5-
Y +2X24+4X3 Y2 4+3+ X3-Y3 € (F5[X]/(X* +1))[Y]; where we have used
that X3 + 2X* = 3 + X3 € F5[X]/(X* +1). Usingw ! = w” = dw® = 4X" €
Fs[X]/(X*+1) weget /(Y) =1+ X +3X2+ (3X +3X2+4X3) - 4X3 Y +
(2X2+4X3)-X0.V2 4 (34 X3)-4X9 Y3 =1+ X +3X2+3+3X +4X2.
Y+ 274X - Y2411 2X Y3 € (F5[X]/(X* + 1))[Y]. Hence i/ = (1 + X +
3X?%)+ (343X +4X2) Y+ (2+4X)- Y2+ (142X) Y3 € F5[X,Y] and thus for
(X, X?) = (1+X+3X2)+(3+3X +4X2)- X2+ (2+4X)- X4+ (1+2X)- X6 =
I+ X +X243X3+ X1 +4X°+ X0 +2X7 € F5[X] we have fg = h/ mod (X®+1),
where since deg(g) + deg(g) = 7 < 8 we even have fg = h'.

~

(3.9) Theorem. Let R be a commutative ring such that 2 € R*. Then to
compute the negative wrapped convolution fg mod (XQL +1)of f,g € R[X].o,
for some | € N, needs at most O(2!-11n(l)) ring operations. Thus to compute the
product fg € R[X], for f,g € R[X] such that deg(fg) < deg(f) + deg(g) < n,
for some n € N, needs at most O(nIn(n) In(In(n))) ring operations.

Proof. The second assertion follows from the first one by letting [€ N such
that 2/71 < n < 2! which implies O(2! - IIn(l)) = O(nlIn(n)In(In(n))). To
prove the first assertion, we count the ring operations needed to perform the
Schonhage-Strassen algorithm for polynomials: Let 7(1) be the number of ring
operations needed for input in R[X]_,:, where we may assume 7(1) = 1 for [< 2.
For [> 3, to compute f/(wY) and ¢/(wY) as well as h/(Y) = h/(w™}(wY)),
each needs O(t) operations in R[X]/(X?™ + 1), which are shifts of coefficient
lists and sign inversions in R, hence each need O(m) ring operations, while
to compute h = h'(X, X™) needs O(mt) ring operations. Thus this amounts
to O(mt) ring operations in R. Moreover, FFT needs O(tln(t)) operations
of replacing ¥ « wY, thus needs O(mtIn(t)) ring operations in R, and to

15

compute the wrapped convolution by componentwise multiplication we need ¢
multiplications in R[X]/(X?™ + 1), where a multiplication is done recursively
by negative wrapped convolution, which needs 7(log,(2m)) ring operations.

Thus there is v > 0 such that 7(I) = ymt log,(t) + tT(logy(2m)) = - 2t - [L]
23] -7(|L] +1). Hence letting o(l) be defined by (1) = 2/=1(1 — 2)o(l
we for | > 3 get 2711 = 2)a(l — 1) = - 28 - [L] + 2031 - 2Ls) (| L] — 1)o(

[

I
hence o(l — 1) = Q?fé] + Z(Ll%_ng) ~o([£]). Since [L{] —1 < 52 and 2_%2
4, for | > 3, there is 4/ > 0 such that o(l — 1) < 7/ + o(|L]). Moreover,

since for | > 3 we have || < L = (l_12)+1 < 3(14_1)

5 , by induction we get
ol—-1) < log4(LY +0(2) < 4"In(l — 1), for some 4" > 0. This yields

ﬂmeowlu_mma_ny4xy»mmy ¢

]

N~

+
1)
);

<

(3.10) Corollary. Let R be a commutative ring. Then to compute the product
fg, for f,g € R[X] such that deg(fg) < deg(f) + deg(g) < m, needs at most
O(nln(n)In(ln(n))) ring operations.

Proof. Using the division-free version of FFT in the Schonhage-Strassen algo-
rithm, we compute ¢ - fg € R[X], where 2! < n < 2! and t = 2/2] € O(n2).
Similarly, using the Schénhage algorithm (1977), see Exercise (8.20), em-
ploying the division-free version of 3-adic FFT, we compute t' - fg € R[X],
where 31 < n < 3! and ¢/ = 315 € O(n%) Hence we compute s, s’ € Z such
that st + s't’ = 1 € Z, which needs O(In*(n?)) = O(In*(n)) bit operations, and
s(t-fg)+ st - fg) € R[X], which needs O(n) ring operations. i

(3.11) Algorithm: Schonhage-Strassen (1971), integer version.
Let a,b € N such that by(ab) < by(a) + ba(b) < n = 2!, for some | € N. Hence
to compute ab € N it is sufficient to compute negative wrapped convolution

ab mod (2" + 1). Thus we may assume we have given a,b € {1,...,2"}; as we
have 2" = —1 mod (2" + 1), the cases a = 2" or b = 2" are easy special cases,
hence we may additionally assume that bs(a), bo (b) <n =2

Let m:=2lz) and ¢t := 2 = 251 ‘andlet a = 37" ¢;-2% and b = Z;-TZOI bj-24
as well as ab = i:o o ¢ - 2% for suitable a;, bJ € {0, ...,2t =1} and ¢ € Ny
Hence we have ¢, = Zf:o a;bi—i, for k € {0, ... — 1}, where we let b; :=0
for j > m. Since mt = 2! = n we have 2™ = 2" = —1 mod (2" + 1), and

we get ab = ;"’:_01 dp - 2% mod (2" + 1), for k € {0,...,m — 1}, where dj, :=
Ck — Cm+k € Z.

Counting the number of summands yields |cj,| < (k+1)-(2!—1)? < (k+1)-2%" and
lemak] < (m—k—1)-(20=1)%2 < (m—k—1)-22¢ for k € {0,...,m—1}. Hence we
have —(m —k—1)-2% < d, < (k+1)-22%. Since (k+1)+(m—k—1))-2% =
m - 2% it is sufficient to compute dg mod (m - (22! + 1)). Since the moduli
m = 213) and 22t + 1 = 22131 + 1 are coprime, we compute dj, = dj, mod m

16

and d} = dj mod (2% + 1), and let 0 = (2% 4 1)((d}, — d}}) mod m) + dJ.
Applying the Chinese remainder theorem, since 22! + 1 = 1 mod m, we have
8k = dj, mod m and dx, = d}{ mod (2% 4 1), hence dy = §; mod (m - (2% +1)).

To compute dj we proceed as follows: Let a] = a; mod m and bfj = b; mod m,

. ~ -1 ; > -1 ;
for 4,5 EA{O, coym—1}, as well as @ := Y070 af -m® and b= 3T b - mP
Hence ab = izgl ¢}, - m3*, where ¢}, = Zf:o aiby_,, for k € {0,...,2m — 1},

and where we let b; := 0 for j > m. Since 0 < ¢}, < m-m? the ¢, can be read

off from @b, and we have dy, = ¢}, — ¢, ., mod m, for k € {0,...,m —1}.

To compute d} we proceed as follows: Let w := 2w € Z/(22% 4 1), then w is a
primitive 2m-th root of unity: We have w™ = 2% = —1 € Z /(22! + 1) and hence
w?m = (=1)2 =1 € Z/(2% + 1), and since 2m = 2'*Lz) it suffices to consider
w™ —1=-2¢€Z/(2?" + 1), which being a unit is neither 0 nor a zero-divisor.
We have [aqw?, ..., am_1w™] % b, ... by_1w™ Y =[8(,. ..,/ 1], where
O = W -3k med m @iy € Z/(2% + 1), for k € {0,...,m — 1}. Hence we
have d = w="-6/ € Z/(2* +1). Thus d} mod (22" +1) can be computed using
FFT for m = 2l2) € (Z/(22" + 1))*, and multiplication mod (2% + 1) which for
[> 4 by recursion is negative wrapped convolution. i

(3.12) Theorem. To compute the negative wrapped convolution ab mod (22L +
1), for a,b € N such that by(a),be(b) < 2!, for some [€ N, needs at most
O(2" - 11n(1)) bit operations. Thus to compute the product ab € N, for a,b €
N such that by(ab) < ba(a) + ba(b) < n, for some n € N, needs at most
O(nln(n)In(In(n))) bit operations.

Proof. The second assertion follows from the first one by letting [€ N such that
2!=1 < p < 2!, which implies O(2! - [In(l)) = O(nIn(n) In(In(n))). To prove the
first assertion, we count the ring operations needed to perform the Schonhage-
Strassen algorithm for integers: Let 7(1) be the number of bit operations needed
for input of bit length 2!, where we may assume 7(1) = 1 for [< 3. To compute
ab from the djy, we need m additions of numbers of bit length O(In(m - 2%%)),
hence O(mIn(m - 22t)) C O(mt) = O(n) bit operations; note that the dj have
to be multiplied by 2-powers, which amounts to shifts and actually need not
be performed explicitly. To compute d; from dj and dj we need O(tIn(m))
bit operations to compute each remainder and each product, hence altogether
O(mtIn(m)) € O(nln(m)) bit operations.

To compute dj, we need O(tIn(m)) bit operations to compute each remainder,

hence altogether O(mtIn(m)) = O(nln(m)) bit operations, moreover we need
logs (3)

O((3ml)1°#23)) = O(n™ 3 (In(n))'°&2(3)) C O(n) bit operations to compute the
single product @b using the Karatsuba algorithm, and we need O(2 -11n(m)) bit
operations to compute each final remainder, hence altogether O(mlln(m)) =
O(nz In%(n)) C O(n) bit operations. To compute d)l we need O(mlIn(m)) mul-
tiplications of integers of bit length ¢ with 2-powers, which hence amounts to

17

shifts, to compute the Fourier transform, hence O(mtIn(m)) = O(nln(m)) bit
operations, m recursive calls needing 7([4]+ 1) bit operations each, and finally
m multiplications of integers of bit length ¢ with 2-powers, hence O(mt) = O(n)
bit operations.

Thus there is v > 0 such that 7(I) = ynlogy(m) + mr([4] + 1) =~-2"- L]+

ols) -7([L] +1). Hence letting o(l) be defined by T(l) =211 - 3)o(l - 1)

we for | > 4 get 2711 — 3)o(l — 1) = - 24+ | 4] +2L2) - 2031([L] — 2)a([L]),
2: [%J

21

hence o(l — 1) = QWZ'L%J 2([%]72) -o([4]). Since f—] 2 < 58 and -
4, for | > 4, there is v/ > 0 such that o(l — 1) < ' + ([

since for | > 4 we have f%} < H'l — (=D+2 1)+2 < %, by induction we get
ol—1) < logs(LYy +0(3) < v’ ln(l — 1), for some 4" > 0. This yields

(1) € 02" 1(l—) (1)) =0(2" - 1In(l)). f

|~
JR—
-

Moreover,

(3.13) Remark. a) In practice, instead of using the Schénhage-Strassen al-
gorithm for integers, we use 3-primes modular FFT multiplication: Let
z = 264 and let @ = Z?;OI a;2" € Ny and b = Z;L;OI ajzl € Np, where
aibj € {0,...,2 — 1}. Moreover, let A := 37" ' a; X" € Z[X]., and B :=
> 19 bj X7 € Z[X] <y, hence we have a = A(z) and b= B(z). Let AB = C :=
Zizgl cxX* € Z[X]con_1, where 0 < ¢}, = Z?io aibe—i < >0, 122 < 22 we
again let b; := 0 for j < 0 or j > n; hence we have ab = C(z).

To compute C € Z[X]<2,—1, we proceed as follows: We assume that n <
55 = 261 " and choose pairwise different primes 5= 203 < py,p2,p3 < z. Since
nz? < 2189 and pipops > 2363 = 2189 the Chinese remainder theorem allows
to compute C' from C mod p;, for i € {1,...,3}. To compute the product
AB mod p; using FFT, we choose Fourier primes p such that p —1 is divisible
by a high 2-power. Actually, all primes p = k- 257 + 1 < z such that 2°7 | p
are given as follows, where w € N is minimal such that w € Z/(p) is a primitive

257_th root of unity:

E(29 71 75 95 108 123
21 287 149 55 64 493

Note p < £ only for k = 29, and that for k = 108 we even have 2% | (p — 1),
which is the only prime p < z having this property, and no higher 2-powers
dividing p — 1 occur for primes p < z.

Anyway, we choose 3 of these pairs once and for all. Hence we are able to apply
FFT for polynomials such that 2n — 1 < 257, hence n < 2°6, thus for a,b € Ny
such that b, (a), b, (b) < 2%, hence b (a), ba(b) < 26756 =262 i e. for a,b € Ny
which need up to ~ 4,6 - 10'® bit ~ 5,8 - 10!7 Byte.

b) Having at hand fast multiplication over Z and F[X], where F is a field,
there are fast algorithms for modular multiplication and to compute quotient
and remainder, see [3, Ch.9.1], and fast algorithms for polynomial multipoint

18

evaluation and interpolation, for reduction modulo several moduli and Chinese
remaindering, see [3, Ch.10]. These are not presented here.

4 Resultants

(4.1) Algorithm: Euclidean algorithm, polynomial versions.

a) Let R be an integral domain, and let K := Quot(R) be its fields of fractions.
Let 04 f =0, J{— X' € K[X], where f/, f/ € R, and let v := [[°_, f € R.
Hence we have vf = Z?:o fiX" € R[X], where f; = l}—j,c,/ € R. Letting b(f) :=
max{b(v),b(fo),...,b(f4)}, where b(-) is the input length function for the ring
R, the input length of f is given as (deg(f) +2) - b(f).

We discuss coefficient growth in the quotient and remainder algorithm: Let
0 # f,g € K[X] be monic, hence we have f = (Zf:_ol Lxhy+ X4 € K[X]
and g = (Z;;é “X') + X° € K[X], where d = deg(f) and e = deg(g) as
well as v, i, fi,9; € R. Let f = qg + pr, where ¢, € K[X] such that r =0
or deg(r) < e = deg(g) and r is monic, and p € K. Assuming deg(g) =
e:d—lzdeg(f)—lwehaveq:m‘lyi;we’l—i—Xande:f—qg:V—lllz-
(1*(f) —vi(pg) X — (pfa—1 —vge—1)(ng)). Hence we have b(g) < b(f)+b(g)+1
and b(pr) < b(f) + 2b(g) + 3, and since r may be computed using the leading
coefficient of vu?p - r, we also have b(r) < b(f) + 2b(g) + 3. Thus letting
b := max{b(f),b(g)}, we obtain b(r) < 3b+ 3; note that for single quotient and

remainder computations this in general indeed occurs.

E.g let R=Zaswellas f = rg := —5+2X+8X2-3X3-3X4+ X6+ X% € Z[X]
and g =7 =21 — 9X —4X?2 + 5X* + 3X6 € Z[X], see [8, Ch.4.6.1, pp.4261f.]
and [3, Exc.6.42]. The Euclidean algorithm yields r; = §-(—3+X?—-5X*) and
rg = 5=-(441—-225X —117X?) as well as 74 = 1525 - (—307500+233 150X) and
r5 = _%%4282251. Note that gcd computations in Z are used to write rational
numbers as quotients of coprime integers.

b) Modifying the Euclidean algorithm to use monic remainders throughout,
called the monic Euclidean algorithm, for 0 # f, g € K[X] monic:

1. Ao < le(f), ro « /\—10-f, 80 /\LO to « 0, ng < deg(f)
2.\ —le(g), m1)\% g, 810, t1 «)\%, ny < deg(g)
3.1
4. while r; #£ 0 do

?,qu —Ti—1 mod i

qi — Ti—l;?1+1

Ai1 — le(Fit)

~

1
Ti+1 < x. - "Ti+1

Ait1
Si41 < w7 (Sic1 — ¢isi)
tiy1 < ﬁ “(tic1 — qity)

Nigp1 — deg(riy1)

19

1—1+1
5. return [T‘ifl, Sifl,tifl] #i=1+1
Assuming that we have a regular degree sequence, i. e. we have nZ 1 fnl =1
for all i > 1, we for the monic remainders r; obtain b(r;) < 3b + 3 2 , for
i > 2, hence b(r;) € O(3%(b + 3)). Thus assuming d = max{deg(f), deg()} thls
yields b(r;) € O(3%(b + 3)). This hence is an exponential bound in the input
lengths of f and g; for R = Z we will show a polynomial bound in (4.12).

E. g Letting ro = —b + 2X + 8X?% — 3X3 — 3X* + X® + X® € Q[X] and
r=3-(21-9X —4X? +5X%) + X% € QX] the monic Euclidean algorithm
yields r2 = 5 (-=3+ X% - 5X1"), hence rg = £+ (3—-X?) + X*, and r3 =
25 - (147 — 75X — 39X?), hence r3 = {5 - (=49 + 25X) + X2, as well as r} =
7157 - (61500 — 46630X), hence ry = —%333 + X, and rj = 1123913 hence

r5 = 1. Note that gcd computations in Z are used to write rational numbers as
quotients of coprime integers.

c) To avoid computations in K completely, we use pseudo-division yielding
pseudo-remainders: Let 0 # f,g € R[X] such that deg(f) =: d > e :=
deg(g). Hence there are ¢, € R[X] such that lc(g)?¢*'f = qg + r, and
r = 0 or deg(r) < e = deg(g); note that if we have lc(g) = g. € R*, then this
amounts to compute quotient and remainder. Pseudo-division in general leads
to exponential growth of the coefficients of the remainders, but still is useful
e. g. for multivariate polynomial rings over integral domains.

E. g letting f = rp := =5 + 2X +8X2 — 3X? — 3X* + X6 + X® € Z[X] and
g=r1:=21 —9X —4X? 4+ 5X* 4 3X6 € Z[X] again, the Euclidean algorithm
using only pseudo-division yields ro = —9 4+ 3X? — 15X* and r3 = —59535 +
30375X+15795X2 as well as 4 = —1 654 608 338 437 5004254 542 875143 750X
and r5 = 12593 338 795 500 743 100 931 141 992 187 500 ~ 1,2 - 1034,

d) Let R be factorial. For 0 # f = Z?:o [iX% € R[X] the element ~(f) :=
ged(fo, ..., fa) € R is called the content of f, and if y(f) € R* then f is called

prlmltlve Thus, if we are given 0 # f = 21 0 Jf,, - X? € K[X] as above, where

f" € R, then we might assume f/, f’ € R to be coprime, and could use
V' i=lem(fy,..., f}) € R instead of v € R, to obtain a primitive polynomial
! f € R[X]; note that this requires ged computations in R.

Moreover, for using pseudo-division we may compute and divide out the contents
of the pseudo-remainders, leading to the primitive Euclidean algorithm, for
0 # f,g € R[X] primitive:

1. 19 — f, no — deg(f)
2. r «— g, nq < deg(g)
3.1
4. while r; #£ 0 do
?i-i-l — (|C()"Z 1—nitl Ti—l) mod r;
Yi+1 < ¥(Tiy1) # content

Tikl = 5 T

20

nit1 < deg(riy1)

1—1+1
5. return r;_4 #i=1+1
Note that this needs gcd computations in R, and that the primitive and the
monic Euclidean algorithm are equivalent as far as the growth of the coeffi-
cients of the remainders is concerned. In practice, since the primitive Euclidean
algorithm tends to need less gcd computations in R, it is superior to the monic
Euclidean algorithm.

E. g. still letting f =g := =5 +2X +8X2—3X3 - 3X*+ X6+ X® € Z[X] and
g=r1:=21-9X—-4X2+5X*+3X6 € Z[X], the primitive Euclidean algorithm
yields 7 = —9 + 3X2 — 15X%, hence v(72) = 3 and ro = —3 + X? — 5X*%, and
Ty = —2205+1 125X +585X2, hence v(F3) = 45 and 13 = —49+25X +13X2, as
well as 74, = —307 500 + 233 150X, hence ~(74) = 50 and r4 = —6 150 + 4663X,
and 75 = 143193 869, hence ~y(75) = 143193869 and 75 = 1.

e) Let R be factorial. To avoid ged computations in R completely, but still to
get polynomial growth of the coeflicients of the remainders, Collins’s algorithm
(1967), see Exercise (8.25), can be used. It runs completely in R[X] and uses
pseudo-division, but instead of making the remainders primitive by dividing out
their contents, which would need ged computations in R, only certain divisors
of the contents are divided out. The proof of the validity of Collins’s algorithm
is based on subresultants. For R = Z, similarly to (4.12), these are also used to
prove a polynomial bound for the bit lengths of the coefficients of the remainders
in terms of the input lengths of f and g; hence in practice Collins’s algorithm
is superior to the primitive Euclidean algorithm. Finally, the proof of validity
also shows that resultants, although defined as determinants in a linear algebra
context, can be computed using this variant of the Euclidean algorithm.

E. g. still letting f =g := —5+2X +8X2—3X3 —-3X*+ X6+ X® € Z[X] and
g=r1:=21-9X—-4X%24+5X*+3X° € Z[X], the Collins algorithm yields \; = 3
and 1 =9, as well as 79 =75 = =94+ 3X?% — 15X* and Ay = —15 and 7, = 25,
as well as 73 = —59535 + 30375X + 15795X2 and r3 = —245 + 125X + 65X 2
and A\3 = 65 and 7o = 169, as well as 74 = —115312500 + 87431 250X and
rqy = 12300 —9326X and \y = ny = —9326, as well as 75 = 2863877 380 and
rs =)\5 =15 = 260 708.

For a detailed cost analysis of the various algorithms, which we do not present
here, see [3, Ch.6]. We set out to develop the necessary machinery for resultants
and subresultants, and derive a few of their properties, leading to the polynomial
bound in (4.12).

(4.2) Definition. Let R be an integral domain, let 0 # f,g € R[X] such
that f = > fiX* and g = 37" g; X7, where n = deg(f) and m = deg(g).
Moreover, let o(f, g): R[X]<m X R[X]<n — R[X]<ntm: [s,t] — sf +tg, where
for n = 0 we let R[X]<, := {0}. Note that ¢(f,g) is R-linear and we have
tkr(R[X]<m X R[X]<n) =n+m =1kr(R[X]<ntm)-

21

By the R-bases [[X™~1 0],[X™2,0],...,[1,0],[0, X"~ 1],[0, X"2],...,[0,1]] of
R[X)cm X R[X]<p, and [X"Fm=L Xntm=2"" " 1] of R[X]<pim, for n+m > 1,
we obtain the matrix of ¢(f, g) as the Sylvester matrix

[fn faer oo fo
fn o i fo
S(f7g) = 9m 9IGm-1 .- i]fg e eR(n+m)><(n+m)7
9m .- g1 9o
L 9m -+ .o G0 |

where the upper half consists of m = deg(g) rows, and the lower half consists of
n = deg(f) rows. Moreover, let res(f,g) := det(S(f,g)) € R be the resultant
of f,g € R[X]. If n = m = 0 then S(f,g) € R°%? is an empty matrix, and in
this case we let res(f, g) := det(S(f,g)) :== 1 € R. Treating the zero polynomial
as a constant polynomial, this yields res(f,0) = 0 if deg(f) = n» > 1, and
res(f,0) = 1 if f is constant, and similar statements for res(0, g).

(4.3) Proposition. Let F be a field, and let 0 # f,g € F[X] such that n =
deg(f) and m = deg(g).

a) Then f,g € F[X] are coprime if and only if ¢(f,g): F[X]|<m X F[X]<n —
F[X]<nt+m is injective, which happens if and only if ¢(f, g) is bijective, which
is equivalent to res(f,g) #0 € F.

b) If o(f,g) is bijective and n +m > 1, let [s,t] := 1o(f,9)"! € F[X]<m X
F[X]<n, i. e. we have sf +tg = 1. Then we have [s;,t;] = r; - [s,t], where
s1,t; € F[X] are the Bezout coefficients computed by the extended Euclidean
algorithm for f and g.

Proof. a) We have to show that ged(f, g) € F[X] is non-constant if and only if
there are s € F[X]<,, and t € F[X]<,, such that [s,¢] # [0,0] and sf + tg = 0:
Let h := ged(f,g) € F[X] monic, if deg(h) > 1 then we let s := 32 € F[X]<p,
and t := % € F[X]|<p. Conversely, let s € F[X]<,, and ¢t € F[X]<, such that
[s,t] #[0,0] and sf+tg = 0, and assume f, g € F[X] are coprime. Then s,t # 0,
and hence sf = —tg implies f | ¢. Since deg(t) < n this is a contradiction.

b) We consider the extended Euclidean algorithm: For ¢ > 1 we by induction
show that deg(s;+1) = n1 —n;: We have so = so—¢151 = 1, hence deg(s2) =0 =
ny —ny, as well as $3 = 81 — g282 = —@aS2, hence deg(s;) = deg(ga) = n1 — na,
and for ¢ > 3 we from deg(q;) = n;—1 —n; get deg(g;s;) = ni—1—ni+ny—n;_1 =
ny —n,; and deg(s;—1) = n1 — n;_2, hence deg(g;s;) > deg(s;—1), and thus from
Sit1 = Si—1 — ¢;8; we conclude deg(s;+1) = deg(g;s;) = n1 — n;. Similarly, for
i > 0 we by induction show that deg(t;+1) = no — n;: We have ¢; = 1, hence
deg(t1) = 0 = ng—no, and ty = toy—q1t1 = q1, hence deg(tz) = deg(q1) = ng—na;

22

note that to = ¢; = 0 if and only if ng = n < m = ny. In the latter case we have
ts = t1 —goto = t; = 1 and hence deg(t3) = 0 = ng—ng = ng—nae, while for i = 2
and ng > n1, as well as for ¢ > 3, we have deg(q;t;) = nj—1 —n; + ng —ni—1 =
ng — n; and deg(t;_1) = ng — n;_a, hence deg(q;t;) > deg(t;_1), and thus
from t;y1 = t;—1 — q;t; we conclude deg(t;1+1) = deg(g;t;) = no — n;. Hence
for the Bezout coefficients we have deg(s;) = n1 — nj—1 < n; = deg(g) and
deg(t;) = no —deg(ri—1) < ng = deg(f). Since s;f +t;g = r; € F* the assertion
follows from the injectivity of ¢(f,g). i

(4.4) Corollary. Let R be factorial, and let f, g € R[X] such that [f, g] # [0, 0].
Then ged(f, g) € R[X] is non-constant if and only if res(f,g) =0 € R.

Proof. For f,g # 0 the assertion follows by Gaufi’s Theorem from the above.
If g = 0 then we have ged(f,g) = f, and hence the assertion follows directly
from the definition of res(f,0); if f = 0 we argue similarly. #

(4.5) Corollary. Let R be an integral domain, and let 0 # f,¢g € R[X] such
that n+m > 1, where n := deg(f) and m := deg(g). Then there are s € R[X| <,
and t € R[X], such that [s,t] #[0,0] and sf + tg =res(f,g) € R C R[X].

Proof. Let K := Quot(R). If res(f,g) =0 € R C K, then f,g € K[X] are not
coprime, hence there are s’ € K[X]<, and t' € K[X]<, such that [¢/,t'] # [0, 0]
and §'f +t'g = 0, and thus we let s := \s’ € R and t := A\’ € R, for some
suitable 0 # \ € R.

If res(f,g) # 0 € R C K, then f,g € K[X] are coprime, hence there are
s € K[X]|<m and t' € K[X]<, such that [¢',¢] # [0,0] and s'f + t'g = 1.
Moreover, [s',t'] arises as the solution of the system of K-linear equations
(S0, -y Sm—1,T0, .-, Tn1]-S(f,9) =[0,...,0,1] € K"*™ where S;, T} are in-
determinates over K. Since det(S(f,g)) = res(f, g) # 0, this solution is uniquely
determined and can be computed using Cramer’s rule. Hence there are s}, t;- €ER
such that m [8hy s Syt thy s th_1] - S(f,9) = [0,...,0,1] € K™t
Thus letting s :=res(f,) 31" ;X" € R[X] and t :=res(f,g)- >}, t/ X7 €
R[X] we obtain sf + tg = res(f,g) € R.

(4.6) Proposition. Let R be an integral domain, let K := Quot(R), and let
K be an algebraic closure of K. Moreover, let 0 # f,g G_R[X] such that
f =t Tlimi (X —03) € K[X] and g = g, - [}, (X — 75) € K[X], for suitable
0i,7j € K. Then R 3 res(f,9) = fi - TIZy 9(o) = (=1)""gp, - [, f(75) =
fitgm - e T2 (o = m5) € K.

Proof. We may assume n,m > 1. Let P := K[Sy,...,S5,,T1,...,T),], where

Si,...,8.,T1,...,T, are indeterminates over K. Moreover, let]? = fn -
[Ti2, (X = 8i) € P[X] as well as G := g - [[2, (X — T}) € P[X]. Consider the

23

Vandermonde matrix V,, ,, = [v;;] € e pntm)x(ntm) where for 1 < i < n+m
we let v;; 1= T"*m ‘for 1 < j <m,and v 1= S”+m fform—+1<j<n+m:

n+m—1 n+m—1 n+m—1 n+m—1
Tl T St o e
n+m— n+m—

Vi | 11 o

n,m +— . . y
0 0 0 0
T LT S .80

where hence the left half consists of m columns, and the right half consists
of n columns. Hence det(Vim) = [[1<icjcm(Ti = T5) - [licicj<n(Si — Sj)

[[Z [T, (T — Si) # 0 € P. Moreover, let S(f,9) € Pntm)x(ntm) the
associated Sylvester matrix. Since f(S) =0=g(T;) € P,forall1 <i<nand
1 < j <'m, we thus have S(f,9) - Vom =

[T () TR (T | 0 .0]
T2 (1) 0

ﬂﬂm . TOf(T) |0 0

0 .0 STIG(SY) ... ST1g(S,)
0 Sn=25(S,,)
0 0 S95(Sy) ... sgg(sn)

The Vandermonde determinant again yields det(S (f,) Vam) = H;nzl f(Tj) :
icicjem(Ti = T3) - Thiz 9090 - Ticicj<n(Si = S5) € P, thus resx(f,9) -
H; 1 Hz (T = Si) = Hj:l f(1;) - Hi:1 9(Si). Since f(Tj) = fn - Hz 1(T
S;) #0 € P and g(Sz) = gm [Tj=1(Si = Tj) # 0 € P this yields resx (f,4) =
fﬁnH? 19() (=pmn H;ﬁ:1f(Tj):frTme'H?:lnrzl(Si_Tj)€P~
Using the K-algebra homomorphism e: P[X] — K[X]: S; — o04,t; — T7;, since
deg(f) = deg(f) and deg(g) = deg(g) we finally have res(f,g) = resx(f,9)¢. 4

(4.7) Corollary. Let R be an integral domain, let K := Quot(), let f € R[X]
such that n := deg(f) > 1. Then disc(f) := (—1)n(n71) lc(f) -res(f, ax) €K
is called the discriminant of f, where g—)]z € R[X] is the formal derivative.
Letting K be an algebraic closure of K, and f =1lc(f) - [[/,(X —0;) € K[X],
then we have disc(f) = le(f)"tm~1. [Ticicjcnloi — 0;)? € R, where m :=

deg(g—)f(), treating the zero polynomial as a constant polynomial; note that if
char(R) J n then we have m =n — 1.

Proof. We have % =1e(f) - Xpoy [(X — o)) € K[X]. Hence if 0; = 0
for some i # j, then (X — o0;) | g—)f(€ K[X], hence g—)f((ab) = 0, and thus

24

res(f, g—;‘,) = 0; note that this also holds for g—)f(= 0. If the o; are pairwise
different, then we have g—}; # 0 and g—};(ai) =le(f) - [Ljzilo —0j) € K, and
thus we obtain res(f, g—f() =le(f)™- 11, <lc(f) (o — O’j)) = (—1)%
1C(f)n+m ' H1§7«<]§n(0—2 - 0']‘)2.

It remains to show disc(f) € R: Since for n = 1 we have disc(f) = 1 any-

way, we may assume n > 2 and that the o; are pairwise different. Since the
product H1<z'<j<n(0i — Jj)2 € K is invariant under any permutation of the o;,

it can be written as a Z-polynomial in {e, 1(01,...,00),- ., €nn(01,...,00)},
where e, 1= 3> chycrchiom (U l1=1 X)) € Z[X1,..., X;] is the elemen-
tary symmetric polynomial of degree ¢ in the indeterminates {Xi,...,X,}.

Since ey,,i(01,...,00) € 10(1f) - R, for all i € {1,...,n}, we also have le(f) -
HlSKan(ai — crj)2 € R. Note that if m = n — 1, then we may also argue
as follows: We have le(f) | lc(g—)f(), which using the Sylvester matrix S(f, g—)é)
implies lc(f) | res(f, g—)];) €R. il

(4.8) Definition. Let R be an integral domain, let 0 # f,¢g € R[X] such
that f = >, fiX" and g = > o g; X7, where n = deg(f) as well as m =
deg(g). For k € {0,...,min{n,m}} let r(f,q9): R[X]<m-r X R[X]<n-t —
RIX]cnim—2i: [s,1] — [2H2], where for h = 3.0\ hiX' € R((X)) =
Quot(R[[X]]), for some Nj, € Z, we let |h] := > ,.,h;X* € R[[X]]. Note that
vk(f,g) is R-linear and we have rkg(R[X]<m—k X R[X]<pn—k) =n+m —2k =
tkr(R[X] <nsm_2k); moreover, we have po(f.g) = w(f,9).

Similar to the above, using the R-bases [X7"tm—2k=1 xntm=2k=2] a5
well as [[X™~*=1 0], [X™F=20],...,[1,0],[0, X"~*=1] [0, X"F=2] ..., [0,1]]
of R[X]|<ntm—2k and R[X]<cm—k X R[X]<n—k, respectively, for n +m > 2k,
we obtain the matrix of ¢g(f,g) as the k-th generalized Sylvester matrix
Sk(f,g) € Rmtm=2k)x(ntm=2k) "etting f; := 0 and g, := 0 for 4,5 < 0, as

[fn fnfl fn7m+k+1 fk+1 f2k7m+1 1
In
In o fm e JE
I9m GGm-1 -+ Gk+1 co 9m—n+k+1l - G2k—n+1
Sk(fag):: Im ’
9Im
L 9m - 9k i

where the upper and lower halves consist of m — k and n — k rows, respectively.
Note that for &' > k the matrix Si/(f, g) is a submatrix of Sk(f,g). Moreover,
let resi(f,g) := det(Sk(f,9)) € R be the k-th subresultant of f,g € R[X].

25

If n = m = k then Si(f,g) € R°*C is an empty matrix, and in this case
we let resi(f,g) := det(Sk(f,g9)) := 1 € R. Note that in any case we have

resk(g7 f) = (_1)(n—k)(m—k) : I'eSk(f, g)

(4.9) Proposition. Let F be a field, and let 0 # f,g € F[X] such that n
deg(f) and m = deg(g). In the extended Euclidean algorithm for f and
let n; := deg(r;) be the associated degree, for i € {0,...,{}, and let n;41 :
deg(r;41) = deg(0) < 0. Let k € {0,..., min{n,m}}.

a) Then k € {ny,...,n;} if and only if r(f,9): F[X]<m-rt X F[X]|<n—k —
F[X]<ntm—2k is injective, which happens if and only if ¢ (f,g) is bijective,
which is equivalent to res(f,g) # 0 € F.

b) If pk(f,g) is bijective and n +m > 2k, let i € {1,...,{} such that k = n;,
and let [s,t] := 1ox(f,9) " € F[X]<m-r X F[X]<n_. Then we have [s;,t;] =
le(r;) - [s,], where le(r;) € F* is the leading coefficient of r; € F[X].

< |l

Proof. a) We show that k & {ni,...,n;} if and only if there are s € F[X]|cpm—k
and t € F[X]<n— such that [s,t] # [0,0] and sf + tg € F[X]<k, 1. e. [s,t] €
ker(pr(f,9)): Let k & {n1,...,n}, and let ¢ € {2,...,1+ 1}, such that n; <
k < n;_1, where we let Let s := s; € F[X] and t :=t; € F[X] in the extended
Euclidean algorithm. From the proof of (4.3) we know that deg(s;) =m —n;_1
fori e {2,...,1+ 1}, and deg(t;) = n —n;—y for i € {1,...,1+ 1}. This yields
deg(sf +tg) = deg(r;) = n; < k as well as deg(s) < m — k and deg(t) < n — k,
where for ¢ > 2 we have deg(s;) > 0 and thus s = s; # 0.

Let conversely s € F[X]|<m—k and t € F[X]<n,—j such that [s,¢] # [0,0] and
r = sf+tg € F[X]<k, and let i € {2,...,1 4+ 1}, such that n;, < k < n;_1.

We consider the equation [f,g] - :1 f] = [r;,r] € F[X]?. Assume that
K3
det ({ :; f = s;t — st; # 0, then by Cramer’s rule we have f = % €

F(X) = Quot(F[X]), which since deg(r;t — rt;) < max{n; + deg(t),deg(r) +
deg(t;)} < max{n;+n—k,k+n—n;_1} <n=deg(f) is a contradiction. Thus
we have s;t = st; € F[X].

We show that s;,t; € F[X] are coprime for j € {0,...,[+1}: For j € {0,...,{}
let R; := [i %341 | e FIX]?*2. Hence [f,g] - R; = [rj,rj+1], where Ry =

ti tin
E5, and where since sjy92 = $; — gj4+18;+1 and tj12 = t; — gj1tj41 we have
1
Rji1=Rj- [(1) ¢],forje{o,...,l—l}. Hence by induction on j > 0
4+

we have s;tj 11 — sj+1t; = det(R;) = (1), for j € {0,...,1}.

Hence from s;t = st; we conclude s; | s. Since s; # 0 and [s,t] # [0,0]
there is 0 # h € F[X] such that s = s;h. This finally yields m — n;—1 <
deg(h) + m —n;_1 = deg(s;h) = deg(s) < m — k, hence k < n;_1.

b) We have s; = 0 and deg(s;) = m —n,—1 < m — k for ¢ > 2. Moreover, we

26

have deg(t;) =n—mn;—1 <n—k for i > 2, and for i = 1 we have k = m < n,
hence from n +m > 2k we get k < n, thus deg(t;) =n—ng=0<n—k. We
have deg(s; f + t;g) = deg(r;) = n; = k, hence [s;, t;]or(f, g) = lc(r;) € F*. ¢

(4.10) Proposition: Fundamental theorem on subresultants.
Let F be a field and 0 # f,g € F[X], and let \; € F*, for i € {0,...,1}, be as
in the monic extended Euclidean algorithm for f and g. Then for i € {1,...,1}

we have res,, (f,g) = (—1)22‘;}("j*1_”i)("j_"i) SApTT H;Zl)\?-7"17”"’.

In particular, if res(f,g) # 0, i. e. n; = 0 occurs in the degree sequence, then

we have res(f,g) = (—1)23;11 (SR Ve ~H§-:1 A;77"; hence res(f,g) can be

computed using the monic extended Euclidean algorithm.

Proof. See Exercise (8.24).

Let i € {1,...,1 — 1} and k € {0,...,n;41}. Then the polynomial division
Ait1Tit1 = Tia1 = ri_1 — q;7; can be interpreted in terms of row operations on
Sp(ri_q,1r;) € Frimitni=2k)x(ni—idni=2k) " vielding

Titlmi, -+ coo Tit1,2k—n+1

Titlnigr -+ Titlk
Tin; e e cee Ti2k—mi_q+1

Tin; N e Tik

where the upper and lower halves consist of n; —k and n;_1 —k rows, respectively.
Multiplying the rows in the upper half by %ﬂ and interchanging the upper
* | *k

0 ‘ Sk(Ti,TiJrl)
the upper and lower halves consist of n;—; — n;11 and (41 — k) + (n; — k)
rows, respectively, and where the upper left and lower right submatrices are
square. Since 7 ,, = 1 the upper left submatrix is unitriangular, and hence we
have resy(ri_1,7;) = (—1)("i-1=Ri=k) .\ TF L reg (ry 11 1), Thus we from

resy, (ri_1,7;) = 1 obtain res,, (ro,r1) = [J'Z} ((—1)(”1‘—1*”1‘)("-7’”1') ‘ /\;fgm),

and lower halves yields a matrix of the form [}, where now

j=1
and from res,, (f,g) = A\g* " A" " - resy, (1o, 1) the assertion follows. 1

(4.11) Definition. Let 0 # f := > f;X" € C[X]. Then let |f], :=
St o fil € Rsg be the 1-norm, let | f[, := />, |fi]* € Rso be the 2-norm
and let |f],, :=max{|f;|;i € {0,...,n}} € Ryo be the maximum norm of f;
we let 0], = |0], = |0],, = 0. Since for f # 0 we have > ., | fi]* < (O iy | fi])?
we conclude [f[< |fly < [fly < v/deg(f) +1-[f]-

27

(4.12) Theorem. Let 0 # f,g € Z[X] such that n = deg(f) and m = deg(g)
and | f| .., |9l < B forsome B > 0. Then the numerators and denominators of
the coefficients of the elements 7;, s;, t; € Q[X] in the monic extended Euclidean
algorithm for f and g are absolutely bounded by 2(n +1)% - (m +1)% - B"tm,

Note that if n > m, then the input length of f is (n +2)-b(f) = (n + 2) -
max{b(fo),...,b(fn)} = (n+2)-b(| f|) ~ n-In(B), which also bounds the input
length of g, and we have b(r;), b(s;), b(t;) € O(In((n+1)"-B?*")) C O(n-In(nB)).

Proof. Let ¢ € {2,...,l} and k = n; = deg(r;); note that hence n + m >
2k. Since le(r;) = 1 the elements s; € Q[X]<m—r and t; € Q[X]<p_j are
given by [s;,t;] = lor(f,g)~t. Letting 0 # pi, := resg(f,g) € Z, then we
have pgs; f + prtig = prri, where by Cramer’s rule pys;, prti, prri € Z[X]. By
Hadamard’s inequality (5.3) we get [px| = |det(Sx(f,0))| < IfI5 " - Jgl; ™" <

(n+ 1" - (m+1)"2 - |f]7" |gl”=*. Moreover, applying Cramer’s rule
to find s; and t;, Hadamard’s inequality yields |pgsi|.. < [f]5 ol ||g\|2
m—k—1 n—k m—k—1 n—k —k nfkfl
(1)) 5 1 gl and i < 1 ol <
(n+ 1) - (m4+1)" = |27 g% " This finally yields |pgri] o < (m+
mokt1 n—kt1

m—k n—~k,
D)-(lpxsill o1 f oo Flortil o l9lse) < 2(n+1) «(m+1) Ifl%e " lgls™s

note that for £ = 0 we have r; = 1 anyway.

We proceed towards modular techniques for ged computations in Z[X], which
are asymptotically faster than techniques based on resultants, but still require
resultants as a theoretical tool. We only present the basic ideas, for variants
of modular ged computations in Z[X] and for modular ged computations in
F[X,Y], where F is a field, see [3, Ch.6.5, 6.7, 6.11]. Moreover, for an asymp-
totically fast extended Euclidean algorithm in Z and R[X], where R is factorial,
based on a divide and conquer technique, see [3, Ch.11.1]. Mignotte’s inequality
actually is proved without using resultants; for a sharper version of Mignotte’s
inequality, using the same line of proof, see [2, Thm.3.5.1]; for a related even
better bound, the Bombieri norm, see [8, Exc.4.6.2.21].

(4.13) Proposition: Landau inequality (1905).

Let 0 # f = fo-[[im1(X —2) € C[X], and let M(f) := |fn| -], max{1, |z} €
R-o be its Mahler measure. Then we have M (f) < |f],-

Proof. Let first 0 # g = > i~ ¢: X" € C[X], where we let g; := 0 for i < 0
and ¢ > m. Then for z € C we have |[(X — z)gH; = ZMH lgi—1 — 2g:]* =
> (gi-1 = 290) (@m1 — 790) = gl - (1 + [21%) = 00 (29iGi=1 + Z9i157) =
> (B9 — 90 (2T —) = it [Bgi-1 — gil? = |(BX — 1)gl.

As for M (f), we may assume that |z1],...,|zx| > 1 and |zg41],- .., |2n] < 1, for
some k € {0,...,n}. Hence we have M() = |fn- HZ 1%l Lettmg g:= fn-
Hz [(ZX-1)- HZ pr1(X—z) = Yo 9iX" € C[X], we have g,, = f,- Hl 1% €

k
C and thus M(f)? = [g.|* < |g]5 = HW L (X = 2[5 = 1£15- f

28

(4.14) Proposition. Let 0 # f = > | f; X" € C[X] such that n = deg(f)
and 0 # h = 377, h; X7 € C[X] such that m = deg(h) and h | f € C[X].
Then we have |, < 2™ - M(h) < Y=l 2m . M(f).

Proof. Let f = f, - [[[2,(X — z) € C[X] and h = hy, - [[]L (X —uy) €
C[X]; note that the uj € C are a subsequence of the z; € C. Let ey, =
Zl<k1<k2<--~<k,~,<m(H;:1 Xi,) € C[X1,...,Xm] be the elementary symmetric
polynomial of degree i € {1,...,m} in the indeterminates {Xj,..., X;,}. Then

for j € {0,...,m — 1} we have h; = (=1)" T hpmem m—j(u1,...,un) € C, and

thus we have |1;| < [Pl - 2y <hyzchnyom(TI7 Tun]) < () - M(R);
note that |hy,| < () - M(h) as well. Hence we have |h], = doio byl <

M(h)- Y05 () = 2m - M(h) < el o2m (). f

(4.15) Theorem: Mignotte inequality.

Let 0 # f,g,h € Z[X], where n = deg(f) and k = deg(g) as well as m = deg(h),
such that gh | f € Z[X]. Then we have |g|, - |2], < 2™ | f],. In particular,
this yields |A| < 2™ - vn+1-|f| .-

Proof. We have lc(g)lc(h) | le(f), and thus Landau’s inequality implies |g| -
|h|, < 2m+k. M(f) < 2™k .| f]|,, thus proving the first inequality. The second
inequality follows from taking ¢ :=1 € Z[X]. i

(4.16) Lemma. Let R be an integral domain, let I << R be a prime ideal,
and let —: R — R/I denote the natural map; note that R/I again is an integral

domain. Let 0 # f,g € R[X] such that lc(f) ¢ I, i. e. we have deg(f) = deg(f).
Then for k € {0, ..., min{deg(f),deg(g)}} we have res;(f,g) = 0 if and only if

resi(f,g) = 0.
Note that if 1c(g) & I as well, i. e. we have deg(g) = deg(g) as well, we have

resi(f,g) = resy(f,g) anyway. Moreover note that without any assumption on
le(f) and lc(g) the assertion does not hold in general: E. g. let R := Z and
p:=2,as well as f := —X +4X? and g := 1 + 2X, then we have res(f,g) = 0

and res(f,g) = res(X,1) = 1.

Proof. Let f =" fiX"and g = dito g; X7, where n = deg(f) and m =
deg(g). If n = m = 0, then reso(f,g) = 1 ¢ I and reso(f,g) = 1 # 0, while if
n =0 and m > 0, we have reso(f,g) = f;* ¢ I and reso(f,9) = Edeg(g) # 0.
Hence let n > 1. If g = 0, then reso(f,g) = 0, and since g; € I for all
j €{0,...,m} we have reso(f,g) € I as well. If g # 0 let j := deg(g), hence

29

j €40,...,m} is maximal such that g; # 0. For k € {0,...,min{n, j}} we have

i fn fn—m+j f2k,—m+1 i
In coo for—ji1
Sk(f.9) = oo S ;
dm -1 95 N cee g2k—n+1
L 9m .- e gk |

where the lower right submatrix taken modulo [yields Sk (f,d), where all entries
in the lower left submatrix are in I, and the upper left submatrix is an upper

triangular matrix with f,,’s on the diagonal. Thus we obtain resi(f, g) = ﬁmi] .
resi(f,9), and since f~7 & I the assertion follows also in this case. #

(4.17) Proposition. Let R be a principal ideal domain, let p € R be a prime,
and let : R — R/(p) =: F denote the natural map; note that F is a field.
Moreover, let 0 # f,g € R[X] such that p J ged(le(f),le(g)) € R, and let

h = ged(f,g9) € R[X]. Then we have lc(h) € F* and deg(h) = deg(h) <

deg(ged(f,7)). Moreover, we have deg(h) = deg(ged(f,g)) if and only if h ~
ged(f,9) € F[X], which in turn holds if and only if p J/res(%, 7)€ R.

Proof. Since h | f,g, we have lc(h) | le(f),le(g), which implies lc(h) |
ged(le(f),1c(g)), thus p) lc(h). Letting u := 4 € R[X] and v := { € R[X],
we obtain f = wh € F[X] and § = vh € F[X], hence h | ged(f,g), im-
plying deg(h) < deg(gcd(f,d)), and showing that equality is equivalent to
h ~ ged(f,g) € F[X]. Moreover, we have h ~ ged(f,g) € F[X] if and only if
u,v € F[X] are coprime, which holds if and only if res(u,7) # 0 € F. Since we
may assume that p J le(f), implying p J le(u), the assertion res(u,v) # 0 € F
g

is equivalent to res(%, 7) =res(u,v) #0 € R. il

—

[~

(4.18) Theorem. Let R be a principal ideal domain, let K := Quot(R), let
p € R be a prime, let ": R — R/(p) =: F denote the natural map, and let
0 # f,g € R|X] such that p J ged(lc(f),lc(g)) € R.

Then the degree sequence for f and g is a subsequence of the degree sequence
for f and g, where for i € {1,...,1} the degree n; occurs in the degree sequence
for f and g, if and only if p J res,,(f,g) € R. In this case, for the elements
T4, Si, t; occurring in the monic extended Euclidean algorithm for f and g we have
i, 80, ti € Ry [X] € K[X], and 77,5;,¢; € F[X] occur in the monic extended
Euclidean algorithm for f and g, where deg(75) = n;.

30

Proof. For k € {0,...,min{deg(f),deg(g)}} we have resy(f,q) ~ resx(f,g) €
F. Hence the degree sequence for f and g is a subsequence of the degree
sequence for f and g, and n; occurs in the degree sequence for f and g if and
only if p J res,,(f,g) € R. In this case, letting k = n;, if n +m > 2k then
we have [s;, ;] = 1ok (f,g)7 1, thus s;,t;,7; € m - R[X] C R,)[X]. Hence
(55, tiler(f,g) = 1, thus &f + &g = 7 € F[X]; if k = n = m and hence
k = deg(f) = deg(g), then i = 1 and p J lc(f),lc(g), hence from s; = 0 and
tlzﬁusingslf—l—tlg:rlWegetﬁf—i—ﬁgzﬁeF[X]. 1

(4.19) Algorithm: Modular Euclidean Algorithm.

Let 0 # f,g € Z[X] primitive such that deg(f) = n > m = deg(g), and let
h = ged(f,g) € Z[X] primitive. Then by (4.12) we in particular have |h[<
2n+1)% - (m+ DF - max{|fl, gl ™™ < 200+ 1) - max{lf] ., gl 12"
while Mignotte’s inequality yields the better bound |h| . < 2™ -vn+1 -
min{| £l 19l }-

To compute h = ged(f,g) € Z[X] we choose a prime p € N such that p >

2-2" - v/n+1-min{|f|lgl.} Then compute gcd(j,y) € Z/(p)[X], and
let h € Z[X] such that deg(h) = deg(ged(f,g)) and |h|, < % as well as

h = ged(f,g). Hence if h | f,g € Z[X], then h ~ ged(f,g) € Z[X]. Note
that this holds if and only if p J res(%, Z) € Z, hence only a finite number of
primes p have to be excluded; note that by the proof of (4.12) and Mignotte’s

inequality we have [res(L, £)] < (n 4+ 1)" - max{|L| _,[2] . }*" < (n + 1)*>".
2
227" max{] f] o gl }*"-

To compute the monic remainders r; € Q[X] and the coefficients s;,t; € Q[X],
such that s;f + t;g = r; € Q[X], for i € {1,...,1}, by (4.12) we choose a prime
p € N such that p > 8(n+1)"™-(m+1)". Hence n; occurs in the degree sequence
for f and g, and thus s;,t;,7; € Q[X] can be found from 77,%;,#; € Z/(p)[X] by
rational number reconstruction, see Exercise (8.29).

E.g. for f =rp:= —5+2X+8X2-3X3-3X*+ X0+ X8 c Z[X]and g = r; :=
21-9X -4X24+5X443X6 € Z[X], the degree sequence is ng = 8, n; = 6, ny = 4,
ng =2,n4 =1,n5 = 0, ng < 0, and we find resy(f, g) = 260 708 = 22.7-9311 and
res; (f,g) = 9326 = 2-4663, as well as resa(f, g) = 169 = 132 and res3(f, g) = 0,
as well as resy (f, g) = 25 = 52 and ress(f, g) = 0, and finally resg(f, g) = 9 = 32.

Moreover, we obtain the degree sequences in the monic extended Euclidean
algorithm for f and g: For p ¢ {2,3,5,7,13,4663,9311} the degree sequence
[6,4,2,1,0] is unchanged, while for p = 2 we get [6,4,2], for p = 3 we get
[4,2,1,0], for p = 5 we get [6,2,1,0], for p € {7,9311} we get [6,4,2,1], for
p =13 we get [6,4,1,0], and for p = 4663 we get [6,4,2,0].

31

5 Lattice base reduction

(5.1) Definition. Let K € {R,C} and let V # {0} be a finite dimensional K-
vector space. Let (-,): VxV — K: [v,w] — (v,w) be a hermitian sesquilin-
ear form, i. e. we have (v + v, w) = (v,w) + (V',w) and (v, w) = A{v,w) as
well as (w,v) = (v,w), for all v,v’,w € V and XA € K. In particular, we have
(v, wA) = AMv,w). For U<V let Ut :={v € V;(v,u) =0foralluc U} < V.
In particular, rad((-,-)) := V' is called the radical of (-,-). The form (-,-)
is called non-degenerate if rad((-,-)) = {0}. A vector 0 # v € V is called
isotropic, if (v,v) = 0; the form (-,-) is called anisotropic if there are no
isotropic vectors. If K = R the form (-, -) just is a symmetric bilinear form.

Let ¢: V — K: v +— (v,v) be the quadratic form associated to (-,-). Hence
we have g(v\) = (vA,0A) = A\(v,v) = |A|? - q(v), for all A € K, and ¢(v) =
(v,v) = (v,v) = q(v) € R. The quadratic form ¢ is called positive definite
if ¢(v) > 0 for all 0 # v € V. Note that in this case 0 = (v,v) = ¢(v) implies
v = 0, hence (-,-) is anisotropic, thus non-degenerate, and for U < V' we have
V =U @ U™, If q is positive definite, then for K = C the vector space V is
called a unitary, for K = R it is called Euclidean.

Note that (-, -) can be recovered from g: We have 1 - (¢(v +

w) —q(v) —gq(w)) =
L (w4 w0+ w) — (0,0) — (w,0)) = & (v, w) + {,0)) = Re((v, w)), and for
K = C we additionally have 1 - (g(v+iw)— () q(iw)) = 1- ((v—l-zw v+iw) —

(0,0) — {iw, iw)) = § - (~i{o,w) + i(w, v)) = 5 - ((v,w) — (v, w)) = Im((v, w)).

(5.2) Algorithm: Gram-Schmidt orthogonalization (1883/1907).
Let V be a unitary or Euclidean vector space with quadratic form ¢ and as-
sociated sesquilinear form (-,-), and let B = {b1,...,b,} C V be a K-basis,

where K € {R,C}. For ¢ € {1,...,n} let by 1nduct10n Hij * ézf’zl,; € K, for

je{l,...;i—1}, and b, :=b; — S\ Wiy € V, as well as B == {b),..., b, }.

J=1"7
Then for i € {1,...,n} we have U; := (b1,...,b;)x = (b},...,bl)x < V. More-
over, b/ is the image of b; under the projection V = U;_; @ U~ | — U, where
Up := {0}. In particular B’ C V is an orthogonal K-basis, called the associated
Gram-Schmidt K-basis, such that the base change matrix g/idg € K™*"™ is
lower unitriangular.

Proof. We have to show that b; — b; € U;_1 and b} € UJ- 1; then we conclude
U; = (b,...,b}) Kk, in particular b/ ;é 0, and (b;,b;) =0 for] e{l,...,i—1}.
We proceed by induction on ¢ € {17 e ,n}: For i = 1 we have b; — b’l = O € Uy,
and Ui = V anyway. For i > 2 we have b; — b} = Z; 11b;uu € U;; and for

. i—1 (bi,b%)
ke {L...i— 1) we have (b, b) = (b, b) — X503 (0. b5) - grgry = (s Bi) —

(b}, b},) - % = 0; note that by induction we have U;,_; = (b},...,b0;)k,
k7K
where b}, ...,b,_; are pairwise orthogonal. i

32

Note that the p;; € K, for 1 < j < i < n, the (b},b;) € R, for i € {1,...,n},
and the base change matrix g/idg € K™*™ can successively be computed from
the Gram matrix Q = [(b;,b;)];; € K"*" of (-,-) alone, without explicitly
computing the b;. Moreover, note that B" C V is not necessarily an orthonormal

K-basis; an orthonormal K-basis can subsequently be found by replacing b; by

b;’:b;-m,forie{lw..,n}.

(5.3) Corollary: Hadamard inequality (1893).

Let n € Nand (-,-): C* x C™ — C be given by (e;, e;) := 1 and (e;, ;) := 0, for
i#7€{l,...,n}, where {e1,...,e,} C C" is the standard C-basis. Then for
v =[v1,...,v,] € C" we have q(v) = (v,v) = 31" | |v;|* € R>p, the standard
quadratic form, hence |v| := \/q(v) = \/zz;l |v;]2 =€ R> is the 2-norm.

Let A = [a;;] € C™*", and let a; := [a;1,...,a;n] € C™ denote its rows, for
1

. n n n 2
i € {1,...,n}. Then we have |det(4)| < TT, Jail = [Ty ()= lais)

Proof. We may assume that det(A) # 0, and let B := {aj,...,a,} C C",
which hence is a C-basis. Let B’ = {af,...,al,} € C" be the associated
Gram-Schmidt C-basis, and let A’ € C™*™ be the matrix whose rows are
ay,...,al. Since p/idg € C"*™ is lower unitriangular we have det(A) = det(A’).
Moreover, by the orthogonality of af,...,a, with respect to (-,-) we have
A AT = diag[(a; @ al);io€ {1,...,n}]. Finally, for i € {1,...,n} we have
q(a;) = q(a; +Ej 1 j:uw) (aj, z>+2 <]a]> |Uu‘ q(a)+ZJ 1q()
1112, Hence in conclusion we have | det(A4)> = |det(A")|* = det(4’ - A" B!

det(diag({a}, ap)]) = [T}, a(a) < T2y alai) =TIy lail f

(5.4) Algorithm. This leads to a modular technique to compute determi-

nants for matrices A = [a;;] € Z™*™: Choose pairwise non-associate primes
1

p1,---,ps € N such that [[;_,pr > 2-[[i-, (E?Zl \aij|2>E > 2 - |det(A4)].
Then use the Gaufl algorithm over the fields Z/(py) to compute the determi-
nants det(A) € Z/{py), for all k € {1,..., s}, and by Chinese remaindering find

det(A) € Z/([T5—, Pk)-

(5.5) Definition. a) A free Z-module L # {0} of finite Z-rank together with
a positive definite quadratic form g on Lr := L ®7 R is called a Z-lattice. Let
B C L be a Z-basis, and let Q € R™*™ be the Gram matrix of the symmetric
bilinear form (-,-) associated to ¢, with respect to the R-basis B C Lg. Hence
we have ¢(v) = vpQu', where vg € R™ denotes the coordinate tuple associated
to v € Lg. Thus Q is a positive definite symmetric matrix. Let B’ C R™ be the
associated Gram-Schmidt R-basis and P := p/idg € GL,(R). Then we have
PQP'™ = diag[|b}|*:i € {1,...,n}] € R**". In particular, since det(P) = 1 we
have det(Q) = [T, I5° > 0.

33

Z-Lattices L and L', having quadratic forms ¢ and ¢’, respectively, are called
isomorphic or equivalent, if there is a Z-lattice isomorphism ¢: L — L/,
i. e. ¢ is a Z-isomorphism such that ¢'(v¥) = q(v), for all v € L. Let B C L and
B’ C L' be Z-bases, where |B| = |B'| = n, let @, Q" € R™*"™ be the associated
Gram matrices, respectively, and let P := ppp € GL,(Z). Then we have
vpQUE = q(v) = ¢'(v¥) = vp - PQ'P™ - v, for all v € Lg, and since (-,-) can
be recovered from ¢ we have @ = PQ’P*. Thus since det(P) € Z* = {+1} we
conclude det(Q) = det(Q’). Hence det(L) := y/det(Q) > 0 is independent of
the choice of a Z-basis of L, and called the determinant of L.

b) More generally, if Q € R™ "™ is any positive definite symmetric matrix,
there is an orthogonal matrix P € O,(R) such that PQP~! = PQP"™ =
diag[Bi, ..., Bn] € R™*" where 3; > 0. Letting B := P~! . diag[/3;] € R"*",
we obtain @ = (P! - diag[y/F]) - (diag[/B;] - P~'") = BB'. Hence in the Eu-
clidean R-vector space R™ carrying the standard quadratic form, by restriction
of the quadratic form we have a Z-lattice L := (b1,...,b,)z C R™ whose Gram
matrix equals), where by, ...,b, € R™ are the rows of B, which are an R-basis
of R™. Note that more generally we may let B € R"*™ for m > n, such that
@ = BB"Y, where still the rows by, ...,b, € R™ of B are R-linearly independent.

In particular, given any Z-lattice L with Gram matrix @ € R™*™, up to equiv-
alence of Z-lattices we may assume that L is embedded into R™ as described
above. Thus ¢(v) = |v|* for all v € R", and Hadamard’s inequality implies
0 < det(L) = \/det(Q) = [det(B)| < [T;—; Ibil =TTy va(

c) Given a Z-lattice L C R”, then min(L) := m1n{\|v||;0 #v €L} >0
is called the minimum of L; an element v € L such that |v| = min(L) is
called a minimal or shortest vector. Given a Z-basis {b1,...,b,} C L and
the associated Gram-Schmidt R-basis {b},...,b),} C R", then we show that
min(L) > min{||b|;¢ € {1,...,n}}, hence we have min(L) >0, and L C R" is
a discrete subset, thus the minimum min(L) is attained:

For 0 #£ v € L we havev = Zle b;v;, for suitable v; € Z, where k € {1,...,n}is
chosen such that vy # 0. Thus v = S35 (043224 0 ;v = kakJer : biv;

J 175 Vi
. 2 2
for suitable v} € R. Hence [v]* = v - [b;* + 3205 ()2 - [b1* = [B},)*. i

(5.6) Definition. Let L C R™ be a Z-lattice having Z-basis B = {b1,...,b,} C
L, let {b),...,b,} € R™ be the associated Gram-Schmidt R-basis, and let y;; :=

<fb,lﬁz> € R, for 1 < j <i<n. Then B is called LLL reduced if the following
1

holds, with respect to some fixed X 7 <7 <1 and where we let o :

N[

P
1);LU§0‘ L fora111<j<z—1<n and

ii) |pii—1] < & forall i € {2,...,n}, as well as

iii) Lovasz condltlon 164% > (v — i 1) |6, |? for alli e {2,...,n}.
Note that the Lovasz condition is equivalent to |b) + b} pii1]> = |6}

P2,y by IP =y bl)P, for all i € {2,...,n}, where b + b}_jp;;-1 € R"

34

and b;_, € R™ are the images of b; € R" and b _1 € R”, respectively, under the
projection R® — U;t, in (5.2). Moreover, as Z < 7y <1 varies, we have o >

and hence 21 > 1. Thus condition (i) is fulfilled whenever |u;;| < 1 for all

1 < j <i—1<n, unifying conditions (i) and (ii). Note that the typlcal choice
isy= %, yielding oo = 2.

(5.7) Proposition. Using the notation of (5.6), let B be LLL reduced. Then:
a) For 1 < j <i <n we have [b;] < o En o

b) We have |by| < a5 - det(L)%.

¢) We have |by| < o™= - min(L).

d) We have det(L) < []"_, |bi] < o7 - det(L).

Proof. Foric {2,.. n} we have [b;]* > (y—1)- ||b P =L 1\|2 Hence for
1<j<i<nweget ||b}|| < a7 [B]%. Thus [b;[* = |bj]* +Zj N L
(14 (a—1)- 302 a7 [b]|* = o~ |b}|*. Hence for 1 < j < i < n we have
Ib;° < @d =t b5)* < ad 7Ll b)F = et ||b/ |?, proving a). This yields
Jor | < Ty @it b)) = a5 - [T, 16)° = @™ - det(L)?, proving b).
Let 0 # v = Zle biv; = Z bivl € L, for suitable v; € Z and v, € R, and

i=1"1"1
where k € {1,... n} is chosen such that v;, # 0, hence we have v}, = v, € Z.
Thus [o* = Y25, v - 07 = o2 - [0 = [0 * = a0 - by * = o= (1)

[b1 ||2, proving c). Finally, the ﬁrst inequality in d) holds anyway, and we have

) n(n—1) .
Il 10al® < Ty ot o T 1917 = (L)?, proving
the second inequality in d). i

(5.8) Algorithm: LLL, Lenstra-Lenstra-Lovasz (1982).
Let L C R™ be a Z-lattice having Z-basis B = {b1,...,b,} C R", let B’ =
{th,...,b,} CR™ be the associated Gram-Schmidt R- ba81s and let 1 <y<1.

1. k<2
2. while k < n do

3. forle[k—1,...,1] do # size reduction

<bk7b2>
.
LA TR

bi < b — by - [pwi]

br b,
4. Pk e—1 < - ’“_§>
’ 67—+

2 2

B — 10417 + 12—y - 1051l

if B <7- ||b§€71||2 then # check Lovasz condition
b < br_1 # swap
b= bf 4 bf_y + Bk k-1

AR P A
b — b B 7Y p B 3
k k—1 B k B

b, < b
if k>3thenk— k-1

35

else k —k+1
5. return [by,...,by]

Here, for z € R we let [z] := |2 + 1| € Z be the nearest integer function.

a) The LLL algorithm successively modifies B and B’, where B C L always
is a Z-basis, and where we show that B’ C R"™ always is the associate Gram-
Schmidt R-basis; note that the related numbers p;; € R and |b;] € R are always
recomputed using the current sets B and B’: In step 3, since b; € Ug_1, where
U, <R" for i € {0,...,n} is as in (5.2), the Gram—Schmidt R-basis B’ C R"™ i

bisbl < 1 for all 1 <1 < k.

unchanged. Hence after step 3 we have |uy| = |<”b, s 2,
1

In step 4, let b)_;,b;) € R™ be the elements to replace bj,_,,b,, € B’ after
exchanging by_1,bx € R™; note that the other elements of B’ are unchanged.
Since by_, is the image of by under the projection V — Ut ,, we have b} _, =
bl + b1 - pk,k—1. Moreover, since b} is the image of by_; under the projection

b)b//7
V = (Uk-a+(bi)r)*, we have byl = b, —b{_, - U2, We have by |° =

||b,’,c\|2 +,ui,k_1 . ||b;€_1|\2 = (. Since by_1 € Up—1 and b, € U,j_l, as well as
bp—1 — b}, € Ug—g and b},_, € Uit ,, we have (by_1,b}_;) = (bp_1,b}) +
fie—1 - (b1, b)) = prx_1-|bj,_,]?. Using this we finally obtain b = b},_, —

/ / pk—1-10, 1% T L T e Ly
(Or +Vh—1 k1) =57 = by (1= =g ==) = b ——(=

/ . ’ 2
bl ”kaH — b, - B 1ﬁ”b’“ Ly Thus, if the LLL algorithm terminates, then
the Lovasz condltlon is fulfilled as well, and hence B C L is an LLL reduced

Z-basis, in particular thus proving the existence of LLL reduced Z-bases.

b) We show that the LLL algorithm terminates: For I € {1,...,n} let Q; :=
[(bi,bj)i4,5 € {1,...,1}]i; € R be the Gram matrix of (-,-)|u,xuv,, and let
d; := det(Q;). Hence we have d; := Hizl 165> > 0, and in particular d, =
det(L)?. Thus d := [[;_, d; > 0 changes only if swapping, involving b} and

b._, say, occurs in step 4: In this case we have |b}, 1” = [k and ||b”|| ”b H

2 mhae bt g2 CINPURC N (7N a7y A /000 S LY nb' 2
Y B P L el L 1 A
thus we obtain [b)_,|* - [b7]> = |b}_,]* - |b}]°. Hence d; is unchanged for

I <k—2orl >k, while since § < 7 - \|b§€71||2 the number di_; is multiplied

.
b L
Y o7 T T,

Br o <Y S < 1, hence d > 0 also is multiplied by that number.
—1

If Q € Z"*", i. e. we have an integral lattice, then we always have d € Z.
Since d becomes strictly smaller in each swapping step, this possibly occurs
only finitely many times, hence the LLL algorithm terminates in this case.

In the general case @ E R™*™ we use the Hermite constant (1846) v, > 0,
for which min(L) < 'yn det(L)w = ’yn - det(Q)zw for any Z-lattice L C R™,
and which in this sense is best possible; see [2, Prop.6.4.1] or [8, Exc.3.3.4.9].

. 2
Since min((by,...,b;)z) > min(L), this yields d; = det(Q;) > (mmv#)l, for all

36

1€ {1,...,n}, and thus d > min(L)""*+Y . [T, % > 0. Hence if additionally
1

v < 1, then in the general case swapping possibly occurs only finitely many

times, and the LLL algorithm terminates.

c¢) Similarly to the Gram-Schmidt orthogonalization, it is possible to start with
the Gram matrix @@ € R™*"™ alone, where the suitably adjusted LLL algorithm
returns the LLL reduced basis in terms of a base change matrix, see Exercise
(8.37). The larger the parameter v is chosen, the better the LLL reduced basis
becomes, but the longer the LLL algorithm runs, although both aspects seem
to be rather insensitive to the value of v, see [2, Ch.2.6.1]. Note that if B C Z"
then for the associated Gram matrix we have Q € Z"*™ as well, and thus the
LLL algorithm completely runs over Q; moreover, the analysis in the proof of
(5.9) already indicates the denominators actually occurring, opening up a way
to a version of the LLL algorithm running completely over Z, see [2, Ch.2.6.3].

(5.9) Theorem. Let L C R" be a Z-lattice having Z-basis B = {b1,...,b,} C
Z" such that ||b;| < Afor alli € {1,...,n}, for some A > 0; note that hence the
input length of L is in O(n?In(A)). Then the LLL algorithm, with parameter
1 < < 1, needs at most O(n*In(A)) ring operations in Q, where the occurring
numerators and denominators have bit length in O(n1n(A)).

Proof. Each evaluation of (-,-), and hence of |- |*, needs O(n) ring operations
in Q. Adding a Q-multiple of a vector to another vector also needs O(n) ring
operations in Q. Hence each execution of step 3 needs O(n?) ring operations
in Q, and thus each execution of step 2 as well. Let B’ = {V),...,b,} be the
Gram-Schmidt R-basis associated to the current Z-basis B during execution of
the LLL algorithm. As in (5.8) let d; = Hﬁzl Hb;"2 eN, forl € {1,...,n},
and dp := 1, as well as d = [[}.;d; € N. Hence from |b}| < [b;], for i €
{1,...,n}, we for the initial Z-basis B conclude d; < Hé:l 16;]> < A2 < A2n,
and thus d = [[_, d; < [[;-, A% = A"+ Hence swapping occurs at most
log1 (A1) € O(n?In(A)) times. Thus this needs at most O(n*In(A)) ring
ope}ations in Q. Note that at the very beginning, the Gram-Schmidt R-basis B’
associated to the initial Z-basis B has to be computed; this needs O(n- @) =
O(n?) ring operations in Q.

To estimate the occurring numerators and denominators we derive bounds for
|bx| and [b},] as well as |, for £ € {1,...,n} and 1 <! < k < n, and show
that certain Z-multiples of b}, and py; are in Z" and Z, respectively:

Let p/idp = [Aij] € Q™*™; note that p/idp is lower unitriangular. Hence for

1 <1<k <nwefrom (b,b}) =0 obtain 35"} A - (b, bs) = —(br,by) € Z.

Hence [Ag1,.- 5 A k—1] € Q"1 is the solution of a system of Q-linear equations
(k—1)x (k—1)

with associated matrix Q1 € Z , thus by Cramer’s rule we have
di—1Ag; € Z, for 1 < j < k < n. Hence we also have bjdy—, € Z", for k €
{1,...,n}, and thus the denominators of the entries of b}, € Q" are absolutely
bounded by dj_1 < A?", thus these have bit lengths in O(nIn(A)).

37

Moreover, for 1 < I < k < n we obtain djuy = d; - % =di_1 - (b, b]) =
l

(bg,bjd;—1) € Z. Thus the denominator of p; € Q is absolutely bounded by

dy < A%, thus also have bit length in O(nIn(A)); and as |u| < 3 outside step

3 this estimate also holds for the numerators of those ug; € Q.

Initially we have |0} | < |bx]| < A, for k € {1,...,n}, Moreover, for swapping
for some k > 2 we have [b)_,|* = Br < v - |bl_,I° < |b_,|°, and since b
is the image of by under the projection V — (Uy_2 + (bg)r)*, while b} _, is
the image of by_; under the projection V. — Ui ,, we have |b}| < |b}_,| as
well. Hence we have |b}| < A, for k € {1,...,n}. Thus from bjdy_1 € Z"

we conclude that the numerators of the entries of b}, are absolutely bounded by
16}, dx—1] < A*" ! hence have bit lengths in O(nln(A)).

Moreover, outside step 3 we have |ug| < % for all 1 <1 < k < n, and hence
letting puxx = 1 yields [b[* = Yo, p2, - [b]]* < nA?, hence |bi] < n? - 4;
note that if by has not been touched at all, we have |b;| < A anyway. Thus the
entries in those by € Z" have bit lengths in O(In(n) 4+ In(A)) € O(nln(A)).

Hence it remains to consider the behavior of size reduction: At the beginning
of step 3 let my, := max{|pw|;1 € {1,...,k}}, where again ux := 1. Since for
I €{l,...,n} we have |bj| = (3%=)z > (7)z, for 1 <1 < k < n by the

di—1 = -1

’ / 1
Cauchy-Schwarz inequality we get |ugi| = <ﬁ’g,’ﬁ’£> < Hb"l“ll‘,"l“f’ I < d? - |bk|, and
l l

1
thus my, < max{d? ;1€ {1,....k—1}}- b < A2 |bs| < nz - A"t

During size reduction, for intermediate fig;, where 1 < [< k < n, we have
|tk] < 28=lmy: This holds true for] = kand l = k— 1, and for [< k—1
we have fig;—1 = pri—1 — [fri] - tui—1- Hence by the triangle inequality,
and using my, + % < 3. 28Iy we get [k 1] < my + (28" Imy + %) . % =
(1+2k’l*1)mk+i < 4.26=1=Ly, = 2k=(=Dppy, In particular, we have 1] <
on=lm, < s . (24)"~1. Since difir,; € Z the numerator of fiy; is absolutely
bounded by |dyfix| < n? - 2714371 hence has bit length in O(nIn(A)).

Finally, for intermediate b, during size reduction we have ||E;C HQ = Zle a2
107 < n-n(24)20=D . A2 < 220012 42 hence by < 2" 'nA™. Thus the
entries in by, € Z™ have bit lengths in O(nIn(A4)). i

For variants of the LLL algorithm, such as the modified LLL algorithm which
accepts also linear dependent vectors as input, and applications of these algo-
rithms, such as the computation of minimal vectors or the enumeration of short
vectors in lattices, or the computation of kernels and images of integer matrices,
or the computation of minimal polynomials of algebraic integers, see [2, Ch.2.6,
2.7]. A detailed discussion of successive minima of lattices and related lattice
bases is given in [15, Ch.3.3]. Here we only present the following application:

(5.10) Example: Simultaneous Diophantine approximation.
Let aq,...,a, € R. Then by a Theorem of Dirichlet, there are infinitely many

38

tuples [q;p1, ..., pn] € Z™"! such that |a; — Bl < g, foralli € {1,...,n}.

Finding simultaneous approximations is interpreted as a short vector problem:

Let (1,...,0, € Q be approximations of the «,...,«,, respectively, where
the (B; need not have the same denominator. Moreover, let 0 < ¢ < 1 and
0= o "1 and let L := (bg,...,b,)7z C R"1 where the b; € R**! are

the rows of the following matrix:
c b B2 ... Da
-1 .
B = . e T . c R(HDx(n+1)

-1
Let {30, e ,/I;n} C L be an LLL reduced Z-basis, with respect to the parameter
v = 2. Hence we [by| < 2% ~det(L)ﬁ, and since det(L) = |det(B)| = ¢

we conclude ”30” < € < 1. There are q,p1,...,pn € Z such that by = bgq +
S bipi = lqe,qB1 — p1,-..,qBn — pu] € L. We may assume that ¢ > 0.

Moreover, assume that ¢ = 0, then [by]* = S, p? > 1, a contradiction.
n(n+1) o~
Hence we have ¢ > 1. Then we have 2~ T €"tlq = ge < |bo| < e, hence

qg < 2" e, thus € < 2"% - ¢~ #. This yields 8; — B < % . H/b\0|| <c<
2" ~q*n%1. Note that this approximates the approximations 3; of the a;, and
is weaker than Dirichlet’s bound by a factor of 2%,

E. g. we consider the musical scale: In the well-tempered scale the idea is to
divide the octave into finitely many equal half tones, ¢ € N say, such that the
natural intervals, with frequency ratio r € Q say, are approximated well by an
integral number of half tones, p € N say, i. e. we would like to minimize |2§ —r,
which amounts to minimize |log,(r) — § . The natural intervals considered
are the octave itself, the fifth, the fourth, the major third, the minor third
and major second, whose frequency ratios are given as follows, together with
approximations of their binary logarithms up to 3 decimals; we also indicate the
corresponding number of half tones in the well-tempered scale:

Li [ri |logy(rs) ~ | pi |
1121 12
2|2 10,585 7
31%0,415 5
412 10,322 4
52 10,263 3
6|2 0,167 2

As logy(r1) = 1 anyway, the task is to find ¢ € N small and ps,...,ps € N
such that |logy(r;) — B[is minimized. Note that we have logy(r2) + logy(rs) =

39

log,(rar3) = 1, hence we could ignore ry as well. Anyway, let n := 5. To find

n(n+1) nntl) ot 1 nt1 il
the parameter ¢ =27~ 1 - Pl <2773 . (277 g)Ml =271 g

we proceed as follows: We would like to have 1 < ¢ < 100, say. For ¢ = 100
and n = 5 this inequality is fulfilled whenever ¢ < 0,0112. Hence we choose

= L
€= 150, and let
1 58 415 322 263 167
100 1000 1000 1000 1000 1000
-1 .
L . . _1 . . . 6><6
B = e Q.
. . .o =1 . .
-1 .
-1

The LLL algorithm yields the following Z-basis B = {30, e ,/55} C QF, which
decomposes into the Z-basis B as indicated by gzidp € Z°*°:

3 1 =1 =17 39 1

25 50 50 125 250 250

19 23 -23 59 = =3 173

100 200 200 500 1000 1000

N 11 13 -13 =21 107 163
B .= 50 100 100 250 500 500 | ¢ QxS

3 = 9 a7 -l 101

20 40 40 100 200 200

17 —11 11 237 471 —161

100 200 200 500 1000 1000

=9 47 53 51 133 =3

L 50 100 100 250 500 500 -

12 7 5 4 3 2
19 11 8 6 5 3
-2 13 -9 -7 —6 —4
pde=1 15 9 ¢ 5 4 2
7 10 7 5 4 3
18 -11 -8 -6 -5 -3

c Z6><6

Hence good rational approximations, due to /b\o are found taking ¢ := 12; and
indeed in the well-tempered scale the octave is divided into 12 half tones. Hence
the p; found coincide with the number of half tones into which the natural
intervals actually are divided. Note that the second vector b; also yields a good
rational approximations, which mean a division of the octave into 19 third tones,
and the indicated number of third tones for the natural intervals; even more,
the third tone scale allows to distinguish intervals e. g. such as the minor third
and augmented second, which have 5 and 4 third tones, respectively, but in the
well-tempered scale both have 3 half tones.

6 Polynomial factorization over finite fields

40

(6.1) Algorithm: Squarefree factorization.

Let p € N be a prime, let ¢ = p/ for some f € N, and let 0 # ¥ € F,[X] be
monic such that deg(¥) = n. The ultimate aim is to find the prime power
factorization ¥ = [[;_, ®*, where ®1,...,®, € F,[X] are pairwise differ-
ent irreducible monic polynomials, and where e = eg, (¥) € N is called the
corresponding multiplicity; note that since F,[X] is factorial the prime power
factorization is uniquely defined, and the prime polynomials are precisely the
irreducible ones. The polynomial W is called squarefree if e, = 1 for all
kEe{l,...,r}

The Frobenius map ¢,: F; — F,: o — o is a field automorphism, where
we even have Gal(F,/F,) = (y,), which hence is a cyclic group of order f. We
conclude that I, is a perfect field, i. e. all finite field extensions of F, are
separable. Hence we conclude that 0 # ¥ € F,[X] is squarefree if and only if
U € F[X] does not have multiple roots, where F, C F is an algebraic closure of
F,. The latter by (4.7) holds if and only if 0 # disc(¥) € F,, which in turn holds
if and only if 0 # res(¥, ¥’) € F,, where ¥’ = 2% € F [X] denotes the formal
derivative. The latter by (4.4) holds if and only if ged(¥, ¥’) =1 € F,[X].

We have ¥ = []i_, ¥, where U, := [[,cx. Px € Fg[X] and K. := {l €
{1,...,7};e; = e}; note that the ¥, are squarefree and pairwise coprime for
e € {1,...,n}. The polynomials ¥, for e € {1,...,n}, are found as follows:

Let © := ged(¥, ¥’) € Fy[X] monic, and let & € F,[X] be monic irreducible
such ® | ©. Hence there is a unique e € {1,...,n} such that & | ¥,
and ® = ®, for some k € K.; note that hence ¥, # 1. We have ¥’ =

i, (e\I/’e\IIZ*I Tlacqr, npvger \I/g). Thus for e # ¢ € {1,...,n} we have
the multiplicity Eq:.(Hde{17m7n}\{c} Ud) = e, and hence for the corresponding
summand of ¥’ we have eq(cW/ WS . [icq,..npie} Ud) > e. Moreover,
for p | e the e-th summand of ¥’ vanishes anyway, while for p } e we have
eq(eW Wel . [acqi,..npger Ud) = ¢ — 1; note that since ¥, is squarefree we
have ged(¥,,U.) = 1. Thus es(©) = e—1if p } e, and since © | ¥ we have
ep(©) =eif p | e. This yields © =J[.cq1 oy ppe Ve | ye

ec{l,...n},ple “e*

To actually compute the squarefree factors U, for e € {1,...,n}, we by in-
duction define © € F,[X] and Ay € F,[X] monic, for k£ € N, as follows: Let
O 1= O = ged(V, V') € Fy[X] and Ay := & € Fy[X], and for k > 1 we let
Apt1 :=ged(Op, Ag) € Fo[X]if p [k, and Agyq := Ap € F[X] if p | k, as well
as Op 1 1= 1ot € Fy(X) = Q(Fy[X]).

We by induction show that for & € N we have Ax, = [l.cqx .y pye Ye and
Or = [eetr,..nppre pek . Ieeq,... .y p1e Y6 hence in particular we indeed
have Oy € Fy[X]: For k = 1 we have Ay = £ = [ecqi,.nyppe Ye and
0 =0 =1]] L | Ue, Fork >1landp) k

e€{l,...,n},pfe T e ec{l,...n},ple T e
we have Agy; = ged(Og, Ag), and since for e > k we have ¥, | Oy if and

only if e > k + 1, we conclude Apy; = Hee{k+1,...,n},pye U,; for K > 1 and

41

P | k we have Ak+1 = Ak; = HSG{]C .nhple \IJE = HeG{kJrl n},ple \1157 ﬁnally
k

.....

_ 0 _ Heetpimyppe¥e " e _
for k > 1 we have Opy1 = 155 = | pTT—— Hecqi,nypre ¥e =
e—(k+1)
Hee{k—i-l,...,n}mj/e Ve ’ Hee{l,...,n}m\e \IJZ
This yields ¥, = AAL whenever e € {1,...,n} such that p J e. Hence we have

computed those ¥., and to obtain the ¥, for p | e we proceed as follows: We
have Ay = 1 for all k > n; and whenever we have k € {1,...,n} such that Ay =

e\NpP
1, then we conclude O, = O,_1 = HeE{l,u.,n},ple v = (Hee{l,...,n},me \Ifé)) .
Hence letting [[.cqq ny U o= U= X7 4 Z?:_ll 9 = F,[X], where

ple =€ e v
n € Ny, we have O (X) = U(X)P = Xﬁp—&-zzl:_ll PP X? € F,[X], thus ¥ can be
obtained from © by extracting p-th roots. Note that since the Frobenius map
pp: Fg — Fy is a field automorphism, p-th roots always exist and are unique,

and can be found using iterated application of ¢,, which has order f. Moreover,
the squarefree factors of U are We = W, € Fy[X], where e € {1,...,n} such

that p | e. Hence the ¥, for p | e can be computed from v by recursion.

(6.2) Proposition. Let p € N be a prime, let ¢ = p/ for some f € N, and for
n € Ny let Py, = {0 # ® € Fy[X]; ® monic, irreducible, deg(®) = n}. Then
for all d € N we have X" — X = [Li<nallsep,, ® € Fo[X]. In particular, we
have Py, # 0.

Proof. For a € F;d we have a9'~1 = 1, thus X' -Xe F,a[X] has q¢ pairwise
distinct roots in F,a, thus X' - X = [loer ,(X — @) € Fea[X]. Hence in

particular X7 — X € F4[X] is squarefree. Note that this shows that F, C Fa

is a splitting field of the polynomial X ¢ _ X e F,[X], proving existence and
uniqueness of IF .« whenever IF; exists; starting with the prime field F,, this shows
existence and uniqueness of the finite fields IFa.

Thus we have to show that for all n € N and ® € P, ,, we have @ | X' - X if

and only if n | d: Let @ | X9" — X. Then there is o € [F,a such that ®(a) = 0,
and since ® € F,[X] is irreducible we have Fyn = F,[X]/(®) = F,(a) C F,a.
Since F; € Fyn and Fy C Fa are field extensions of degree n and d, respectively,
we conclude that Fgn C Fa is a field extension of degree %, hence n | d.

Conversely, let n | d. Then X4 — X = (X7 — X). Y7 ' xia"-1) ¢ F,[X],
where m := gi:l = j%;ol ¢’™ € N. Moreover, for o := X € F [X]/(®) = Fn
we have ®(a) = ®(X) = ®(X) = 0 € Fyn, hence X —a | ® € Fyu[X].
Since @ # 0 we have a?" ~!' = 1 € Fyn, and hence X —a | (X7 — X) |
(X9 -~ X) e Fyn [X] as well. Thus X — « | ged(®, X' — X) € Fyn [X]. Since
both <I>,qu — X € F,[X], their monic ged’s in F,[X] and in Fyn[X] coincide,

42

thus we have gcd(q),qu — X) € F,[X] non-constant. Since ® € F,[X] is
irreducible we conclude ® | X ' _X e F,[X]. i

(6.3) Corollary. Let g € N be a prime power and n € N. Then 0 # ¥ € F,[X]
monic such that deg(¥) = n is irreducible, if and only if X¢" = X mod ¥ and

gcd(Xq% —X,¥)=1eF,[X], for all primes ! € N such that [| n.

Note that X" mod ¥ is found using binary modular exponentiation in F,[X].

Proof. If ¥ € F,[X] is irreducible, then we have ¥ | X" — X € F,[X] and
U) X9" — X € Fy[X], for all | | n. Conversely, if the above conditions are
fulfilled, then for all ® € F,[X] irreducible such that ® | ¥ | X" — X € F,[X]
we have deg(®) | n; assume that deg(®) < n, then let I € N be a prime such that
l|nand ® | X9" — X € F,[X], hence we have ® | ged(X9" — X, ¥) € F,[X],
a contradiction. i

(6.4) Algorithm: Distinct degree factorization, Zassenhaus (1969).
Let ¢ € N be a prime power and let 0 # ¥ = [],_, ® € F,[X] be monic and
squarefree, where ®4,...,®, € F,[X] are pairwise different irreducible monic
polynomials, and thus ¥ = [])j_, ¥; € F,[X], where n := deg(¥) and ¥, :=
[rex, ®r € Fo[X] and Kq := {l € {1,...,r};deg(®;) = d}; note that the Vg4
are pairwise coprime for d € {1,...,n}.

Letting Uy := = [1l_, ¥, € F,[X], for all d € N, we successively

v
ey ve
compute ¥y = gcd(qu — X, 9,) € F,[X]. Moreover, since ¥4 | ¥4_1 we have

(X" mod Ty) = ((qu“ mod Ty_y) - Xq) mod .

(6.5) Algorithm: Cantor-Zassenhaus (1981).

Let ¢ € N be a prime power, and let 0 # ¥ = [[;_, ®; € F,[X] be monic and
squarefree, where n := deg(¥) and ®q,...,?, € F,[X] are pairwise different
irreducible monic polynomials such that deg(®;) = d for all ¢ € {1,...,r},
where d is known. Hence we have n = dr; note that we are done if n = d, and
hence we may assume that r > 2.

Let © € Fy[X]. From X' — X = Macr ,(X = @) € FpalX], we get o —
6 = Haqud (6 — a) € Fuu[X], hence any a € Fya is a root of 0" -0 c
F,[X] C Fa[X]. Thus X7 — X | ©4° — © € F,[X]. Since deg(®;) = d for all
i€{l,...,r} we have ®; | X7 — X € F,[X], and thus ¥ | 07" — O € F,[X].

Since the ®; are irreducible such that deg(®;) = d and pairwise coprime, the
Chinese remainder theorem yields Fy[X]/(¥) = @, Fy[X]/(®;) = D;_, Fpa,
where for ¢ € {1,...,r} the corresponding projections are derived from the
natural maps m;: Fy[X] — F [X]/(®;).

43

a) Let g be odd Slnce we have e — @ @ (
) = ged(—1,2) =1 and ged(© _1:|:1 ,0) =
d_ d
ged(1,0) =1, we have ¥ = ged(¥, 0) - ged(1) - ged(P,) €
F,[X], where the factors are pairwise coprime. Moreover, we have gcd(\I/, 0)=1
if and only if ©™ € (Fy[X]/(®:))* = F;, foralli € {1,...,7}. Thus if we choose
© € F,[X]<, randomly, then the probability to have gcd(\ll ©) # 1, which if

O # 0 yields a non-trivial factor, is given as 1— (q(;—;l) ~ L hence is negligible.

~ —1)- (0") € Fy[X],

q

where ged(

Since de is a cyclic group of order ¢ — 1, we have a group epimorphism

d_
Fro = {+l}:a — o=, where {£1} < F;. is a cyclic group of order 2.

o . d_1 . d_1
Hence we have a partition F;d ={a € de;aq = =1} U{a € de;aq 7 =

—1} into two subsets of cardinality da_l. Hence for © € Fy[X]<, such that
d_
ged(¥,0) = 1 and fixed i € {1,...,r} we either have (©"% l)m =1¢c
_ a_
F,[X]/(®), i. e. ®; | ged(T — 1) € Fy[X], or (@7)™ = -1 ¢

F [X]/{®;), i. e. ®; | ged(1) € F,[X]. If we choose © € F,[X]|,
such that ged(¥, ©) = 1 randomly then either possibility occurs with probability
%. As this happens independently for all ¢ € {1,...,r}, both the probability to

d_1q

z —1) =1 and the probability to have ged (¥,) =1,
— 1) = ¥, are equal to 7 Thus for these © the probability
d

= —1) # VU is given by 1 — 5

have ged(

i. e. ged(
to have 1 # ged(

d_1q
Note that for constant polynomials © = X\ € IF* we have A7 € {:I:l} G F*

independent of i € {1,...,r}, and hence ged(¥, A = —1) =1 or ged (¥,
1) = ¥; thus these need not be tested, which increases the success probablhty for
non-constant test polynomials even further. Anyway, testing all non-constant
polynomials © € Fy[X], finally yields a complete factorization, where we are
done as soon as r pairwise coprime factors have been found.

Note that the above probability analysis even shows the following: If we choose
© € F,[X]<2q such that ged(¥,©) = 1 randomly then still either of the above
possibilities occurs with probability % independently for 2 of the factors ®;,

hence for these @ the probability to have 1 # gcd(\If,G)qd771 —1) # ¥ still
is given by 1 — 22 r = % Thus this decreases the success probability, but it
still is large enough to allow for the following randomized algorithm: Choose
0 # © € Fy[X] monic such that 1 < deg(©) < 2d randomly, and compute
~ d

U = ged(—1) € F,[X]; note that 07"~ mod ¥ is found using binary
modular exponentiation in Fg[X]. If 1 # U # U, then proceed with ¥ € Fq[X]
and ¥ 3 € FqlX] recursively.

b) Let g be even, hence ¢ = 2/ € N, where f € N. Letting T} := Ef ' x? e
o] we have Ty - (14+T7) = (15 X¥) (14 X4 X¥) = (50 X%) +

44

(U X292 = (05 X)) + (25 X7 = X + X% e Fo[X).

Thus we also have (Zfd ey . (1+ Zfd ey =0+ 0¥ ¢ F,[X], where
gcd(zfd e 1+ chdo 'e?) gcd(zfd 1©2' 1) = 1, hence we conclude

= ged(7, Zfd 102 . ged(W,1 + Zfd 'e?)eF 4[X], where the factors are
pairwise coprime.

Since Tyq - (1 + Tpq) = X + X = Haqud (X —a) € FulX], as well as
deg(Tyq) = 27971, we have a partition Fa = {a € Fya;Tra(a) = 0} U {a €
Fa; Tyq(r) = 1} into two sets of cardinality 2/9-1 = d. Hence for © € F,[X<,
and fixed ¢ € {1,...,r} we either have Zfd 'e? =0 e F,[X]/{(®;), i. e.
<I>i | ged(w, Y4 1@2) € F [X], or /9 10Y = 1 € F [X)/(®), i e

D, | ged(V,1+ Zfd '©%) € F,[X]. Thus, if we choose © € F,[X]., ran-
domly, then either possibility occurs with probability % Hence again both
the probability to have ged(V, Zf o192) = 1 and the probability to have
ged (¥, 1—|—Zfd ') =1,1i e ged(V, Zfd 1921) U, are equal to
thus the probability to have 1 # ged(¥ Zfd e) # U is given by 1 —

*

Note that for constant polynomials © = o € F; we have the following: Let
Ty, /p,: Fqg — Fg: o — z{;ol a% = ZZ o, @2 = Ty(a); note that we have
Gal(F,/Fy) = (o2), which is a cyclic group of order f, hence Tg /r, actu-
ally is the associated Galois trace map. Since oa|r, = idp,, we conclude that
Tk, /r, is an Fa-linear map, and since we have Fy = {a € Fy;T¢(a) = 0} U
{a € Fy;Ty(a) = 1}, we conclude that actually Tg /r,: F, — Fa surjective.

Anyway, since o |p, = idg,, for a € F} we have Tyq(ar) = St =

ZZ o a2 2= (. T¢(a) € Fy = {0,1}, 1ndependent of i € {1,...,r}, hence
ged (7, Zfd a2y =1 or ged(V, Zfd 'a2") = W; thus constant polynomials
need not be tested. Again, testing all non—constant polynomials © € F,[X],
finally yields a complete factorization.

277 and

Note that again we may restrict ourselves to © € Fy[X]<2q, where still for these

© the probability to have 1 # ged(P, Zfd 102") #£ U is given by 5. Thus
we have the following randomized algorithm: Choose 0 # © € F,[X] monic

such that 1 < deg(®) < 2d randomly, and compute U = ged(V, Zfd o) e
F,[X]; note that ©2" mod ¥ is found using modular squaring in F,[X]. If 1 #
U # U, then proceed with ¥ € F,[X] and % € F,[X] recursively.

We present another algorithm, the Berlekamp algorithm, for the final splitting,
which is based on linear algebra techniques. Actually it does not require that
the prime divisors of the polynomial all have the same degree, and hence distinct
degree factorization can be avoided here. For further algorithms for polynomial
factorization in F,[X], see [3, Ch.14].

45

(6.6) Algorithm: Berlekamp (1970).

Let ¢ € N be a prime power and let 0 # ¥ = [[/_, ®;, € F,[X] be monic and
squarefree, where n := deg(¥) and ®q,...,®?, € F,[X] are pairwise different
irreducible monic polynomials. Note that the number 7 is not a priorly known;
¥ might even be irreducible, i. e. we might have r = 1.

Then for © € F,[X]<,, we have U | ©7 — O if and only if there are ay,...,q, €
F, such that ®; | © — «; for all i € {1,...,r}: Since the ®; are irreducible
and pairwise coprime, by the Chinese remainder theorem we have F,[X]/(¥) =
P Fy[X]/(@i) = P, Faces,), where for i € {1,...,7} the corresponding
projections are derived from the natural maps m;: F[X] — Fy[X]/(®;). Hence,
given aj,...,a, € F, the polynomial © € F,[X].,, is uniquely determined by
P, | © —aq; foralli e {1,...,r}. Hence we have (07)™ = (af)™ =o' = O™,
thus ®; | ©2 — O for all ¢ € {1,...,7}. Conversely, if ¥ | ©7 — O, then from
X=X =[lpep, (X —a) eFg[X] we get ©; [¥ | O7 -0 =[] ,cp, (0 —0) €
F,[X], for all 4 € {1,...,7}. Since ®; is irreducible, we conclude that there is
a; € Fy such that ®; | © — «.

Hence, if © € Fy[X]<, such that ¥ | ©7 — ©, then ¥ = [],cp ged(¥,0 —
a) € F, [X], where since ged(© — a,© — o) = ged(©® — a,a — ') = 1 for
a # o € F,, the factors are pairwise coprime. Thus the aim is to find suitable
polynomials ©, yielding non-trivial factors; we proceed as follows: Let Uy :=
{® € Fy[X]<n; ¥ | ©7 —O}. Since for © € F,[X]<,, we have © € Uy if and
only if ©™ € F, C F,[X]/(®;), we conclude that Uy < F,[X]|<,, and that
Uy + (T) C F,[X]/(T) is an F,-subalgebra, called the Berlekamp algebra.
In particular, Uy encompasses the constant polynomials A € F,[X], but since
we ged(U, A —a) =1 for A # «, and ged(VU, A —) = ¥ for A = «, these need
not be tested. Letting a,..., o, € IF, vary, by the uniqueness statement in the
Chinese remainder theorem we have [Uy| = ¢", hence we have dimy, (Uy) = 7.
To find Uy first we proceed as follows:

Let © = Y07 0;X7 € Fy[X]<p, then ©7 = Y171 99X = Y719, X €
F,[X], and letting X9 = Z;L;Ol & X7 mod ¥, for &;; € F,and i € {0,...,n—1},
we get 9 = Z?;ol Z;;ol ¥;&;X7 mod ¥. Thus ©7 = © mod ¥ is equivalent
to 3720 9, X9 = 3T 3070 94, X7 mod ¥, which holds if and only if ¥; =
E?:_Ol ¥;&; € Fy, for all j € {0,...,n — 1}. Thus with respect to the F,-
basis {1, X,..., X" '} C F,[X]<,, the polynomial © € F,[X], is described
by ¥ = [Jo,...,0n—1] € Fy, and the F,-linear map F,[X]/(¥) — F,[X]/(¥)
induced by the Frobenius map Fy[X] — F,[X]: © — O is described by the
Petr-Berlekamp matrix Qg := [§;;] € F;*". Hence the © € Uy searched for
are precisely given as the solutions in Fy of the system of Fy-linear equations
¥-Qg = ¥, 1. e. as the solutions of the eigenvalue problem ¥-(Qu—E,) = 0 € F.

Hence we have to compute the row kernel ker(Qu — E,) € Fy; note that an
F,-basis can be computed using the Gaufl algorithm over the finite field F,.
Note that by the above we have dimp, (ker(Qy — E,)) = r, hence this yields the
so far unknown number 7 of prime divisors of W, in particular ¥ is irreducible

46

if and only if tkr (Qw — E,) =n — 1.

We finally have to pick © € Uy yielding non-trivial factors: For i # j €
{1,...,r} there is © € Uy such that o; :== O™ # O™ =: a; € Fy, i. e. we have
®; | ged(¥,0 — ;) and @;) ged(V,0 — «;), as well as @; | ged(V,0 — a;)
and ®;) ged(V,0 — ;). Hence given an Fg-basis {Og,...,0,_1} C Uy,
where we may assume ©¢ = 1, by F,-linearity there is an element Oy, for some
ke {1,...,r — 1}, having the same distinguishing property. Thus we have the
following deterministic algorithm:

We successively for k € {1,...,r — 1} and a € F, compute ged(¥, 0}, — a) €
F,[X], where ¥ € F,[X] runs through all the factors of ¥ found so far; here we
initially have U = U, and whenever 1 # gcd(\fl, Or) # T we replace T by the
non-trivial factors found; we terminate as soon as a total of r factors has been
found. Note that computing the Petr-Berlekamp matrix Qg € Fy*" and the
kernel ker(Qy — E,,) € [y are costly; hence it is better to proceed in the way
described above, rather than to use the algorithm recursively whenever a non-
trivial factor has been found. Moreover, note that the number of polynomials
O—a to be tested grows linearly with the field size ¢; thus the Cantor-Zassenhaus
algorithm is superior for large ¢, whenever g > 100, say.

As an alternative for large ¢, we have the following randomized algorithm for

g > 3 odd: We choose Xg,...,A\.—1 € F; randomly, let © := Z;;(l) O\ €

F,[X]<n, and compute gcd(\fl,@qz;l — 1) € F,[X], where as above ¥ € F,[X]

runs through all the factors of ¥ found so far, and if due is replaced by newly

found factors. The success probability is given as follows: For all ¢ € {1,...,7}
q—1

we have (072)™ € {0,£1}, as in (6.5). The first case occurs with probability

%, which is negligible for large ¢. The latter two cases occur with probability
qQ;ql ~ % each. Hence if ¥ is reducible, a non-trivial factor is found from

gcd(\i,@lz%l — 1) with probability at least 2 - % . % . qiz = % - # > %.

(6.7) Remark. We briefly comment on running times: The input length of
0 # ¥ € Fy[X] of degree deg(¥) = n is asymptotically ~ nln(g). Squarefree
factorization uses ring operations, quotient and remainder operations, and ged
computations in Fy[X], applied to polynomials whose degree is bounded by n,
thus this needs a number of field operations in F, which is a polynomial in n.
Distinct degree factorization additionally uses binary modular exponentiation,
where the exponents are in O(¢"™), which hence needs O(In(¢")) = O(nln(q))
ring operations as well as quotient and remainder operations in F,[X], thus this
needs a number of field operations in F,; which is a polynomial in nln(g). Note
that squarefree factorization and distinct degree factorization are deterministic.

The randomized Cantor-Zassenhaus algorithm, where the success probability
has been determined above, needs a number of field operations in F, which
is a polynomial in nln(g). The deterministic version of the Cantor-Zassenhaus
algorithm has to test O(¢") = O(e™™(@) polynomials, hence runs in exponential

47

time. Since linear algebra algorithms over IF;, need a number of field operations
in [F;, which is a polynomial in n, the randomized Berlekamp algorithm, where
the success probability has been determined above, needs a number of field
operations in F, which is a polynomial in nln(¢). The deterministic version
of the Berlekamp algorithm has to test O(ng) = O(ne™(@) polynomials, hence
runs in exponential time. Actually, it is an open problem whether polynomial
factorization in F,[X] can be performed in deterministic polynomial time.

7 Polynomial factorization over the integers

(7.1) Remark. Let 0 # ¥ € Z[X] be primitive; note that otherwise we have to
deal with integer factorization as well. Again the aim is to find the factorization
U = [T,_, ®7", where ®1,...,®, € Z[X] are pairwise non-associate irreducible
polynomials and e, = eq, (V) € N; note that the ®;, € Z[X] again are primi-
tive. By Gauf’s Theorem the @, € Q[X] are irreducible as well; in this sense
factorization in Z[X] and in Q[X] are equivalent.

By Gauf’s Theorem again ¥ € Z[X] is squarefree if and only if ¥ € Q[X] is
squarefree. Since Q is a perfect field, we by (4.7) conclude that the latter holds if
and only if disc(¥) # 0 € Z, which by (4.4) holds if and only if ged(¥, ') € Z[X]
is constant, where U/ = g—)‘g € Z[X] denotes the formal derivative. Moreover,
similar to (6.1), we let ¥ = []_, ¥¢, where W, := [[,cx, ®x € Z[X] and
Ke :={l € {1,...,r};e; = e}, and now get ged(V, V') = [[l_, ¥¢~! € Z[X],
thus m =11._, Y. =Ili_; ®x € Z[X]. Note that an algorithm similar
to the one in (6.1) actually yields the ¥, € Z[X], see Exercise (8.38). Thus we
may assume that 0 # ¥ € Z[X] is squarefree, hence disc(¥) # 0 € Z.

We apply a modular technique: Let p € N be a prime such that p) le(¥), and
let ~: Z — Z/{p) = F, denote the natural map; hence we have deg(¥) = deg(V)
and W =[], _; ®; € F,[X], where p Jlc(®x). Hence in particular if ¥ € F,[X]
is irreducible, then ¥ € Z[X] also is. The ®; € F,[X] in general are reducible:
Actually there are irreducible monic ® € Z[X], such that ® € F,[X] is reducible
for all primes p. Moreover, by the Chebotarev density theorem, see [3, Ch.15.3],
the modular factorization pattern varies with the prime chosen, which shows
that we cannot hope to find suitable primes with sufficiently high probability.

Hence after factorizing ¥ € F,[X] for a fixed big prime p, we try to deduce
the factorization of ¥ € Z[X] by trial and error factor combination from the
modular factorization pattern found. Note that by the variability in the modular
factorization patterns, using several small primes and the Chinese remainder
theorem would require to fit the various factorizations together, which is even
harder than trying the possible factor combinations coming from a single big
prime.

Subsequently, we present another modular technique, where instead of using a
big prime, we use a small prime p, and successively improve the factorization
mod p to factorizations modulo sufficiently high powers of p. Still, this does not

48

save us from finally having to try all possible factor combinations to find the
genuine divisors. Finally, although this does not yield a practical algorithm, we
show how lattice base reduction can be used to solve the factorization problem
in polynomial time; actually this was the original reason for the invention of
LLL reduction.

(7.2) Example: A Swinnerton-Dyer polynomial.

Let @ := 1 —10X2% + X* € Z[X]. We have disc(®) = 147456 = 2™ .32 € Z,
hence ® is squarefree, and as we show below ® for p # 2.3 also is. Indeed,
for p = 2 we have ® = 1 + X% = (1 + X)* € F3[X], and for p = 3 we have
® =1+4+2X2%2+ X* = (1+ X?)? € F3[X]. Moreover, we have ® = (X — /2 —
V3)(X —vV2+V3) (X +V2—V3)(X +V2+V3) = (-1 -2V2+ X?)(—1+2V2+
X2) = (1-2v3+X2)(142V3+X2) = (—=5—-2V6+X2)(—5+2V6+X2) € C[X].
Thus for p > 5 we conclude as follows: Let F3* := {o*;a € F;} < F;. Hence
if both 2,3 €]F;z, then ® € F,[X] factors into 4 linear factors; if 2 € IF;‘)Q and
3eF;\ IE‘;‘,27 then ® € F,[X] factors into 2 irreducible factors of degree 2; and
if 3 € F;? and 2 € F;, \ F;2, then ® € F,[X] also factors into 2 irreducible
factors of degree 2. Finally, if both 2,3 € F; \ F;?, then since p is odd and hence
[Fr: F5?] = 2, we have 6 = 2 -3 € 3, and again ® € F,[X] also factors into 2
irreducible factors of degree 2.

Thus for all primes p € N these modular factorization patterns are compatible
either with ® € Z[X] being irreducible or ® € Z[X] having a factorization into
2 factors of degree 2. But letting K := Q(v/2) C C and K3 := Q(v/3) C C, the
splitting field of ® € Q[X] is given as K := K3K3 C C; note that Ko N K3 = Q.
Hence we have [K: Q] = 4 and Gal(K/Q) = (ag,a3) = V4, the Klein 4-group,
where s V2 — —\/i\/g — /3 and as: V2 — \/i\/g — —+/3. Hence
Gal(K/Q) acts transitively on the roots of ® € K[X], and thus ® € Q[X] is
irreducible.

(7.3) Algorithm: Lifting factorizations, big prime version.

Let 0 # ¥ € Z[X] be primitive and squarefree, where n := deg(¥), and let
p € N be a prime such that p J le(¥). The polynomial ¥ € F,[X] is squarefree
if and only if disc(¥) # 0 € F,. Since by (4.16) we have disc(¥) = disc(¥) € F,,
the latter holds if and only if p)} disc(¥) € Z. Hence there are only finitely
many primes p € N such that ¥ € F,[X] is not squarefree, and we may choose
p suitably such that ¥ actually is squarefree.

If © | ¥ € Z[X], then Mignotte’s inequality yields |O]; - |&[; < 2" - vVn+1-
|¥|... Hence letting By := [lc(¥)|-2" - v/n+1-|¥| € N, where the reason
for the additional factor |lc(¥)| becomes clear below, we additionally choose
p € N such that p > 2By. Lifting the factors of ¥ € F,[X] to Z[X], let
O1,...,0, € Z[X] be monic such that |©;] < &, forall I € {1,...,s}, and
U = lc(V) - [[}_, ©: € Fy[X]; note that hence the ©; € Z[X] are primitive,
irreducible and pairwise coprime.

49

For a subset Z C {1,...,s}, lifting the corresponding subproduct, let ©, O €
Z[X] such that p J 1¢(©),1c(©) and |©],[O], < & as well as © = 1c(¥) -

[Lez ©1 € Fp[X] and © = 1c(¥) - [[eqy. \z O € Fp[X]. We show that
© -0 =1¢(V) - ¥ € Z[X] if and only if O], - 6], < By:

IfO-6 = le(W) - ¥, then Mignotte’s inequality applied to le(0) - U yields
1ol - ||(:)H1 < By. Conversely, we have © - © = Ic(¥) - ¥ € F,[X] anyway.
Let © = Y (9;X" € Z[X] and © = >0 ¥;X7 € Z[X], then |© - O], =

PIHIFS SN NI ¢l FEEID DA D D (7SR e DHEFD DY (/]
1] = kzo [9k])_- iz [9]) =[], - [©],. Hence we have |6 - O], <
6-81, < 101, - 18], < Bu, and since [lc(¥) - ¥ = lc(¥)] - [¥] ., < By as
well we conclude © - © = le(¥) - U, i

Note that by computing the constant coefficient g = ©(0) € Z first, we may
exclude cases such that ©(0) J lc(¥) - ¥(0) € Z from consideration in advance.
Then, the condition |©]; - [©]; < By is easily checked, replacing trial division.

If this condition holds then we have ¥ = % : % € Z[X], where y(-) €

Z denoting the content, the factors are primitive; note that y(1c(¥) - ¥) =
le(¥). Thus we successively run through the subsets Z C {1,...,s} such that
1 <t :=|I] < 3, with ¢ increasing, until we find © | ¥ € Z[X]; hence
© € Z[X] is irreducible; and we proceed with © := 9 € Z[X] and index sets
ZC{l,...,s}\Z, where t <T < =t

E.g let ¥:=1+6X —7X2?-2X3—-6X*+ X% € Z[X]. Hence we have n =
deg(¥) = 6 and lc(¥) = 1 as well as disc(¥) = —10930 094 080 = —2'%.5.31-269,
thus we choose p ¢ {2,5,31,269}. Moreover, we have By = 26 .7 -/7 ~
1185,3. Note that varying p we find several modular factorization patterns,
with varying number s > 2 of modular prime divisors. We make the minimal
possible choice p := 2371 > 2370 = 2By, where s is not minimal possible, thus
leaves something to do: Factorization of ¥ € F,[X], and lifting the factors to
Z[X], yields s =4 and ©®1 =1130+ X € Z[X] and O3 = 1133 + X € Z[X], as
well as O3 = —1068—1130X +X? € Z[X] and O, = 971 -1 133X + X? € Z[X].

For linear, quadratic or cubic factors © | ¥ Mignotte’s inequality shows that
we have |©], <2-7-v/7~37,0and |O]_ <22-7-V7~74,1and |O]_ <
23.7.4/7 ~ 148, 2, respectively. This or a consideration of constant coefficients
excludes the case t = 1, i. e. the singleton subsets Z C {1,...,4}. For ¢t = 2
and Z = {1,2} we get © = —50 — 108X + X2 € Z[X] and © = —901 — 994X —
147X2% 4+ 2224X3 + X* € Z[X], thus |©], - [©],, = 1082224 > By excludes
this case. For T = {1,4} we get © = —543 + 1021X — 3X? + X3 € Z[X] and
© = —834—1018X 4+ 3X2 4 X3 € Z[X], thus |O]__-|6©],, = 1012-1018 > By
excludes this case. Note that the latter cases can also be excluded directly

using Mignotte’s inequality or considering constant coefficients. Finally, for
IT={1,3}weget @ =1+ X+ X3 € Z[X]and © = -1 - 7X + X3 € Z[X],

50

thus O], - Hé”l — 3.9 < By implies that © - © = ¥ € Z[X]; note that the
above analysis also shows that ©,0 € Z[X] are irreducible.

(7.4) Proposition: Hensel lifting.

Let R be an integral domain, let 7 € R, and let 0 # f € R[X]. Moreover,
let 0 # g,h € R[X] such that deg(g) > 0, as well as lc(g) € (R/(m))* and
7w) le(h), as well as f = gh mod 7; note that this implies 7 J le(f) and
deg(g) + deg(h) = deg(f). Finally, let s,¢ € R[X] such that deg(s) < deg(h)
and 7 J lc(s), as well as deg(t) < deg(g) and 7 J lc(t), and sg + th = 1 mod ,
i. e. g and h are Bezout coprime mod 7.

o~

Then there are §,h € R[X] such that deg(g) = deg(g) and deg(h) = de
as well as § = gmod 7 and h = hmod 7, as well as le(g) = le(g) and f
gh mod 72, Moreover, there are 5,7 € R[X] such that deg(5) < deg(h) an

deg(t) < deg(g), as well as § = s mod 7 and ¢ = t mod =, as well as 5§ + th
1 mod 7%; note that here we let deg(0) < 0.

®
—
=

I A

Hence g, h,3,% € R[X] fulfill the assumptions made for g, h,s,t € R[X], with
7 € R replaced by 72 € R; note that we have 72) lc(h) anyway, and that from
le(g)-a—1 = g, for some «, 5 € R, we get lc(g)-a(l—pn) = (1+07)(1—07) =
1 — 3272, and thus le(g) € (R/(m?))*.

Proof. Let 6 :== 1 . (f — gh) € R[X]. Since lc(g) € (R/(r))*, by quotient and
remainder in R/(m)[X] let ¢, € R[X] such that deg(r) < deg(g) and 7 J lc(r),
as well as r = t§ — gg mod 7, and let v € R[X] such that 7 J lc(u), and
u=$0 + gh mod w. Let g := g+ rm € R[X] and h:=h + ur € R[X].

Then since sg + th = 1 mod m we have f — §iAL = f—(g+rm)(h+ur)
om — (ug + rh)m — run?® = o7 — (80 + qh)gm — (t6 — qg)hm = 67 — (sg + th)dm =
(1—sg—th)ém = 0 mod m2. We may assume u,r # 0. From deg(r) < deg(g) we
get deg(g) = deg(g) and 1c(g) = le(g) as well as § = g mod 7. Moreover, we have
rh4+ug = (t6 —qg)h+(sd+qh)g = (th+sg)6 = § mod 7. Since deg(d) < deg(f),
and deg(rh) = deg(r) + deg(h) < deg(g) + deg(h) = deg(f) as well as 7 } lc(u)
and lc(g) € (R/(m))*, we conclude that deg(ug) = deg(u) + deg(g) < deg(f)
and hence deg(u) < deg(h). Thus deg(h) < deg(h), and since & = h mod 7 and
7 J le(h) we conclude deg(ﬁ) = deg(h).

Let e := %-(l—sﬁ—t}\z) € R[X]. Again by quotient and remainder in R/(7)[X] let
q,r € R[X]such that deg(r) < deg(g) and 7 J lc(r), as well as r = te—qg mod 7,
and let u € R[X] such that 7)} lc(u), and u = se + gh mod 7. Let §:= s+ urm €
R[X] and t :=t + 7 € R[X].

Then we have 5§ + th = (s +um)g + (t+ rﬂ)h = (1 —em) + (ug + rh)m +
rughn? = (1 — en) + (se + qh)gr + (te — gg)hm = (1 — en) + (s§ + th)er =
(1—em)+(1—em)emr = 1—€272 = 1 mod 72, Again we may assume u, r # 0. Since
deg(r) < deg(§) and deg(t) < deg(g) = deg(§) we conclude that deg(t) < deg(3)
as well as ¢ = ¢t mod 7, similarly § = s mod 7. Finally, since 7 J lc(s),lc(u),

51

thus 7 | le(ur) and 72) le(un), we have 72 J lc(3), thus since le(g) € (R/(m?))*
and deg(th) = deg(?) + deg(h) < deg(g) + deg(h) = deg(f), we conclude that
deg(5g) = deg(s) + deg(g) < deg(f), and hence deg(s) < deg(h). 1

(7.5) Algorithm: Lifting factorizations, Zassenhaus (1969).

Let 0 # ¥ € Z[X] be primitive and squarefree, where n := deg(¥) > 0, and let
p € N be a prime such that p J lc(¥) and that ¥ € F,[X] is squarefree. Let
again O1,...,0, € Z[X] be monic, irreducible and pairwise coprime, such that
101, <5, forallle{l,....s}, and U = lc(V) - [];_, ©; € Fp[X], where the
O, € F,[X] are irreducible.

To apply Hensel lifting, for R = Z and modulus p? e Z, where i € Ng, we
consider the factorization ¥ = O - © mod p, where ©,0 € Z[X] such that
p J/1c(©),1¢(0) and 19] . Hé”oo < £ as well as © = lc(¥) - Hle ©; mod p and
0= [I—;1 ©: modp, and k := [§]. Since the ©; € Z[X] are monic and p J
le(¥), where Z/(p) = F), is a field, the assumptions in (7.4) on leading coefficients
are fulfilled, and since ¥ is squarefree the extended Euclidean algorithm in F,,[X]
yields Bezout coefficients fulfilling the degree assumptions.

Letting By := [lc(¥)[-2"-v/n+1-|¥|_ € N, and e := [log,(log,(2By))] € N as
well as 7 := p?~ > 2By, iterated application of Hensel lifting yields é, 6 € Z[X]
such that ||@|| H@H < Zand ¥= CE (f) mod 7. Applying this recursively to
(:),(S € Z[X], we finally obtain ¥ = lc(¥) - [[;_, ©, mod 7, where ||G)ZH

and ©; = ©; mod p, where the ©, € Z[X] are monic.

Now we proceed similar to (7.3): For a subset I C {1,....,s} let ©,0 €

Z[X] such that p J lc() 1¢(©) and 9], HG)H 5 as well as © = lc(\Il) :
HleI ; mod 7 and O = le(¥) - Hle{l SNT &) mod 7. Again we have © - © =
le(¥)-¥ € Z[X] if and only if |©] - ||@H1 < By; and in this case ¥ = W ©_¢

v(@)
Z[X]. Thus again we successively run through the subsets Z C {1,...,s} until

we find © | ¥ € Z[X], and proceed recursively with © := 9 e Z[X].

(7.6) Lemma. Let R be a principal ideal domain, let p € R be a prime, and
let 7: R — R/(p) =: F be the natural map; note that F' is a field. Let 0 #
f,9,h € R[X] such that deg(f) > 0 and p Jlc(g),lc(h) as well as f = gh mod p
and gcd(g, h) = 1 € F[X]; note that hence g and h are Bezout coprime mod p.

Let Zy,ﬁ € R[X] be the associated Hensel lifts, with respect to p¢ for some e € N.
Let g, h € R[X] such that lc(g) = lc(g) and lc(h) = lc(h), as well as g = g mod p
and h = h mod p, and f = gh mod p°. Then g = g mod p® and h = h mod p°.

Proof. Assume that g # g mod p° or ?L/?é 1 mod p°¢. Let 1 <14 < e be maximal
such that both § = g mod p’ and h = h mod p’. Hence there are u,v € R[X]

such that § — g = up® and h — h = vp’, where p J u or p [v. We may assume

52

~

that p J w. Hence from 0 = Z}'ﬁ —/g\?L = @'(E —h) —&—B(ﬁ—’g\) = (gv +ﬁu)pi mod p°
we conclude p | p¢~* | gv + hu € R[X].

Letting s,t € R[X] such that deg(s) < deg(h) and deg(t) < deg(g), as well as
p J le(s),lc(t) and sg + th = 1 mod p, we have 5 +th = 1 € F[X]. Thus
we get 0 = #(gv + hu) = tgu+ (1 —sg)u = (v — su)g + u € F[X], which
implies g | w € F[X]. Since le(g) = lc(g) we have deg(u) < deg(u) < deg(g) =
deg(g) = deg(g) = deg(g). Thus we conclude u = 0, a contradiction. 1

(7.7) Lemma. Let R be a principal ideal domain, let p € R be a prime, and let
“: R — R/{(p) =: F be the natural map. Let 0 # f € R[X] such that p } le(f)
and f € F[X] is squarefree, let g € R[X] such that g | f, and let h € R[X] such
that p J le(h) and deg(h) > 0 as well as f = hu mod p°, for some u € R[X]
such that p J le(u) and some e € N, and g = hv mod p, for some v € R[X] such
that p J lc(v). Then we have g = hv mod p¢, for some v € R[X].

Proof. We have p / lc(g) and g € F[X] is squarefree, hence ged(h,v) = 1 €
F[X], thus h and v are Bezout coprime modp. Hence Hensel lifting yields
h,o € R[X] such that h = hmod p and 5 = v mod p, as well as lc(lAL) = lc(h)
and deg(?) = deg(v), as well as g = ho mod p°.

Letting w € R[X] such that f = gw, we have p f lc(w) and h- (ﬁw) =gw=f=
hu mod p°. Moreover, from hvw = hu € F[X] we get vw = vw = u € F[X].
Since lc(ﬁ) le(h) and lc(vw) le(u) mod p, by (7 6) there is p J A € R such
that Yw = u) mod p® and h = h mod p¢. Thus g = ho = ht mod pe. #

(7.8) Lemma. Let 0 # f,g € Z[X] such that n := deg(f) > 0 and m :=
deg(g) > 0. Moreover, let 7 € N such that | f[5 - |g]y < 7, and let 0 # h € Z[X]
monic such that deg(h) > 0 and f = hh/ mod 7 as well as g = hh” mod =, for
some A, b € Z[X]. Then gcd(f,g) € Z[X] is non-constant.

Proof. Assume that ged(f, g) € Z[X] is constant. By (4.4) and (4.5) there are
s,t € Z[X] such that sf 4+ tg = res(f,g) # 0 € Z. Hence res(f,g) = h(sh' +
th') mod 7, and since h is monic and deg(h) > 0, we have 7 | res(f,g) € Z. By
Hadamard’s inequality we have [res(f,)| < [f]5 - |g]5 < 7, a contradiction. f

(7.9) Algorithm: Factorization using lattice base reduction.

Let 0 # ¥ € Z[X] be primitive and squarefree, where n := deg(¥) > 0, and
let p € N be a prime such that p)} lc(¥) and that U € F,[X] is squarefree.
By Mignotte’s inequality let By = 2" - /n+1-|¥|_ € N, and let e :=

2 e n2

[log,(log, (27 - BY"))] €N, thus m:=p* >2% - B}

By Hensel lifting let 91, ...,0, € Z|X] be monic, irreducible and pairwise co-
prime, such that [©;|, < %, foralli e {1,...,s}, and ¥ = 1c(¥)-[];_, ©; mod
7, in particular we have \Il le(0)-TT5_, @l € F,[X], where the ©; € F,[X] are

53

irreducible. Let © € {O1,...,0,} and [:= deg(©) > 0, and let Z?igo(q)) ;X7 =
® | U € Z[X] be irreducible such that ©® | ® € F,[X]. Then by (7.7) we have
® = 00 mod 7 for some O € Z[X], where deg(©) = deg(®) — [> 0.

For I <m <mnlet L CR™ be the Z-lattice generated by the coefficient tuples of
the polynomials {©,0-X,...,0.- X~ =11 C Z[X] and {7, 7X,..., X"} C
Z[X], with respect to the Z-basis {1,X,..., X"} C Z[X].p, i. e. letting
0 = Zimo 9, XF*, the Z-lattice L is generated by the rows of the following

matrix, where the upper half consists of m — [rows, and the lower half consists
of | rows:

[P0 Y1 ... Y1 1 i
190 19172 19[,1 1
190 1 Gmem'
™
s
L ﬂ- -

We have [go, - .., gm—1] € L if and only if for I' := Z;";Ol 9; X7 € Z[X] <y, there
are ¢ € Z[X]<m—; and r € Z[X]<; such that I' = ¢© +r7 € Z[X], which holds if
and only if there is ¢ € Z[X]<mm—; such that I' = ¢© mod 7: If [go, ..., gm—-1] €
L, then indeed we have I' = ¢© mod 7. If conversely I' := Z;.n:_ol g; X7 €
Z[X] <m such that there is ¢ € Z[X]|<pm—; such that I' = ¢® mod 7, 1. e. there is
r € Z|X]<m such that I' = ¢O© 4+ r7 € Z[X], then since © € Z[X] is monic there
are ¢’ € Z[X|<m—; and v’ € Z[X]<; such that r = ¢'© + ' € Z[X]. This yields
I'=¢0+(¢'O+r")n=(¢+¢7m)O+r'n € Z[X], and since deg(q+¢'n) <m —1
and deg(r') < I we have [go,...,gm—1] € L.

Hence for m > deg(®) > [we have deg(0) < m—1, and from ® = ©0 mod 7 we
conclude [po, ..., ¢m—1] € L, where we let ¢, := 0 for j > deg(®). Still letting
m > deg(®), let [Yo,...,¥m-1] € L be the first element of an LLL reduced Z-
basis of L, with respect to parameter v = %, and let I" := Z;n;Ol v X7 € Z[X].

Since |®|, < |®]; < By by (5.7) we have |I'|, < 2" ~min(L) < 2% - @[, <

2% . By. Hence |T|3%(®) . |@ 3™ < 2% . B2" <. Since I' = ¢© mod 7 and
® = 0O mod 7, by (7.8) we have ged(T, ®) € Z[X] non-constant, thus since ® €
Z[X] is irreducible we have ged(T', @) ~ ® € Z[X]. Hence for m = deg(®) + 1
we have m — 1 = deg(®) < deg(T") < m, and thus I' ~ ® € Z[X].

Hence we successively let m € {{+1,...,n}, as above compute the first element
T of an LLL reduced Z-basis of L, and check whether T' | ¥ € Z[X]. Note
that we also can apply other checks, e. g. the one using 1-norms applied in the
Zassenhaus algorithm.

54

(7.10) Remark. We briefly comment on running times: The input length of
0# ¥ € Z[X] of degree deg(¥) = n is asymptotically ~ nIn(|¥|_.).

Squarefree factorization needs a ged computation ged(V¥,¥’) € Z[X], where
U= 9% € Z[X] is the formal derivative; since |¥'| < n - [¥]_ the bit
lengths of the coefficients of the polynomials occurring in the extended Euclidean
algorithm are by (4.12) in O(n - In(n? - |¥|_)), hence this needs a polynomial
number of bit operations. Moreover, a division m € Z[|X] is needed,
which as well needs a polynomial number of bit operations.

In the big prime version to lift factorizations we choose p > [lc(¥)| - 27+1 .
Vvn+1-|¥|_, where we have to avoid prime divisors of disc(¥) € Z. As by
the proof of (4.12) we have |disc(¥)| = |res(¥, ¥')| < (n 4 1) - n?* - [¥|2",
we additionally choose p > |disc(¥)|, thus the bit length In(p) is a polynomial
in nln(|¥|). Note that by Bertrand’s postulate there always is a prime
at most twice as large as a given positive integer. Polynomial factorization in
F,[X] deterministically needs at least O(p) finite field operations, hence has
exponential running time, while a randomized version needs a number of finite
field operations which is a polynomial in nln(p). The coefficients of the integer
polynomials occurring are bounded by p, hence a polynomial number of bit
operations for the ring operations in Z[X] is needed. Alone 2°~! subsets of the
index set {1,..., s} have to be checked, which needs exponential running time.

In the Zassenhaus algorithm we choose a small prime p J lc(¥), where still
we have to avoid prime divisors of disc(¥) € Z. Using the prime number
theorem, see [3, Ch.18.4], a prime p fulfilling these requirements and such
that p ~ n-In(n - |¥]_) can be found deterministically needing a polynomial
number of bit operations, see [3, Cor.18.12]. Thus polynomial factorization
in F,[X], deterministically needing a number of finite field operations which
is a polynomial in nln(p), needs a polynomial number of bit operations. The
number of Hensel lifting steps e is polynomial, and the coefficients of the integer
polynomials occurring are bounded by m = p?* ~ [le(¥)| - 2" L. \/n + 1. |¥|_,
hence a polynomial number of bit operations for the ring operations in Z[X] is
needed. Still, alone 2°~! subsets of the index set {1,..., s} have to be checked,
which needs exponential running time.

Factorization using lattice base reduction avoids the factor combination step
in the Zassenhaus algorithm. The elements, b say, of the Z-bases defining the

relevant Z-lattices fulfill |b] < 7 ~ 2% (2" v/n+ 1P|)", thus by (5.9) the
LLL algorithm needs O(n* - In(r)) ring operations in Q, where the numerators
and denominators occurring have bit length in O(n -In(w)), which amounts to a
polynomial number of bit operations; moreover the LLL algorithm is performed
polynomially many times. Although the running time still is dominated by the
lattice base reduction step, we thus get an overall polynomial running time.

55

8 Exercises (in German)

(8.1) Aufgabe: Turing-Maschinen.

Man gebe eine Turing-Maschine iiber dem Alphabet X = {0,1} an, die fiir n €
Ny in Binérdarstellung als Eingabe den Nachfolger n+1 € N in Bindrdarstellung
ausgibt.

Beweis. Siche [13, Ex.2.2]. i

(8.2) Aufgabe: k-Band-Turing-Maschinen.
a) Fiir k € N gebe man eine Definition einer k-Band-Turing-Maschine iiber
dem Alphabet X mit Transitionsfunktion

- (X Uy)k % (S\ {500}) — ((X UY) x {<_,T7_>})k xS

an, und definiere Eingaben, Ausgaben und Konfigurationen.

b) Man zeige: Wird die Sprache £ durch eine k-Band-Turing-Maschine mit
Laufzeit f akzeptiert, so wird £ von einer Turing-Maschine mit Laufzeit in
O(f?) akzeptiert.

Beweis. Siehe [13, Ch.2.3] oder [1, La.10.1]. 1

(8.3) Aufgabe: Nichtdeterministische Turing-Maschinen.
Man zeige: Wird die Sprache £ durch die nichtdeterministische Turing-Maschine
7T mit Laufzeit f entschieden, so wird £ von einer 3-Band-Turing-Maschine mit

Laufzeit in O(n — cg(")) entschieden, wobei c; > 1 eine von 7 abhéngige
Konstante ist.

Beweis. Siche [13, Ch.2.3]. i

(8.4) Aufgabe: Chernoff-Schranke.

Es seien X7, ..., X}, unabhéngige Zufallsvariablen mit Wertebereich {0, 1} und
PX;=1]=¢ fir 0 <e <1, sowie X := Zle X;. Man zeige: Fir 0 < 9 <1
gilt P[X > (1 + 0)ek] < e= 27k,

Hinweis. Man betrachte die Zufallsvariable !X, fiir ¢ € R, und verwende
P[X > sE(X)] <1, fiir s >0, und die Konvexitit der Exponentialfunktion.

Beweis. Siehe [13, La.11.9]. i

(8.5) Aufgabe: Asymptotisches Verhalten.
a) Man zeige ohne Benutzung der Stirling-Formel: Es gelten In(n!) € O(nlIn(n))
und nln(n) € O(ln(n!)).

b) Fiir k € N zeige man: Es gilt > i* ~ ’ik—_:

56

c) Man betrachte die Fibonacci-Zahlen F,, := F,,_1 + F,,_o € N, fiir n > 3,
wobei Fy = Fy := 1. Man gebe eine einfache Funktion g mit F;, ~ g(n) an.
d) Man betrachte die folgenden Funktionen N\{1} — R, wobei0 < e <1 < ¢

1 1 n
1 < In(In(n)) < In(n) < D2 -(nlnm)2 o pe o pe <) <o« pn < @

Man zeige, daf fiir je zwei dieser Funktionen mit f < g auch f € o(g) gilt.

Beweis. a) Siehe [10, Ex.2.2.2, Exc.2.2.4]. b) Siehe [10, Ex.2.1.3].
c) Siehe [10, Exc.2.2.2]. d) Siehe [12, Ex.2.58]. i

(8.6) Aufgabe: Laufzeitabschitzungen.

a) Man zeige: Fiir n € N kann man n! mit O(n?-In*(n)) Bitoperationen berech-
nen. Wieviele Bitoperationen braucht man zur Berechnung von n"?

b) Man zeige: Fiir n € N gilt Y7 | i? = w Wieviele Bitoperationen
braucht man zur Berechnung der linken bzw. der rechten Seite dieser Gleichung?
c) Fiir i € N sei F; € N die zugehorige Fibonacci-Zahl. Wieviele Bitoperationen
braucht man zur Berechnung von " | F; bzw. []!"_, F}, fiir n € N?

d) Fir 1 # z € Nund n € N seien P, ,, := {p € N prim; b,(p) < n}. Wieviele
Bitoperationen braucht man zur Berechnung von > P, ,, bzw. [[P, 7

Beweis. a) Siehe [10, Ex.2.3.3] und [10, Exc.2.3.1]. b) Siche [10, Exc.2.3.3].
c) Siehe [10, Exc.2.3.5]. d) Siehe [10, Exc.2.3.6]. 1

(8.7) Aufgabe: Subtraktion.
Man gebe einen Algorithmus zur Subtraktion zweier Zahlen n,m € N an. Wie
entscheidet man algorithmisch, ob n > m gilt?

Beweis. Siche [3, Exc.2.3]. i

(8.8) Aufgabe: Matrixmultiplikation.
Fiir k,m,n € N seien A € Z¥*™ und B € Z™*". Wieviele Ringoperationen
braucht man zur klassischen Berechnung des Matrixprodukts AB € ZK*x"?

Beweis. Siehe [3, Exc.2.11]. i

(8.9) Aufgabe: Euklidischer Algorithmus.
Fiir ¢,m,n € N, ¢ # 1 zeige man: Es gilt ggT(¢™ — 1,¢" — 1) = ¢#eT(mn) _ 1,

(8.10) Aufgabe: Satz von Lamé.
Es seien m > n € N. Man zeige, dafl der erweiterte Euklidische Algorithmus

hochstens | = [;n((f\g))] — 2 Schritte benétigt.
s

Beweis. Siehe [2, Thm.1.3.2]. i

o7

(8.11) Aufgabe: Binidrer ggT-Algorithmus.
Es seien m,n € N.

1. k0.

2. while 0 = m mod 2 and 0 = n mod 2 do
m o
n« 3
k—k+1

3. while 0 =m mod 2 do m « %

4. while 0 =nmod 2don «+ 5

5. repeat

t « m=n

ift;éOthenwhiIeOEtmod2d0t<—%
if t >0 then m «t
if t <0 then n «— —t
until £ =0
6. return 2% - m

Man zeige, daf dieser Algorithmus ggT(m,n) berechnet, und gebe unter Ver-
wendung von max{bs(m),ba(n)} eine Abschétzung fiir die benétigte Anzahl
von Bitoperationen an. Welche Vorteile besitzt dieser Algorithmus gegeniiber
dem erweiterten Euklidischen Algorithmus, wenn es nur auf die Berechnung von
ggT(m,n) ankommt?

Beweis. Siche [2, Alg.1.3.5]. i

(8.12) Aufgabe: Arithmetik in Z.

Man implementiere die folgenden Algorithmen zur Arithmetik in Z, unter Be-
nutzung eines Computeralgebra-Systems wie MAPLE, und vergleiche Laufzeiten
und asymptotisches Verhalten:

a) Klassischer und Karatsuba-Algorithmus zur Multiplikation.

b) Klassischer und binédrer Algorithmus zum modularen Potenzieren.

c) Erweiterter Euklidischer und binérer Algorithmus zur ggT-Berechnung.

(8.13) Aufgabe: Modulare Inversion.

a) Man gebe einen Algorithmus an, der fiir m € Nund k € {0,...,m — 1} mit
k € (Z/{m))* das modulare Inverse | € {0,...,m — 1} mit kl =1 € Z/(m)
berechnet. Man gebe eine Laufzeitabschiatzung an.

b) Ist m € N eine Primzahl, so gebe man einen alternativen Algorithmus zur
Berechnung von modularen Inversen an, der den Satz von Fermat benutzt. Man
gebe eine Laufzeitabschitzung an.

Beweis. a) Siche [3, Ch.4.2]. b) Siehe [3, Ch.4.4]. i

58

(8.14) Aufgabe: Lineare diophantische Gleichungen.

Es seien a,b,c € Z mit [a,b] # [0,0]. Man zeige: Die lineare diophan-
tische Gleichung az + by = ¢ hat genau dann eine Losung [z, y] € Z2, wenn
geT(a,b) | c gilt. Wie sieht in diesem Fall die Losungsgesamtheit aus? Was
bedeutet das fiir die Entscheidbarkeit des Losungsproblems fiir lineare diophan-
tische Gleichungen?

Beweis. Siehe [3, Ch.4.5]. i

(8.15) Aufgabe: Chinesischer Restsatz.

Es sei k € N. Man gebe einen Algorithmus an, der fiir ny,...,n; € N mit
ggT(n;,n;) =1, fir alle 4,5 € {1,...,k}, sowie r; € {0,...,n; — 1} die simul-
tanen Kongruenzen r = r; mod n; 16st, und die eindeutig bestimmte Losung
r € {0,...,n — 1}, wobei n := Hle n; € N, berechnet. Man zeige, dafl dazu
héchstens O(In?(n)) Bitoperationen bendtigt werden.

Beweis. Siche [3, Ch.5.4]. i

(8.16) Aufgabe: Polynomarithmetik.

Es seien R ein kommutativer Ring, F' ein Korper, und R[X] sowie F[X] die
zugehorigen Polynomringe.

a) Man formuliere den Karatsuba-Algorithmus zur Multiplikation der Polynome
0 # f,g € R[X], und zeige fiir deg(f) > deg(g), daB8 hierzu O(deg(f)"s23)
Ringoperationen im Ring R benétigt werden.

b) Man formuliere den erweiterten Euklidischen Algorithmus fiir Polynome 0 #
f,g € F[X], und zeige, dafl hierzu O(deg(f) - deg(g)) Ringoperationen im Ring
F benotigt werden.

c) Man gebe einen Algorithmus zum Lésen simultaner Kongruenzen iiber dem
Polynomring F[X], zusammen mit einer Laufzeitabschitzung, an.

(8.17) Aufgabe: Primitive Einheitswurzeln. o
Es seien F' ein Korper und 1 # n € N mit char(F) J n. Ist X € F[X]/(X"™ —1)
eine primitive n-te Einheitswurzel?

Beweis. Siche [3, Exc.8.28]. i

(8.18) Aufgabe: FFT-Algorithmus.

Es seien R ein kommutativer Ring, I € N und n := 2!, sowie w € R eine primitive
n-te Einheitswurzel. Man gebe einen FFT-Algorithmus zur Berechnung der
diskreten Fourier-Transformation d,, fiir f € R[X]<, an, der auf der Zerlegung
f=fo(X?)+ X - f1(X?) € R[X], fiir geeignete fo, fi € R[X]|<=, beruht. Man
gebe eine Laufzeitabschitzung an.

Beweis. Siehe [3, Exc.8.25]. i

59

(8.19) Aufgabe: 3-adischer FFT-Algorithmus.

Es seien R ein kommutativer Ring, n = 3! fiir ein I € N, und w € R eine prim-
itive n-te Einheitswurzel. Man gebe einen FFT-Algorithmus zur Berechnung
der diskreten Fourier-Transformation d,,: R™ — R™ an. Man zeige, dal dazu
hochstens O(n1n(n)) Ringoperationen benétigt werden.

Hinweis. Fiir f € R[X]., betrachte man f mod (X5 —w%) fiir j € {0,...,2}.
Beweis. Siche [3, Exc.8.206]. i

(8.20) Aufgabe: Schonhage-Algorithmus.

Es seien R ein kommutativer Ring mit 3 € R* und 2n = 2-3' fiir ein [€ N. Man
gebe einen zum Schénhage-Strassen-Algorithmus analogen Algorithmus an, der
fir f,g € R[X]<2y, die kubische Konvolution i € R[X]<2, mit h = fg mod
(X274 X" +1) berechnet. Man zeige, dafi dazu héchstens O(n1n(n) In(In(n)))
Ringoperationen benttigt werden.

Hinweis. Es seien m := 321 und ¢ := 3L2) | sowie w € R[X]/(X2™ + X™ + 1)
eine primitive 3t-te Einheitswurzel. Man schreibe f = f/(X, X™) und g =
g'(X,X™) fir f',¢" € R[X,Y], und fiir j € {1,2} seien A} € R[X,Y] mit
F(WY)g (wY) = Bj(w’Y) mod (Y! — 1) in (R[X,Y]/(X*™ + X™ + 1))[Y].
Man setze h' := % ~(Yt(hhy—hy) +w?h) —w'hl) € R[X,Y]. Zur Berechnung
der h_3 verwende man den 3-adischen FFT-Algorithmus und Rekursion.

Beweis. Siche [3, Exc.8.30]. i

(8.21) Aufgabe: Sylvester-Matrix.

Es seien F ein Korper und 0 # f,g € F[X] mit deg(f) + deg(g) > 1. Wie
kann man mittels des Gaufl-Algorithmus, angewendet auf die Sylvester-Matrix
S(f,g), den ggT(f,g) € F[X] bestimmen?

(8.22) Aufgabe: Sylvester-Matrix.
Es seien F ein Korper und 0 # f, g € F[X] mit deg(f)+deg(g) > 1. Man zeige:

Es gilt dimp(ker(S(f, 9))) = deg(ggT(f, 9))-
Hinweis. Es gibt s € F[X]qeg(g)—r und t € F[X]geg(s)—r mit 0 # [s,t] €
ker(¢(f,g)) genau dann, wenn k € {1,...,deg(ggT(f,g))} ist.

Beweis. Siehe [3, Exc.6.16]. i

(8.23) Aufgabe: Resultanten.

Es seien R ein faktorieller Ring und f, g, h € R[X]. Man zeige:

a) Fir A € R gilt ggT(f(\),g(N\)) | res(f,g) € R.

b) Es gilt res(f, gh) = res(f,g) - res(f,h) € R.

c) Ist 0 < k < min{deg(f),deg(g)}, so gilt ggT(lc(f),1c(g)) | resk(f,g) € R.

60

Beweis. a) Siehe [3, Exc.6.10]. b) Siehe [3, Exc.6.12]. ¢) Siehe [3, Exc.6.41]. §

(8.24) Aufgabe: Fundamentalsatz iiber Subresultanten.

Es seien F' ein Korper und 0 # f,¢g € F[X]. Fur i € {0,...,l} seien \; € F*

die Leitkoeffizienten und n; € Ny die Restgrade im normierten Euklidischen

Algorithmus fiir f und ¢g. Fur i € {1,...,1} zeige man: Es gilt res,,(f,g9) =
i—1 ; ni_1—n;

(=1)Zim(ra-1—na)(ng—ni) | ym—n; .H;Zl A .

Hinweis. Siche Aufgabe (8.21).

(8.25) Aufgabe: Collins-Algorithmus.
Es seien R ein faktorieller Ring, 0 # f, g € R[X] primitiv mit deg(f) > deg(g).

Lro—frn—g

2. ng < deg(f),)\0 — 1, Mo < 1
3.1+ 1
4. while r; # 0 do

n; « deg(r;)
0j — ni—1 — Ny

/\i — |C(7”i>
1751 51
MM 1 A
Fivr — (A% r)modr; # Pseudo-Division
Tit1 < T 5, " Ti+1
Aim1m; g
1—1+1

5. return r;_1 #i=1+1

a) Man zeige: Fiir i € {1,...,1} gelten n; = £res,,(f,g9) € R und r; € R[X].
b) Man zeige: Sind R = Z und | f],l9l., < B, fir ein B > 0, so gilt fiir
i€{l,...,1} auch |r;| < (n+1)% - (m+1)% - B+™,

c) Was ist der Vorteil des Collins-Algorithmus im Vergleich zum primitiven
Euklidischen Algorithmus und zum normierten Euklidischen Algorithmus tiber
Quot(R)[X]? Wie kann man die Resultante res(f, g) mit ihm berechnen?

Hinweis zu a). Was bedeutet Pseudo-Division fiir die verallgemeinerte
Sylvester-Matrix Sy, (f,9)? AuBlerdem betrachte man geeignet vergroferte ve-
rallgemeinerte Sylvester-Matrizen gnifl(f+g9), um die Koeffizienten von r; als
Determinanten zu beschreiben.

Beweis. Siehe [8, p.429ff., Exc.4.6.1.24] und [2, Alg.3.3.7]. i

(8.26) Aufgabe: Bivariate Polynome.

Es seien F' ein Korper und 0 # f,g € F[X] mit degy(f),degx(g9) < n und
degy (f),degy (g) < d, fiir n,d € Ny, sowie lex (f) = lex(g) = 1. Man zeige: Ist
geT(f(X,A),g(X,) € F[X] nicht kontant fiir mindestens 2nd + 1 paarweise
verschiedene A € F, so ist degy (ggT(f,g)) > 0.

61

Beweis. Siehe [3, Exc.6.20]. 1

(8.27) Aufgabe: Ebene Kurven.

Es seien f:= (Y2 +6)(X —1) - Y(X?2+1) € Z[X,Y] und g(X,Y) := f(V, X),
sowie X = {[z,y] € C% f(x,y) = 0} und Y := {[z,y] € C% g(x,y) = 0} die
zugehorigen ebenen Kurven. Man zeichne die R-rationalen Punkte X NR? und
Y NR2?, und berechne X N Y.

Beweis. Siehe [3, Ex.6.41]. i

(8.28) Aufgabe: Minimalpolynome.

Es seien K C L eine algebraische Korpererweiterung, und 0 # o« € L mit
K-Minimalpolynom f € K[X].

a) Es seien 0 # 8 € L mit K-Minimalpolynom g € K[X], und h € K[X] das K-
Minimalpolynom von a4 3 € L. Man zeige: Es gilt h | resy (f(X —Y),g(Y)) €
K[X]. Fiir a,b € K gebe man eine Verallgemeinerung fiir aa + b3 € L an.

b) Man zeige, daf f := fot - X f(X7Y) € K[X] das K-Minimalpolynom
von a~! € L ist, wobei n = deg(f) und fo € K den konstanten Koeffizienten
von f bezeichne. Damit zeige man: Sind 0 # f € L mit K-Minimalpolynom
g € K[X], und h € K[X] das K-Minimalpolynom von a8 € L, so gilt h |
resy (f(Y),g(XY)) € K[X]. Man gebe eine analoge Formel fiir 3 €L an.

c) Man zeige: Sind 0 # ¢g € K[X] mit deg(g) < deg(f) und h € K[X] das
K-Minimalpolynom von g(«) € L, so gilt b | resy (f(Y),X —¢g(Y)) € K[X].
Man bestimme degy (resy (f(Y), X — g(Y))).

d) Man berechne die Q-Minimalpolynome der Elemente oy := V2 + /3 und
o) ::\/5—2\/1 sowie ag ::\/5- \:Vgundaél ::1+\/§.

Beweis. Siehe [3, Ch.6.8, Ex.6.35, Ex.6.36]. i

(8.29) Aufgabe: Rekonstruktion rationaler Zahlen.

Es seien 7,t € Z mit ¢t > 0 und ggT(r,t) = 1. Ziel ist es, zu zeigen, daf 7 € Q
aus einer modularen Reduktion n mod m zuriickgewonnen werden kann, wenn
m geniigend grof ist.

Dazu seien also m € N mit ggT(¢,m) = 1 und n € Ny mit n < m und r =
nt mod m. Weiter gebe es k¥ € N mit || < k und kt < m. Schlielich seien
i€ {l,...,l4+1} im erweiterten Euklidischen Algorithmus fiir m und n minimal
mit k > r;, und ¢ € N minimal mit & > r;_1 — ar;.

Man zeige: Es gilt [r,t] = £[r;, ¢;] oder [r,t] = £[r;—1 — ar;, t;—1 — at;].

Beweis. Siehe [3, Ch.5.10]. i

62

(8.30) Aufgabe: Satz von Sturm.

Es sei 0 # f € R[X] mit paarweise verschiedenen Nullstellen in C[X]. Man
modifiziere den Euklidischen Algorithmus fiir o := f und r := % durch
Verwenden der Polynomdivision ;1 = ¢;r; — 141, fir ¢ € {1,...,1 — 1}.
Fir a € R sei v,(f) € Ny die Anzahl der Vorzeichenwechsel in der Folge
[sgn(ro(a)),...,sgn(ri(a))], wobei Eintrdge 0 ignoriert werden. Man zeige: Fiir
a <bgilt {a <z <b; f(z) =0} = va(f) — (/).

Hinweis. Gewisse Vorzeichenfolgen konnen nicht vorkommen.
Beweis. Siche [8, p.434, Exc.4.6.1.22]. i

(8.31) Aufgabe: Charakteristisches Polynom.

Fir M = [m;;] € C"*" seien Py := E, - X — M € C[X]"*" die zugehdrige
charakteristische Matrix und s := det(Par) = X™ + Zz;é e X" € C[X] das
zugehorige charakteristische Polynom.

a) Man zeige: Ist B > 0, so dal |m;;| < B, fiir alle 4,5 € {1,...,n}, so gilt
len—i| < (}) - k% . B fiir alle k € {0,...,n—1}.

b) Man zeige: Es gilt xar = > p_g <det(PM(k)) 1leqo,....00\ 00} %)

¢) Man zeige: Ist A € C[X]"*™ die adjungierte Matrix zu Py, so gilt Spur(A) =
85‘)? € C[X], wobei % die formale Ableitung bezeichne.

d) Man gebe einen Algorithmus zur Berechnung des charakteristischen Poly-

noms quadratischer komplexer Matrizen an, der das Ergebnis aus c¢) benutzt.

Beweis. a) Siche [2, Prop.2.2.10]. b) Siehe [2, Ch.2.2.4].
c) Siehe [2, La.2.2.8]. d) Siehe [2, Alg.2.2.7]. i

(8.32) Aufgabe: Mignotte-Ungleichung.

Es seien 0 # f = >21" ; fiX' € C[X] und g = 37" g; X7 € C[X] ein Teiler von
f, wobei n = deg(f) und m = deg(g). Man zeige: Fiir alle j € {0,...,m} gilt
1950 < (7Y A fly + (320 - 1l

Beweis. Siehe [2, Thm.3.5.1] und [8, Exc.4.6.2.20]. i

(8.33) Aufgabe: Monagan-Test.

Fir 0 # f =Y, ;X" € C[X], mit n = deg(f), sei die zugehorige Cauchy-
Schranke definiert als By := 1+ max{|"|;i € {0,...,n}} € Rso.

a) Man zeige: Ist @ € C mit f(a) =0, so gilt |a| < By.

b) Nun sei f € Z[X] primitiv mit fo # 0. Man zeige: Gibt es ein k € N, so dafl
f(Bf + k) € Z oder f(—By — k) € Z prim ist, so ist f irreduzibel. Wie kann
man daraus einen randomisierten Irreduzibilitétstest gewinnen?

Beweis. Siehe [11, p.46]. 1

63

(8.34) Aufgabe: Paar-Reduktion.
Essei L := {a,b}z C R™, fiir n > 2, wobei {a,b} C R™ R-linear unabhéngig sei.
1. if [b]* < [a]” then b« a
2.c—b—a- WZWQJ
3. while |¢|* < |a|? do
b—a

a<—c
c—b—a-|
4. return B := [a, b

Man zeige: Es ist B C L eine LLL-reduzierte Z-Basis, fiir jeden Parameter
% <7 <1,und a € L ist ein minimaler Vektor.

Beweis. Siehe [2, Alg.1.3.14] und [15, Exc.3.3.3]. i

(8.35) Aufgabe: LLL-Reduktion.
Es seien L C R™ ein Z-Gitter mit LLL-reduzierter Z-Basis B = {b1,...,by},

sowie {v1,...,vs} C L eine Z-linear unabhéngige Teilmenge. Man zeige: Fiir
. . n—1

jed{l,...,shgilt Jo;] <272 - max{foi],..., Jvs]}

Beweis. Siehe [2, Thm.2.6.2.(5)]. i

(8.36) Aufgabe: LLL-Reduktion.

Man zeige, dafl man die Lovasz-Bedingung |, = (v =13 g1 [105 1 |? der LLL-
Reduktion fiir geeignete Wahlen fiir % < v < 1 durch die Siegel-Bedingung
15,7 > L - |, |* ersetzen kann.

Beweis. Siehe [2, Rem.2.6.1.(5)]. i

(8.37) Aufgabe: LLL-Algorithmus.

Es sei Q € R™ ™ eine positiv definite symmetrische Matrix. Man gebe eine
Variante des LLL-Algorithmus an, der @ als Eingabe und eine LLL-reduzierte
Basis in Form einer als Ausgabe hat. Man gebe eine Laufzeitabschétzung an.

Beweis. Siehe [2, Rem.2.6.1.(2)]. 1

(8.38) Aufgabe: Quadratfreie Faktorisierung.
Es seien K ein Korper der Charakteristik 0 und 0 # ¥ € K[X] normiert mit
deg(¥) = n. Weiter seien ¥y,..., ¥, € K[X] normiert, quadratfrei und paar-
weise teilerfremd mit ¥ = szl Ve, Man gebe einen Algorithmus an, der mit
¥ als Eingabe die Polynome Wy, ..., ¥, berechnet.

Beweis. Siehe auch [3, Ch.14.6]. i

64

(8.39) Aufgabe: Quadratfreie Polynome.

Es sei ¢ € N eine Primzahlpotenz. Man zeige: Die Wahrscheinlichkeit, dafl ein
zufillig gewéhltes normiertes Polynom in F,[X] vom Grad n € Ny quadratfrei
ist, ist unabhangig von n und betragt 1 — é.

Hinweis. Fiir die Anzahl s,, € Ny der normierten quadratfreien Polynome vom
Grad n zeige man die Rekursionsformel ¢ = Zogzk <n q" - sp_ok, und gewinne
daraus eine geschlossene Formel fiir s,,.

Beweis. Siche [3, Exc.14.32]. i

(8.40) Aufgabe: Irreduzible Polynome.

Es seien ¢ € N eine Primzahlpotenz und n € Ny sowie Py, = {0 # @ €
F,[X]; ® normiert, irreduzibel, deg(®) = n}. Ziel dieser Aufgabe ist es, eine
Formel fur die Méchtigkeit |Py | € Ny zu finden.

a) Die M&bius-Funktion p: N — Z sei definiert durch p(1) := 1, und u(n) :=
0 falls n > 1 nicht quadratfrei ist, sowie u(n) := (—1)¥ falls n > 1 quadratfrei
ist und genau k € N paarweise nicht-assoziierte Primteiler hat. Man zeige:
Die Funktion g ist multiplikativ, d. h. fir alle m,n € N teilerfremd gilt
p(mn) = p(m)p(n), und es gilt 3-,,, p(d) = 0 fiir alle n > 1.

b) Es seien R ein kommutativer Ring, f: N — R eine Funktion und g: N —
R:n — Zd‘nf(d), fir alle n € N. Man zeige: Es gilt M&bius-Inversion
fn) =324, 1(5)9(d) € R, fiir alle n € N. Man gebe eine analoge Inversions-
formel fiir die Funktion h: N — R: n+— [];, f(d) an.

c) Man zeige: Es gilt [Py | = 2 Dain () -g¢%. Man berechne |P, ,,| € Ny fiir
q <9 und n < 10.

d) Wie grof} ist asymptotisch fiir ¢™ >> 0 die Wahrscheinlichkeit, dafl ein zufallig
gewéhltes normiertes Polynom in F,[X] vom Grad n irreduzibel ist? Man gebe
einen randomisierten Algorithmus an, der bei Eingabe von ¢ und n ein zufélliges
irreduzibles normiertes Polynom in F,[X] vom Grad n ausgibt.

Beweis. Siehe [3, Ch.14.9, Exc.14.46]. #

(8.41) Aufgabe: Kreisteilungspolynome.

Es seien n € N und ¢, := e € C, sowie @, == [[1c(z)(ny)+ (X — ¢k e C[X]

das n-te Kreisteilungspolynom. Insbesondere ist also deg(®,,) = ¢(n), wobei
¢: N — N die Eulersche p-Funktion sei. Man zeige:

a) Es sind {¢* € C;k € (Z/(n))*} genau die primitiven n-ten Einheitswurzeln
in C, und es gelten X" —1 =[], ,, ®qa € C[X] sowie ¢,, = Hd|n(Xd — 1)) €
C(X), wobei pi: N — Z die Mébius-Funktion aus Aufgabe (8.40) sei. Man
folgere daraus, dafl ®,, € Z[X] gilt.

b) Fiir Primzahlen p € N gilt &, = Zf;ol X't € Z[X]; fiir n > 3 ungerade gilt
D9, (X) = @, (—X); fiir Primzahlen p € N mit p J n gilt ®,,(X) - ®,(X) =
®,,(XP); und falls jeder Primteiler von k& € N auch Primteiler von n ist, so gilt
B (X) = B, (XP).

65

c) Man gebe einen Algorithmus an, der bei Eingabe von n und seinen Primteilern
das Polynom ®,, als Ausgabe hat, und berechne ®,, fiir n < 100.

Beweis. Siche [3, Ch.14.10]. i

(8.42) Aufgabe: Kreisteilungspolynome.

Es seien p € N eine Primzahl, f € N und ¢ := p/ € N, sowie F, der endliche
Korper mit ¢ Elementen. Weiter sei n = p® - m € N, wobei e € Ny und
p J m. Man zeige: Das n-te Kreisteilungspolynom ®,, € F,[X] zerfillt in @
paarweise nicht-assoziierte irreduzible Polynome vom Grad d, wobei d € N die
Ordnung von g € (Z/{m))* sei.

Beweis. Siehe auch [3, La.14.50]. i

(8.43) Aufgabe: Faktorisierung in F,[X].

Man gebe genaue Abschétzungen fiir die benétigten Korperoperationen in Fy,
in Abhéngigkeit vom Grad n des Eingabepolynoms in F,[X] und der Ordnung ¢
des Grundkorpers F, fiir die quadratfreie Faktorisierung, die Distinct-Degree-
Faktorisierung, sowie die deterministischen und randomisierten Versionen des
Cantor-Zassenhaus-Algorithmus und des Berlekamp-Algorithmus an.

Beweis. Siehe [3, Ch.14]. il

9

1]

66

References

A. AHo, J. HOPCROFT, J. ULLMAN: The design and analysis of computer
algorithms, second printing, Addison-Wesley Series in Computer Science
and Information Processing, 1975.

H. COHEN: A course in computational algebraic number theory, Graduate
Texts in Mathematics 138, Springer, 1993.

J. VON ZUR GATHEN, J. GERHARD: Modern computer algebra, second
edition, Cambridge University Press, 2003.

G. HArDY, E. WRIGHT: An introduction to the theory of numbers, 5.
edition, Oxford University Press, 1979.

H. HEUSER: Lehrbuch der Analysis, Teil 1, Teubner, 1980.

D. HiLBERT: Mathematische Probleme, Vortrag, gehalten auf dem inter-
nationalen Mathematiker-Kongrefl zu Paris 1900.

D. KNuTH: The art of computer programming, vol. 1: fundamental algo-
rithms, 2. printing of the 2. edition, Addison-Wesley Series in Computer
Science and Information Processing, Addison-Wesley, 1975.

D. KnuTH: The art of computer programming, vol. 2: seminumerical al-
gorithms, 2. edition, Addison-Wesley Series in Computer Science and In-
formation Processing, Addison-Wesley, 1981.

D. KnuTH: The art of computer programming, vol. 3: sorting and search-
ing, Addison-Wesley Series in Computer Science and Information Process-
ing, Addison-Wesley, 1973.

N. KoBuriTz: Algebraic aspects of cryptography, Algorithms and Compu-
tation in Mathematics 3, Springer, 1998.

B. MATzAT: Vorlesung ‘Computeralgebra’, IWR, Universitat Heidelberg,
private Mitschrift, 1995.

A. MENEZES, P. vAN OORSCHOT, S. VANSTONE: Handbook of applied
cryptography, CRC Press Series on Discrete Mathematics and its Applica-
tions, 1997.

C. ParaDIMITRIOU: Computational complexity, Addison-Wesley, 1995.

M. PonsT: Computational algebraic number theory, DMV Seminar Bd.
21, Birkhauser, 1993.

M. PoHsT, H. ZASSENHAUS: Algorithmic algebraic number theory, re-
vised reprint of the 1989 original, Encyclopedia of Mathematics and its
Applications 30, Cambridge University Press, 1997.

A. TURING: On computable numbers, with an application to the Entschei-
dungsproblem, Proc. London Math. Soc. Ser. 2, 42, 1936, 230-265.

