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Abstract

Algebraic groups are analogues of the classical Lie groups, such as the linear, or-
thogonal or symplectic groups, over arbitrary algebraically closed fields. Hence
they are no longer classical manifolds, but varieties in the sense of algebraic
geometry. In particular, they are used in the uniform description of the finite
groups of Lie type, which encompass a substantial part of all finite simple groups.
Subject of the lecture is an introduction to linear algebraic groups. Here, tools
both from group theory as well as from algebraic geometry come into play.
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I Algebraic geometry
1 Affine algebraic varieties

All rings, R say, occurring will be commutative with identity 1 = 1g, unless
otherwise specified. Let K be a field, and let K be an algebraically closed field.

(1.1) Theorem: Hilbert’s Basissatz (1890).
Let R be Noetherian, and let X := {X1,..., X, }, for n € Ny, be indeterminates
over R. Then the polynomial ring R[X] is Noetherian as well.

Proof. See [3, Thm.IV.4.1] or [5, Thm.1.7]. i

(1.2) Definition. Let X := {X1,..., X, }.
a) Let S C K[X]. Then V(S) := {z € K"; f(z) = 0 for all f € S} is called the
algebraic set defined by S; for polynomial functions see Exercise (11.1).

We have V(S) = V((S)), by Hilbert’s Basissatz there are f1,...,f, € S such
that V(S) = V(f1,..., fr), and we have V(K[X]) = 0 and V(0) = K".

b) Let V C K". Then Z(V) := {f € K[X]; f(x) = 0 for all z € V} SK[X] is
called the vanishing ideal of V.

We have Z(V) < K[X] if and only if V # 0, and Z(K") = {0}. Moreover,
Z(V) = \/Z(V) is a radical ideal. Here, for any I << R we let VT := {f €
R; f € I for some r € N} = ({P < R prime; I C P} < R denote the radical
of I, and VR := R.

(1.3) Proposition. a) For V C K" we have V C V(Z(V)).

b) For I <K[X] we have I C /T C Z(V(I)).

c) Let A be an index set. Then for {Vy € K™; A € A} we have Z({Jycp V) =
Mxea Z(Va), and for {Ix SIK[X]; A € A} we have V(D cp In) = Naep VUA)-
d) For I, I’ 4K[X] we have V(I) UV(I') = V(I - I') = V(INT).

Proof. See [6, Prop.I.1.1, 1.1.2] or [7, Ch.I.2] or Exercise (11.2). 1

(1.4) Theorem: Hilbert’s Nullstellensatz (1890).

Let I, P <K[X], where I C P and P is maximal.

a) Weak form. There are z1, ..., z, € Ksuch that P = (X;—x1,..., X, —x,),
implying {[z1, . z]} = V(P) C V(I) # 0.

b) Strong form. We have /T = Z(V(I)).

Proof. See [4, Thm.5.3, 5.4] or [7, Ch.I.1, Thm.I.2.1], or Exercise (11.3) on how
to derive the strong form from the weak form. i
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(1.5) Corollary. The map
V: {I SK[X]; T = VI} — {V C K" algebraic}: I — V(I)

is an inclusion-reversing bijection with inverse map Z.

(1.6) Definition and Remark. a) The algebraic sets V(I) C K", for some
I = T S9K[X], are the closed sets of the Zariski topology on K".

If V C K" is algebraic, then the topology on V' induced by the Zariski topology
is also called the Zariski topology.

E) The closure of any V' C K" with respect to the Zariski topology is given as
Vi={W CK" closed; V C W} = V(Z(V)).

The Zariski topology is Noetherian, i. e. any strictly decreasing chain of closed
subsets is finite, in particular it is quasi-compact, i. e. any open covering has a
finite subcovering. Moreover, it is a Tj-space, i. e. singleton subsets are closed.

Algebraic sets, by the induced Zariski topology, are Noetherian and 77 as well.

¢) A non-empty Noetherian topological space is called irreducible, if it cannot
be written as the union of two proper closed subsets. Hence in particular an
irreducible topological space is connected, i. e. it cannot be written as the
disjoint union of two proper open and closed subsets.

(1.7) Proposition. Let V' # @ be a Noetherian topological space. Then

there are Vi,...,V,, C V, for some r € N, closed and irreducible such that
V = U._,Vi. If we moreover have V; € V;, for all i # j € {1,...,r},
then Vi,...,V, are precisely the maximal irreducible closed subsets, hence are

uniquely determined, and are called the irreducible components of V.
Proof. See [6, Prop.I.1.5] or Exercise (11.4). i

(1.8) Corollary. Let I = /I < K[X] be a radical ideal.

a) Then there are only finitely many prime ideals of K[X] minimal over I.

b) The algebraic set V(I) C K" is irreducible if and only if I is prime.

c) We have I = ({P <K[X] maximal; I C P}, i. e. K[X] is a Jacobson ring.

(1.9) Definition. a) Let V C K" and W C K™ be algebraic. Then a map
p: V. — W is called regular, if there are f1,..., f, € K[X] = K[Xq,...,X,]
such that p(z) = [f1(2),..., fm(2z)], for all z € V.

In particular, a regular map is continuous with respect to the Zariski topology;
see Exercise (11.5). Let Hom(V, W) be the set of all regular maps from V to
w.

b) In particular, Hom(V,K) is a K-algebra, called the algebra of regular
functions on V. We have a K-algebra epimorphism

K[X] — Hom(V,K): f — (f*: V = K: ¢+ f(x)),
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whose kernel equals Z(V). We have K[V] := K[X]/Z(V) = Hom(V,K) as K-
algebras, where K[V] is called the affine coordinate algebra of V.

Since Z(V) = /Z(V) the K-algebra K[V] is reduced, i. e. K[V] does not
possess nilpotent elements, and K[V] is a domain if and only if V' is irreducible.

¢) The algebraic set V' together with its Zariski topology and its affine coordinate
algebra K[V] is called an affine (algebraic) variety over K. Together with
the regular maps as morphisms this defines the category of affine varieties
over K; see also Exercise (11.6).

(1.10) Theorem. a) For affine varieties V, W there is a bijection
Hom(V, W) — Homg _aigebra (KW, K[V]): @ = (¢": KW]=K[V]: f = fop).

The K-algebra homomorphism ¢* is called the comorphism associated to ¢.
b) Assigning V' — K[V] and ¢ — ¢* yields an anti-equivalence from the cat-
egory of affine varieties over K to the category of reduced finitely generated
K-algebras together with K-algebra homomorphisms.

Proof. See (7, Prop. 1.3.1, 1.3.2]. i

(1.11) Example. See Exercises (11.7) and (11.8).

a) Let y = [y1,...,yn] € K". Then ¢,: {y} — K": y — y is a morphism,
and € K[Xy,...,X,] — K: X; + y; is the evaluation map at y. Similarly,
vy: K" — {y}: 2 +— y is a morphism, and v;: K — K[Xy,..., X,]: Ix —
1g[x;,...,x,] 18 the natural embedding. This yields €,v,: K" — K": z — y and
(eyvy)* = V;egj;: K[X1,..., X, = K[Xy,..., X,]: X;— y;.

b) Let ¢: K* — K2: [x,y] — [2y,y]. Then ¢ is a morphism, and we have
0" K[X,Y] - K[X,Y]: X — XY,Y — Y. Moreover, we have ¢(K?) =
{[0,0]} U (K x (K \ {0})) C K2, which is neither open nor closed.

c) Let char(K) = p > 0 and q := pf for some f € N. Then the geomet-
ric Frobenius map ®,: K — K: z — 27 is a bijective morphism, and we
have ®7: K[X] — K[X]: X + X9. Since ®; is not surjective, ®; is not an
isomorphism of affine varieties.

(1.12) Theorem. Let V,W be affine varieties over K. Then the Cartesian
product V' x W again is an affine variety such that K[V x W] = K[V] ®x K[W].

This is a direct product in the category of affine varieties over K. Moreover,
V x W is irreducible if and only if both V' and W are.

Proof. See [7, Prop.1.6.1] or [11, Thm.1.5.4] or [10, Prop.I.1.4, 1.2.4], and also
Exercise (11.9). i
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(1.13) Definition. Let V be an affine variety, and let 0 # f € K[V]. Then
the set Vi := {& € V; f(z) # 0} # 0 is called the associated principal or
elementary open subset, which since Vy =V \ V(f) C V is indeed open in V.

The set {V; C V;0 # f € K[V]} is a basis of the Zariski topology on V; see
Exercise (11.10).

(1.14) Remark. a) Let V be an affine variety, and let 0 # f € K[V]. We
consider the localisation K[V]; of K[V] at the multiplicative set {f" €
g

K[V];r € Ng}, i. e. the set of equivalence classes of fractions 4, where g €
K[V] and r € Ny, with respect to the equivalence relation % = ?—;. if and only

if there is ¢ € Ny such that (¢f% — ¢'f") f* = 0 € K[V]; see Exercise (11.12).

Then K[V]; = K(%, 9;9 € K[V]) is a finitely generated K-algebra. Moreover,
K[V] is reduced: If (%)* =0 € K[V]y, for some s € N, then we have g ft =
0 € K[V], for some ¢t € Ny, which since K[V] is reduced implies gf = 0 € K[V],

thus § =0 € K[V]; and % =0 € K[V]y.

b) Hence there is an affine variety YN/f associated to K[V];, and we show that XN/f
can be identified with V;: We have the natural homomorphism of K-algebras

¢} K[V] — K[V]f: g — {, hence a morphism ¢f: Vy — V. The inclusion-
preserving bijection (¢})~': {P < K[V]; prime} — {Q < K[V] prime; f ¢ Q},
see Exercise (11.12), yields a bijection (cp;)’l: {P < K[V]; maximal} — {Q <
K[V] maximal; f € Q}, i. e. we have a bijection ¢y XN/f — Vi,

We have a bijection (¢3)~': {I = VI 9K[V]s} — {J = VJ <K[V]; f & J}.
Since the non-empty closed subsets of V;, with respect to the topology induced
by the embedding V; C V, are the sets V(J) N V;, for some J = v/J < K[V]
such that f ¢ J, we conclude that ¢y : ‘7f — V¢ is a homeomorphism. i

Hence @y carries the structure of an affine variety from ‘N/f to V¢, whose Zariski
topology coincides with the topology induced by the embedding Vy C V. The set
Vy is also called an affine open subset, by definition we have an isomorphism

of K-algebras K[V]; — K[V¢]: { — glv,, % — fl% The inclusion map Vy C V
7

is a morphism, whose associated comorphism is K[V] — K[V}]: g — glv;.

Not all open subsets of an affine variety can be endowed with the structure of
an affine variety compatible with the given affine variety and its affine open
subsets, see Exercise (11.11).

(1.15) Proposition. Let V be an affine variety, let 0 # f € K[V] and let ‘7f =
{lv,y] € V¢ xK; f(v)y = 1}. Then the projection map m¢: Vi — Vi: [v,y] — v
is an isomorphism of affine varieties, whose associated comorphism yields

K[Vy] = K[Vy] = K[VI[Y]/(fY = 1) = K[V](f ).
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Proof. Let V' C K". Then ‘A/f = {[v,y] € VxK,flv)y—1=0} CK"x
K = K" is algebraic. We have (fY — 1) C I(‘A/f) < K[V][Y]. Conversely,
let g = Y g:Y" € I(Vy), where g; € K[V]. Letting h := Y7_g:f" " €
K[V], we obtain gf™" = f- 3" g f"H(fY)" = fh (mod (fY —1)). Since
gf™t € I(ﬁ'f), this implies fh € I(f}f) NK[V]. For v € V \ V; we have
f(v) = 0, while for v € V; we have f(v) # 0 and hence h(v) = 0. Thus we
have fh = 0 € K[V] € K[V][Y], implying g = gf 'Y"" = fRY"™ =0
(mod (fY — 1)), and K[V;] 2 K[V][Y]/(fY —1).

Since for g € K[V] we have 7}(glv,): [v,y] — g(v), and w;(ﬁ) [v,y] —
ﬁ =y, we conclude that indeed 7} : K[Vy] — K[‘A/f], i. e. my is a morphism.

Moreover, 7y is bijective, hence 7} is injective, and from YV = % € K[‘A/f] we
conclude that 7* is surjective, thus 7 is an isomorphism of affine varieties.

2 Morphisms

(2.1) Definition. a) Let R # {0} be a ring, and let P < R be prime. The
supremum of the lengths r € Ny of chains Py C P C --- C P, = P of prime
ideals P; < R is called the height ht(P) € Ny U {oc} of P. If R is Noetherian,
by (2.2) we have ht(P) € Ny.

Moreover, dim(R) := sup{ht(P); P < R prime} € Ny U {oo} is called the
(Krull) dimension of R. For a Noetherian ring having infinite dimension
see Exercise (11.14).

b) For I < R let the dimension dim(I) := dim(R/I) € Ny U {oo} and the
height ht(7) := min{ht(P); I C P < R prime} € Ny U {o0}.

We have dim(I) < dim(R) and dim(J) + ht(]) < dim(R).
(2.2) Theorem: Krull’s Hauptidealsatz (1928).

Let R be Noetherian, let fi1,...,f, € R, for some r € N, and let P < R be a
minimal prime over (fi,..., fr). Then we have ht(P) <r.

Proof. See [4, Thm.13.5] or [5, Thm.6.8]. i

(2.3) Lemma: Prime avoidance.
Let R be a ring, let P;,..., P, < R be prime, for some n € N, and let I < R
such that I C |J_, P;. Then thereis i € {1,...,n} such that I C P,.

Proof. See [4, Exc.1.6] or [5, La.6.3]. i

(2.4) Theorem. Let R be Noetherian and P <9 R be prime such that ht(P) =
r € N. Then there are f1,..., f. € R such that P is a minimal prime over [ :=
(f1,..., fry <R, and for any minimal prime P’ < R over I we have ht(P’) = r.
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Proof. By induction, quotiening out (fi,..., fr—1) < R, we may assume that
r = 1. Since the Zariski topology on the prime spectrum Spec(R) :=
{P <R prime} is Noetherian, there are only finitely many minimal prime ideals
Q1,...,Qs<R, for some s € N. Since ht(P) = 1 we have P & {Q1,...,Qs}, thus
by prime avoidance there is f € P\ Ule Q;. Hence P is a minimal prime over
(f) <R, and for any minimal prime P’ < R over (f) we have P’ & {Q1,...,Qs},
by Krull’s Hauptidealsatz implying ht(P’) = 1. i

(2.5) Theorem: Cohen-Seidenberg (1946).

Let R C S be an integral ring extension.

a) Let P <1 R be prime. Then there is a prime ideal @ < S (lying over) such
that @ N R = P. Moreover, if J < S is any ideal such that J N R C P, then Q
can be chosen (going up) such that J C Q.

b) Let Q@ # @ < S be prime such that Q N R = @ N R. Then we have
(incomparability) Q € Q' Z Q.

Proof. See [4, Thm.9.3] or [5, Thm.6.9]. i

(2.6) Theorem. Let R := K(fi,..., f,) for some r € Ny.

a) We have dim(R) < r, and dim(R) = r holds if and only if {f1,...,fr} C R
is algebraically independent over K.

b) Let additionally R be a domain. Then we have dim(R) = trdeg, (Q(R)),
where Q(R) denotes the field of fractions of R.

Proof. See [4, Thm.5.6] or [5, Cor.7.3, 7.5]. i

(2.7) Theorem: Refined Noether normalisation.

Let R := K{(f1,..., fr), for some r € Ny, and let I; C --- C I, C R, for some
s € Ny, be ideals such that n > ny > --- > ng, > 0, where n := dim(R) and
ng := dim(J;). Then there is {X1,..., X,,} C R algebraically independent over
K, such that S := K[X3,...,X,] C R is a finite ring extension, i. e. R is
a finitely generated S-algebra and integral over S, and such that I NS =
(Xnpt1s---, Xn) 28, for k€ {1,...,s}. Moreover, if K is infinite then we may
choose X; € (f1,..., [r)k, fori € {1,...,n}.

Proof. For infinite fields by Noether (1926), for finite fields by Zariski (1943),
and the refined version, actually involving only a single ideal, by Nagata (1962).

See [1, Thm.I1.13.3] or [5, Thm.7.4]. 4

(2.8) Theorem. Let R := K(f1,..., fr) be a domain, where r € Ny, and let
I < R. Then we have dim(J) + ht(I) = dim(R).

This implies that R is catenary, i. e. given prime ideals P C @ < R, then
for all maximal chains P = Py C --- C P. = @ of prime ideals we have
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r = ht(Q) — ht(P), see Exercise (11.16). The assumption R being a domain is
cannot be dispensed of, see Exercise (11.15).

Proof. It suffices to show the assertion for @ <t R prime, and we may assume
Q # {0}, implying that dim(Q) < dim(R). Let S := K[Xi,...,X,] C R
be a Noether normalisation such that P := QNS = (X;41,...,Xn) <5,
where n := dim(R) = dim(S) and m := dim(Q). By the Cohen-Seidenberg
Theorem, see also Exercise (11.13), we have dim(P) = dim(Q) and ht(P) =
ht(Q). Moreover, we have dim(P) = dim(S/P) = dim(K[Xq,..., X)) = m,
and it is immediate that ht(P) > n—m, hence n = dim(S) > dim(P)+ht(P) > n
implies dim(P) + ht(P) = n. i

(2.9) Definition and Remark. a) Let V # ) be an affine variety. Then
dim(V) := dim(K[V]) € Ny is called the dimension of V.

We have dim(V) = max{dim(W); W C V irreducible component}. For the
dimension 0 case, and the dimension of direct products, see Exercise (11.17).

b) Let V be irreducible. Then for any ) # W C V closed we have ht(Z(W)) > 0
and thus dim(W) = dim(K[W]) = dim(K[V]/Z(W)) < dim(K[V]) = dim(V).

If W C V is closed and irreducible such that dim(W) = dim(V') — 1, then there
is 0 # f € K[V]\ K[V]* such that W is an irreducible component of the hy-
persurface V(f) C V; for the question when W is a hypersurface see Exercise
(11.17). Conversely, for any 0 # f € K[V]\K[V]* Krull’s Hauptidealsatz implies
that V(f) C V has equidimension dim(V) —1, i. e. all irreducible components
of V(f) have dimension dim(V) — 1.

Let 0 # f € K[V]. We have K[V] C K[V]; C K(V'), where the field of fractions
K(V) := Q(K[V]) is called the field of rational functions on V. Hence we
have dim(V') = dim(K[V]) = trdegg (K(V)) = dim(K[V]y) = dim(V}).

c) Let again V' # () be arbitrary. A morphism of affine varieties ¢: V — W is
called finite, if o*(K[W]) C K[V] is a finite ring extension; see also Exercise
(11.18) and the example in Exercise (11.19).

E. g. let K[X] = K[X1,...,X,] C K[V] be a Noether normalisation, where
n = dim(V), and let ¢*: K[X] — K[V] be the natural embedding of K-
algebras. Hence the associated morphism ¢: V' — K" is finite and dominant,
i. e. (V) C K" is dense; see Exercise (11.7).

(2.10) Proposition. Let V, W be affine varieties and let ¢: V' — W be a finite
morphism. Let Z C W be closed, and let ) # U C o~ 1(Z) be closed. Then
plu: U — Z is finite and ¢(U) C Z is closed.

Proof. Let R := K[V] and S := K[W], hence ¢*(S) C R is a finite ring
extension. Letting I := Z(U) = N{Z(z);z € U} < R we get J := (¢p*)"1(I) =
M (") "1 Z(2);2 € U} = M{Z(p(x));z € U} = Z(p(U)) < S. Hence we
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have o(U) C ¢(U) = V(J) € Z C W, and the comorphism associated to

¢|y: U — Z is the homomorphism of K-algebras S/Z(Z) — S/J % R/I, where
S/Z(Z) — S/J is the natural epimorphism and ¢*: S/J — R/I is injective.
Since ©*(S/J) C R/I is a finite ring extension, we conclude that ¢|y: U — Z
is finite. Given @ <1.S/J maximal, by the Cohen-Seidenberg Theorem there is a
maximal ideal of R/T lying over ¢*(Q). Hence ¢|y: U — V(J) is surjective.

(2.11) Theorem. Let V,W be irreducible affine varieties and let ¢: V- — W
be a dominant morphism. Let Z C W be closed and irreducible, and let U C
0~ YZ) # 0 be an irreducible component such that ¢|y: U — Z is dominant.
Then we have dim(U) — dim(Z) > dim(V') — dim(W) > 0.

In particular, for any € V any irreducible component of the fibre p=!(¢(z)) C
V has dimension > dim(V') — dim(W); see also the example in Exercise (11.19).

Proof. We have an injective homomorphism of K-algebras ¢*: K[W] — K[V],
and hence dim(K[W]) = trdegg (K(W)) < trdegg (K(V)) = dim(K[V]).

We may assume that Z # W, hence r := dim(W)—dim(Z) € N. Let f1,..., fr €
K[W] such that Z is an irreducible component of V(fi,..., fr) € W. Letting
gi = ¢*(fi) € K[V], for i € {1,...,r}, we conclude that U C V(g1,...,9r)
V', and there is an irreducible component Uy C V(¢1,...,g,) such that U
Up. Thus we have Z = @(0) € (To) C p(M(gn,--9)) € Vur -, 1)
V(fi,-.., fr), implying Z = (Up), hence U C Uy C ¢~ !(Z) and thus U = Uy.
Since V is irreducible by Krull’s Hauptidealsatz we get dim(U) = dim(Up) =
dim(V) — ht(Z(Up)) > dim(V) — r = dim(V) — dim(W) + dim(Z). t

I min

(2.12) Proposition. Let V, W be irreducible affine varieties and let ¢: V. — W
be a dominant morphism. Then there is 0 # f € K[W] such that we have

PlVoe syt Vo) £ Wy x K" — Wy,

where g : Vi« (r) — Wy x K" is a finite dominant morphism, hence is surjective,
r:=dim(V) —dim(W) € Ny, and m1: Wy x K™ — W/ is the natural projection.

Proof. We may consider S := K[W] C K[V] =: R as an extensions of domains.
Lt KCF:=Q(S) CE:=QR)and FCT:={f{ €cE;gc R0O#hecS}C
E. Since R is a finitely generated S-algebra, we conclude that T is a finitely
generated F-algebra, and we have trdeg,(Q(T)) = trdegp(F) = trdegg(E) —
trdegg (F') = r. By Noether normalisation there is Z = {z1,...,2.} C R and
z € 8, such that Z C T is algebraically independent over F' and such that
F[L1.Z] C T is integral. Letting g € R, then g is integral over F[1 - Z]. From
this it is immediate that there is 0 # h € S such that g is integral over Si[Z].
Hence it is also immediate that there is 0 # f € .S such that all elements of a
finite S-algebra generating set of R are integral over S;[Z], which implies that
R and thus Ry are integral over S¢[Z].
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Hence from the ring extension Sy C Ry we get a embedding of K-algebras
wh: S¢lZ1, ..., Zy] = Ry: Z; — z;, where {Z,...,Z,} is algebraically inde-
pendent over F, such that im(¢§) C Ry is finite. Since Ry and Sy as well
as Sf[Z1,...,Z,] are the affine coordinate algebras of V,.(s) and Wy as well
as Wy x K", respectively, associated to ¢f there is a finite dominant mor-
phism g: V- (5) — Wy x K". Moreover, the natural embedding of K-algebras
Sy € S¢[Z1,. .., Zy] yields the natural projection m1: Wy x K" — W} as associ-
ated morphism. And finally the concatenation @i} : S — Ry is the embedding
induced by ¢*, hence we have m100 = ¢|y;. i

(2.13) Theorem. Let V,W be irreducible affine varieties and let ¢: V. — W
be a dominant morphism.

a) For any () # U C V open there is () # Z C W open such that Z C ¢(U).

b) There is ) # Z C W open such that Z C ¢(V) and such that dim(¢~1(y)) =
dim (V) — dim(W) for all y € Z.

Proof. Let r := dim(V) — dim(W) and 0 # f € K[W] such that we have a
factorisation ¢|v, = mipe: Vir(5y — Wy x K" — Wy as in (2.12).

a) For the case U =V, since ¢( and m; are surjective, we have Z := Wy C ¢(V).
Now it suffices to show the assertion for a basis of the Zariski topology on V,
hence let U =V, C V be a principal open subset, where 0 # g € K[V]. Then
¢lv, : Vg — W corresponds to the embedding of K-algebras ¢*: K[W] — K[V],,
hence still is a dominant morphism of irreducible affine varieties, thus ¢(Vj)
contains a non-empty open subset of W.

b) We show that Z := W, is as desired: Let y € Wy and let Uy,...,Us C o~ ! (y)
be the irreducible components of ¢! (y). From ¢! (W) = V() we conclude
that o= (y) = ¢5 ' ({y} x K") and hence @o|y,: U; — {y} x K" is finite, for all
i €{1,...,s}. Thus golg, (K[{y} xK"]) C K[U;] being a finite ring extension we
get dim(U;) = dim(gol, (K[{y} x K')) < dim({y} x K") = r. Since {y} x K"
is irreducible such that ¢o(p~(y)) = {y} x K", and im(po|y,) C {y} x K" is
closed and irreducible, we infer that there is j € {1,...,s} such that o[y, is
surjective, implying that g00|”(}j is injective and dim(U;) = r.

(2.14) Corollary. Let V,W be affine varieties and let ¢: V — W be a mor-
phism. Then there is Z C (V) open and dense such that Z C (V).

Proof. See Exercise (11.20).

We may assume that V' # 0 and ¢ is dominant. Let V = |J._; V; be the
irreducible components of V, for some r € N. Letting W; := ¢(V;) C W, for
i € {1,...,7r}, we have J._, W; = ¢(V) = W, and there are Z; C W open
such that O # Z; N W,; C (V;), in particular Z; N W; C W; is dense. Let
U; = 7Z;N ﬂj#(W \ W;) € W open, hence U; C Z, "W, C o(V;) CW,. If

U; # () then U; = W;, while if U; = 0 then Z; N W; C Z; C Uj# W;, implying
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that W; = Z; N W; C UJ;; W; anyway. Hence [ J;_, U; C (V) C W is open
and Ui_, Ui =Ui_, Ui = Ui Wi = W f

For more details on images of morphisms, in particular Chevalley’s Theorem
(1955), see Exercises (11.20) and (11.21) as well as (11.22) and (11.23). For an
application of the dimension formulas see Exercise (11.24).

3 Derivations

(3.1) Definition and Remark. a) Let R be a ring, A be an R-algebra, and
M be an A-module. An R-linear map §: A — M obeying the product rule
d(ab) = §(a)b+ d(b)a, for a,b € A, is called an R-derivation of A with values
in M. The set Derg(A, M) := {§: A — M R-derivation} becomes an A-module
via dc: a +— d(a)c, for all ¢ € A.

In particular, 6 € Derg(A, M) is uniquely determined by its values on an R-
algebra generating set of A. Moreover, from §(1) = 46(1-1) = 0(1) + (1) we get
§(1) = 0, and thus for a € A* we obtain 0 = §(1) = §(aa"!) = §(a)a 1 +5(a"1)a,
implying the quotient rule 6(a~!) = —§(a)a=2

b) An R-module A together with an R-bilinear map [-,-]: A x A — A such that
[a,a] = 0, and such that the Jacobi identity [[a, b],c] +[[b, ], a] + [[c,a],b] = 0
holds, for all a,b,c € A, is called a Lie (R-)algebra.

E. g. any non-commutative associative R-algebra becomes a Lie algebra with
respect to [a, b] := ab— ba, where we only have to check the Jacobi identity: We
have [[a, b], ] + [[b, c], a] + [[c, a], b] = (ab—ba)c — c(ab— ba) + (be — cb)a — a(bc —
cb) + (ca — ac)b — b(ca — ac) = 0.

c) Considering A as the regular A-module, Derg(A, A) becomes a Lie algebra
with respect to [9, '] := 66’ — §’d: Since Endgr(A) is a Lie algebra, we only have
to show that the Lie product restricts to Dergr(A4,A) C Endgr(A): We have
[9,0'](ab) = 60’ (ab) —8'6(ab) = 6(6'(a)b+ad’ (b)) — ' (d(a)b+ad (b)) = (60’ (a)b+
0’ (a)0(b)) + (add’(b) + d(a)d’ (b)) — (6'6(a)b+ d(a)d’ (b)) — (ad’d(b) + 6'(a)d(b)) =
(00" (a)b— 8"d(a)b) + (add’ (b) — ad’d(b)) = [0,9'](a)b+ ald, §'](b), for all a,b € A.
Moreover, for § € Derr(A, A) and n € N we have the Leibniz rule 6" (ab) =
S (1)6%(a)d" 7 (b): This by definition holds for n = 1, and by induction
n € Nwe get 6" (ab) = 321, (7)9(8"(a)6" (b)) = o1 (1) (87 (a)6" 77 (b) +
Fi(@)0m L (B) = S0 ()0 (@) (B) + 3y (2)8 (@)1 (b), which
yields 6"+ (ab) = ZZH_Ol ("*1)6%(a)s"+1=¥(b). The Leibniz rule implies that for
char(K) = p > 0 the Lie-algebra Derg (A, A) is restricted, see Exercise (12.28).
d) Let X := {Xh.. Xj} be indeterminates over R. For i € {1,...,n} let

0;: R[X] — be the partial derivative with respect to X;. It
is nnmedlate that 8 € DerR(R[X], R[X]). See also Exercise (11.26).

Let M be an R[X]-module, and let v € M. For i € {1,...,n} let 97 (v) €
Homp(R[X], M) be defined by f +— vd;(f). Since 97 (v)(fg) = v0i(fg) =
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W(Oi(N)g + 10:(9)) = B W)(F) - g + O (w)(g) - f, for all f,g € RIA], we have
02 (v) € Derg(R[X], M). Since any 6 € Derg(R[X], M) is uniquely determined
by 6(X1),...,0(Xn) € M, we get 6 = 370, 07 (0(Xy)): f — 350y 6(X3)04(f).
In particular, we infer that {01,...,0,} C Derg(R[X], R[X]) is an R[X]-basis.
For x € R™ the evaluation map €’ : R[X] — R: f + f(z) induces a R[X]-module
structure on R, which is denoted by R,. For df(z): R[X] — R: f — 0;(f)(x),
where i € {1,...,n}, it is immediate that 9 (x) € Derr(R[X], R;). Letting
Ozt RIX] = R[X)1: fr= > Xi-00(2)(f) = X1y Xi - 0;(f)(x) be the total
differential at z, it is immediate that 0, € Derg(R[X], R[X]1 ). Forallt € R™
we have the Taylor expansion f(z+tY) = f(z)+0.(f)(t)-Y +g¢-Y? € R[Y],
for some g € R[Y], where Y is an indeterminate over R.

For a treatment using Kéahler differentials see [11, Ch.3.2] or [8, Ch.AG.15].

(3.2) Definition and Remark. a) Let V be an affine variety with affine
coordinate algebra K[V], and let P, << K[V] be the maximal ideal associated to
x € V. Again the evaluation map €f: K[V] — K: f — f(z), whose kernel is P,
induces a K[V]-module structure on K, which is denoted by K.

The localisation O, = Oy, := K[V]p, := K[V]g[y)\ p, is called the local ring of
V at . We have the K-algebra homomorphism v, = vy, K[V] — Oyt f — {,
see Exercise (11.12). In general, v, is not necessarily injective; but if K[V] is an

integral domain, i. e. if V is irreducible, we have K[V] C O, C K(V).

We have an inclusion-preserving bijection {Q < K[V] prime; @ C P,} — {Q <
O, prime}: Q — Qp, with inverse map Q — v;'(Q). Hence O, is a local
ring with unique maximal ideal P, = Py, := (Py)p, < O,. Since the elements
of K[V]\ P, act invertibly on K,, by the universal property of localisations
we get a K-algebra epimorphism O, — K, hence O, has residue class field
O, /P, 2K, and K, becomes an O,-module, where the K[V]-action is recovered
by restriction through v,.

b) If z is only contained in a single irreducible component W C V| we may
reduce to the irreducible case as follows: Letting P := Z(W) <1 K[V] be the
associated prime ideal, we infer that Pp, < O, is the unique minimal prime
ideal, which since O, is Noetherian is nilpotent.

Since for the K-algebra homomorphism vy w,: K[V] — K[W] = K[V]/P —
(K[V]/P)p,/p = Ow,e we have vy w,.(K[V]\ P,) C O?’Vﬁc’ by the universal prop-
erty of localisations we have a K-algebra epimorphism vy w,,: Op = K[V]p, —
Ow,e. Since Ow,, C K(W) is a domain, ker(Dy ) < O, is prime, which by
the description of the prime ideals in O, implies ker(Vy,w,,) = Pp,. Hence we
conclude O, /Pp, = Ow,, and in particular we have dim(0,) = dim(Ow,4).

c) For 0 # f € K[V] let V; C V be the associated principal open subset, and
let o3: K[V] — K[V]; 2 K[Vf]: g — { be the associated natural map, where
@r: Vy — V is the inclusion map, see (1.14). For x € V; we have f ¢ P, <K[V],
and thus O, := K[V]p, = (K[V]f)(p,); = Ov; .., see Exercise (11.12), where
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the isomorphism is induced by ¢%.

(3.3) Definition. Let V be an affine variety and z € V. The O, /P,-module
T:(V) := P./P2 becomes a K-vector space, called the cotangent-tangent
space of V at x. Since P, <10, is finitely generated we have dimg (7(V)) < oo.

Its K-dual space T,,(V) := (T} (V))* = (P./P2)* := Homg (P, /P2,K) is called
the tangent space of V' at x. The latter becomes an O, -module via O, —
0O, /P, = K, which is denoted by the subscript in Homg (P, /P2, K,).

In particular, if = is only contained in a single irreducible component W C V|
we have T} (V) = P, /P2 = Py, /P, = T (W), and thus T, (V) = T, (W).
Moreover, for 0 # f € K[V] we have T (V) = P, /P2 = ”Pvf,g;/P‘z,f’Z =T (Vy),
and thus T, (V) = T, (V).

(3.4) Proposition. Let V be an affine variety and let z € V.

a) Restriction to P, yields an isomorphism of O,-modules Derk(O,,K,) —
Homg (P, /P2, K,). Similarly, restriction to P, yields an isomorphism of K[V]-
modules Derg (K[V],K,) — Homg (P, /P?,K,).

b) The map v} : Derg(0,,K;) — Derg(K[V],K;): § — dv, is an isomorphism
of K-vector spaces; see also Exercise (11.25).

Proof. a) We only prove the first assertion, the second one follows similarly:
Let 6 € Derg(0,,K;). Then for f,g € P, we have §(fg) = §(f)g(z) +
f(2)d(g) = 0, hence P? C ker(6), thus §|p, € Homg (P, /P2, K,) is well-defined.
Since §(1) = 0 and O, = K-1® P, as K-vector spaces, ¢ is uniquely determined
by d|p,, implying that the restriction map is injective.

Conversely, for § € Homg (P, /P2 K,) let § € Homg(O,,K,;) be defined by
o0(a+ f):=0(f), where « € K and f € P,. Then for o, € K and f,g € P, we

have 6((a+ f)(B+g)) = 8(aB +ag+ fB+ fg) = ad(g) + 3(f)B = (a+ f)(z) -
0(B+g)+d(a+ f)-(B+g)(x), hence ¢ € Derg(O,,K,).

b) Any K-derivation O, — K, by the quotient rule is uniquely determined by its
values on v, (K[V]), hence v} is injective. Moreover, given ¢ € Derg (K[V],Ky),

we let 9(L) := %0 — [P € K,, for f € K[V] and g € K[V]\ P,. We

g(x) g(x)?
show that this is well-defined; it is immediate then that 6 € Derx(0,,K;) and

*
VI

Let f" € K[V] and ¢',h € K[V]\ P, such that (fg’ — f'g)h = 0. This implies
f9' — f'g € Py as well as 0(fg') - h(z) + (fg')(x) - 6(h) = 6(fg'h) = o(f'gh) =
6(f'g)-h(z)+(f'g)(x)-0(h), hence (6(f'g)—d(fg'))-h(x) = (fg'—f'g)(x)-6(h) =0
and thus 6(f)g(z) + f'(x)é(g) = o(f'g) = o(fg') = (f)g'(z) + f(x)d(g),
hence () _ fl(@)d(g) _ 8(f) _ f=)dlg) _ S(f1) _ S(f)g(@)+f (%)d(g)=8(f)g'(z) _
g'(z) g'(z)? g'(z)  g(x)g'(z) g'(z) g(z)g(z)’

8(f) _ fl(=x)d(g) _ a(f) _ f(=)d(g) §
g(z)  g(z)g' (=) 9(x) g(z)® -

(S) = ¢, implying that v} is surjective as well:
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(3.5) Proposition. Let V' C K" be closed and let 7,(V) = Tgn (V) =
V(0.(Z(V)) C K", for z € V, be the Zariski tangent space of V C K" at
2. Then the map 93: 7T,(V) — Derg(K[X]/Z(V),K,) = Derg(K[V],K,): t —
02(t): f + 0.(f)(t) is an isomorphism of K-vector spaces, where ~: K[X] —
K[X]/Z(V) =2 K[V] is the natural map.

Proof. For all ¢t € K" and f,g € K[X] we get 92(¢)(fg) = 0.(fg)(t) =
(02(f)g(x) + f(2)0:(9))(t) = O2(t)(f) - g(x) + f(x) - 03(t)(g), hence I3(t) €
Derg (K[X],K,). Since 0,.(f)(t) = 0forallt € 7,(V) and f € Z(V'), we conclude
02(t) € Derg(K[X]/Z(V),K,) for all t € T,(V). From im(9,) C K[X]; we get
that 7, (V) < K" is a K-subspace, and that 93 : ¢ — 02(t) is a K-linear map. For
t=[t1,...,tn] € ker(93) we have 0 = 9,(X;)(t) = (>i; Xi-0i(X;)(2))(t) = ¢;,
for all j € {1,...,n}, thus t = 0 and 99 is injective.

Moreover, for § € Derg(K[X]/Z(V),K,) let t := [§(X),...,8(X,,)] € K*. Lift-
ing & to b € DerK(K[X] K;), via the natural map ~—: K[X] — K[X]/Z(V), we
get 6 = Y21, O7(5(X;)). Thus for all f € K[X] we obtain 6(f) = 7, 6(X;) -
0,(f)(@) = Bu()([5(X1); -+, (X)) = Bu(f)(1), hence § = A3(1). Finally, for
all f € Z(V) we have 0 = 6(f) = 0,(f)(t), hence t € T,(V), and thus 99 is
surjective as well. i

(3.6) Corollary. Let V' C K" be closed and Z(V) = (f1,..., fr) < K[X], for
some r € N. Then for x € V we have 7T,(V) = V( E(fl) ,0:(fr)) C K™
Hence 7. (V) = ker(J(f1,-.., fr)(z)) < K", where J(f1,. f ) = [0:(f;))i; €
K[X]"*" is the associated Jacobian matrix.

Proof. For f € Z(V) there are gi,...,g, € K[X] such that f = 377, fjg; €

K], implying O (f) = Z; 102 (£5)95(2) + £3(2)02(97)) = 3251 0:(f5)g5(x) €

(3.7) Definition. Let V,W be affine varieties, let ¢: V. — W be a mor-
phism, and let © € V. Then for § € Derg(K[V],K;) we have dp*(fg) =

(" (fe™(9)) = 6((fe)(gp)) = 6(fp) - gp(x) + fo(x) - (W) =0¢*(f) - 9(y) +
f(y) - 0¢*(g), for all f,g € K[W], thus d¢p* € Derg(K[W],K,))-

The K-linear map d(¢): Derg(K[V],K;) — Derg(K[W],K,)): 0 — 0¢* is
called the differential of ¢ at z.

For idy we have d,(idv) = idpery(k[v],k,); and if W is an affine variety and
¢: W — Z is a morphism, then we have the chain rule d, (¢Y¢) = dy ;) (¥)d. ()
In particular, if ¢ is an isomorphism of varieties, then d.(y) is an isomorphism
of K-vector spaces, for all x € V. For tangent spaces of K-vector spaces and
differentials of K-linear maps see Exercise (11.28).

(3.8) Remark. a) Let V C K" and W C K™ be closed, and let X :=
{X1,..., X, }aswellas Y := {Y1,..., Y}, and let the morphism ¢: V' — W be
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given by f1,..., fm € K[X]. Then for z € V the K-linear map d,(¢): 7,(V) —
T, (z)(W) between the associated Zariski tangent spaces is given by the matrix
J(f1, ., fm)(x) € K", where J(f1,..., fm) = [0:(f;)]i; € K[X]"*™ is the

associated Jacobian matrix:

Let t = [t1,...,tn] € To(V) < K" and dy(0)(02(t)) = 93, (u), for a unique
u = [u, ... um| € Tp(x)(W) < K™ Then for j € {1,...,m} we have u; =
0%y (W)(Y;) = ()" (V;) = 02(1)(f;) = 0x(f5)(t) = 2oy ti - 0ilf3) () =
[t-J(f1,-.., fm)(x)];, where both the natural maps K[X] — K[V] and K[)] —
K[W] are denoted by —, and where |[...]; denotes the j-th entry of [...] € K™.

b) Letting f € K[X], the element f € K[V] can be considered as a morphism
f:V — K, with comorphism 7*: K[Y] — K[V]: Y + f. Since Z(K) = {0} <
K[Y], the Zariski tangent space of K at y € K is given as 7, (K) = V({0}) = K.

Using this identification we for x € V' get d,(f): To(V) — T5(,)(K) = K, whose
matrix is given by [0;(f)(z)] € K™*!; in particular we have d.(f) € T} (V).
Considering 0;(f) as a K-linear form on 7,(V), i. e. 0.(f)|z,(v) € T, (V), we
also obtain the matrix [9;(f)(z)] € K®*!. Thus we have an identification of the

total differential 0, (f)|7,(vy and the differential d(f).

c) Let W C V be closed, with associated ideal Z(W) = (f1, ..., fr) <K[V], for
some r € N, and let x € W. Letting ¢p: W — V be the natural embedding,
the associated comorphism ¢*: K[V] — K[V]/Z(W) = K[W] is the natural epi-
morphism. Hence the differential d,(¢): Derg (K[W],K,) — Derg(K[V],K,)
is injective, having image im(d,(y)) = {0 € Derg(K[V],K,); 6(Z(W)) = {0}}.
Thus we have T,(W) < T,(V) as K-vector spaces, and using the closed em-
bedding W C V' C K", we deduce that T,(W) = (\;crqwy) ker(da(f)) =

Micpry ker(d () < Tu(V).

d) Let + € V and y € W. Then we have K, ,; = K, ®x K, = K as
well as T, (V' x W) = Derg(K[V] @k K[W], K[, ) = Derg(K[V],K;) &
Derg (K[W],K,) = T,,(V) & T, (W) as K-vector spaces, see Exercise (11.27):

The injective comorphisms associated to the natural projections 7: VxW — V
and 7': V. x W — W are given as 7*: K[V] — K[V] @k K[W]: f — f®1
and 7*: K[W] — K[V] @k K[W]: g — 1 ® g. Hence we have an induced K-
linear map d,(m) © dy(7’): Derg(K[V] ®@x K[W],K(;,;) — Derg(K[V],K,) &
Derg (K[W],Ky): v = [vgv], vlgwi)- Conversely, the comorphisms associated
to the natural embeddings e: V. — V x W: 2z — [z,y] and ¢: W — V x
W:z — [z,2] are given as ¢*: K[V] @k K[W] — K[V]: f ® g — fg(y) and
€*: K[V] @x KIW] — K[W]: f ® g — f(x)g. Hence we have an induced K-
linear map d,(¢) @ dy(€'): Derg (K[V],K,) & Derg (K[W],K,) — Derg (K[V] @k
KW, Kig,y)): [0,0"] — 608" f@g—6(f)g(y) + f(x)d(9)-

For v € Derg (K[V]@xK[W], K[, ) we have (v[kjv)ov|xmw) (f©@g) = v(f)g(y)+
f@)v(g) = v(f@ 1)1 ®g) = v(f ®g), and for § € Derg(K[V],K,) and
" € Derg (K[W],K,) we get (6 ®d')[gjv)(f) = 0(f)1(y) + f(x)d'(1) = 5(f) and
(608" |k (9) = d(1)g(y) + 1(z)d'(9) = §'(g), for all f € K[V] and g € K[W]. ¢



I Algebraic geometry 15

e) Let ¢: V — W be a morphism, and let 0 # f € K[V] as well as 0 # g € K[W]
such that ¢ restricts to a morphism ¢|y,: Vy — W,. Then for x € V; we
have Ty (V) = T, (V') and Ty (5 (Wy) = Ty(2) (W), where the isomorphisms are
induced by ¢} and ¢y, respectively. Since both d(¢[v,) and d;(y) are induced
by ¢*, the differential d.(¢|v,): T:(Vy) — Ty@)(Wy) can be identified with
do(#): T (V) = Top(ay (W).

More explicitly, for x € V; we show how to define the Zariski tangent space
7, (Vy), and how to identify it with 7,(V'), see Exercise (11.29):

Let f € K[X] such that f=re¢ K[V]. We have a closed embedding V; — \7f -
K"y [f(y)~1,y], with inverse XA/f — Vi [f(y)~ 1 y] — y, where K[V]; =
K[V}] 2 K[X, Xo]/(Z(V), fXo — 1), see (1.15). While for g € Z(V) < K[X] we
have O(f(a)-1.0)(9) = 250 0i(9)([f (2) 7, 2]) - Xi = 325, ilg) () - Xi = Ou(9),
we moreover get Oz -1,4(fXo —1) = 37 9i(fXo — D)([f(x)" ! 2]) - X; =
flz) - Xo+ Y, 8;(f)(x) - f(x)~' - X,;. Thus the projection map T.(Vy) =
T[f(x)_l)ﬂ(f/f) — T, (V): [to,t1,...,tn] — [t1,...,tn] is an isomorphism. i

(3.9) Theorem. Let V be an irreducible affine variety.
a) For all x € V we have dimg(7,(V)) > dim(V).
b) The set U := {z € V;dimg (T, (V)) = dim(V)} C V is non-empty and open.

The elements of U are called regular points, the elements of V' \ U are called
singular points, and if V' = U then V is called smooth.

Proof. See [6, Thm.I.5.3], or Exercise (11.30) for (a) and part of (b). 1

A differential criterion for dominance is given in Exercise (11.32).
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II Algebraic groups

4 Affine algebraic groups

(4.1) Definition and Remark. a) An affine variety G over K, endowed with
a group structure such that multiplication p = ug: GXG — G: [z, y] — zy and
inversion . = 1g: G — G: x — ! are morphisms, is called an affine or linear
algebraic group over K| see (6.2), or just an algebraic group for short.

If H also is an algebraic group, then a morphism ¢: G — H which also is a
group homomorphism is called a homomorphism of algebraic groups.

Since the Zariski topology on G x G is finer that than the product topology
induced by the Zariski topology on G, see Exercise (11.9), in general G is not
necessarily a topological group.

b) Letting eg = €1,: {lg} = G: 1g — 1g and vg = v1,: G — {1g}: g — g,
the group laws can be translated into commutative diagrams of affine varieties
and of affine coordinate rings, respectively; see also Exercise (12.1):

i) Associativity: For all x,y,z € G we have (zy)z = z(yz).

GxGxG "% gxG KG]oxKG oKG “Z% K(G]oxK[G]
e xpg | |kre idg@;tET TME
GxG < K[G] ex K[G] <% K[G]
ii) Identity: For all x € G we have z - 1g = 2 = 1 - x.

(ecve)* ®xidg
A

G ¥ gy K[G] K[G] &x K[G]
idx (esve) | N\ de |He idg®(esre)™ ] Ndds 1HG
GxG * G KG] o K[G] <&  K[G]
iii) Inversion: For all z € G we have x - 271 = 1g =271 - 2.
G ‘X GxgG K[G] “&%  K[G] ok K[G]
idXLq;\L \6@“@ lﬂG id6®LaT \(EGVG)* Tlu‘(*}
GxG 4 K[G] 9x K[G] <&  K[G]

(4.2) Example: The additive and the multiplicative group.

a) G, := K is an algebraic group, called the additive group, where y: K? —
K: [z,y] » z+yand 1: K— K: 2 — —z and e: {0} — K, yielding p*: K[X] —
KX ek K[X]: X —» (X®1)+ (1® X) and ¢*: K[X] - K[X]: X — —X and
e K[X] - K: X — 0.

Similarly, K™ is an additive algebraic group, where p: K" x K* — K": [z,y] —
x+yand (: K" - K": 2 — —z and e: {0} — K", yielding p*: K[X] —
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KX oxkK[X]: X; — (X;®1)+(1®X;) and *: K[X] — K[X]: X; — —X; and
e: K[X] —» K: X; — 0, where X = {X1,..., X, }.

b) G, := K\ {0} = Kx C K is an affine variety with affine coordinate algebra
K[G,,] = K[X]x. It is an algebraic group, called the multiplicative group,
where p: G, x G, — G, [z,y] — 2y and v: G, — Gp:x — 27! and
e: {1} — Gy, yielding p*: K[X]x — K[X]x ®x K[X]x: X — X ® X and
oKXy K[ X]x: X — X tand ¢ K[X]x - K: X — 1.

For n € Z the map ¢y : G, — Gyt x— 2™, thus ¢f  K[X]x —» K[X]x: X —
X™ is a morphism and a group homomorphism, thus a homomorphism of al-
gebraic groups. If char(K) = p > 0 and ¢ = pf, for some f € N, then the
Frobenius morphism @, is a group isomorphism, but since ® is not surjective,
®, is not an isomorphism of algebraic groups.

For the automorphisms of G, and G, as algebraic groups see Exercise (12.2).

(4.3) Example: General and special linear groups.

a) We consider K"*"_ for some n € N, whose affine coordinate algebra is given as
K[X] = K[X11,. .., Xnn]. Let dety, := Y s (sgn(o)- iy Xii-) € K[X] be the
n-th determinant polynomial. The principal open subset GL,, = GL, (K) :=
(Knxn)detn = {[aij] € K"X”;det([aij]) = detn(au,alg, .. .,ann) # 0} C Knxn»
is called the general linear group; we have GL; = G,,. Its affine coordinate
algebra is K[GL,] & K[X]qet, , and it is an algebraic group:

Multiplication p: GL,, x GL, — GL,: [[ai;], [bi;]] — [Z?:l a;;b;klik yields
¥ KX der,, — K[X]det,, Ok K[X]qet,, 1 Xk — 2?21 X:;®X k. Moreover, using
the adjoint matrix, inversion ¢: GL,, — GL,,: A — A~ = det(A)~! - adj(A),
where adj(A4) = [(=1)"" - det([agi]pjii)]i; € K™, yields o*: K[X]get, —
K[X]det, : Xij +— (=1)" - det, ' (X) - detn1({Xpisk # j,1 # i}); we let
adj([a11]) = [1] and dety = 1. Finally, e: {E,} — GL,, yields €*: K[X]get, —
K: X;; — d;;, where 0 denotes the Kronecker function.

The map pget: GL,, — G i A — det(A) is a homomorphism of algebraic groups
with comorphism ¢}, : K[X]x — K[X]det, : X +— det,,.

b) Similarly, SL,, = SL,(K) := V(det, —1) = {[a;;] € K"*";det([ai;]) =
det, (a1, a12,. .., ann) = 1} € K"*™ is called the special linear group.

We show that det,, —1 € K[X] is irreducible; see Exercise (12.3): We first show
by induction that det, € K[X] is irreducible, which holds for n = 1. For
n > 2 assume to the contrary that det,, is reducible. Expansion with respect
to the n-th row yields det,, = det,_1-X,,, + 0, where §,, := Z?;ll(—l)"_i .
det,—1({Xwi; k # n,l # i}) - Xp;. Since degy, (det,) = 1, and by induction
det,—1 € K[{Xki; k # n,l # n}] is irreducible, this implies that det,_; divides
0n. By specifying X,,; — 0, for all i # j € {1,...,n—1}, this yields that det,_1
divides det,,—1 ({Xxi; k # n,l #i}), for alli € {1,...,n—1}, which by induction
is a contradiction. Hence det,, is irreducible, and now assume to the contrary
that det,, —1 is reducible. Then we conclude similarly that det,,_; divides 6, —1,
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which by specifying X,,; — 0, for all ¢ € {1,...,n — 1}, is a contradiction. i

This implies that (det,, —1) <K[X] is prime, and K[SL,,] = K[X]/(det,, —1); in
particular K[SL,] is a domain. Since SL,, < GL,, is closed, SL,, is an algebraic
group, and the structure morphisms are carried over from GL,, using the inclu-
sion morphism its associated comorphism K[X]qe, — K[X]/(det, —1): X;; —
Xij,det; "+ 1; see Exercise (12.1).

Further examples are given in Exercises (12.4) and (12.5).

(4.4) Example: Classical groups.

Let b be a non-degenerate K-bilinear form on K", having matrix J = J, €
K™*" with respect to the standard K-basis {eji,...,e,} of K*. Let {A €
K™ b(zA, yA) = b(z,y) for all z,y € K"} = {4 € K" AJAY = J} =: G,
be the set of isometries of b. Since det(J) # 0 implies det(A) € {£1}, we
indeed have G; < GL,, as groups, and since AJA'" = J translates into poly-
nomial equations for the matrix entries of A, see also (8.5), we deduce that
Gy C GL,, € K™*™ is closed, thus an algebraic group, called a classical group.

Let b’ is a K-bilinear form on K" equivalent to b, having matrix J’' € K**™ and
let B € GL,, such that J' = BJBY. Then for A € GL,, we have AJ' A" = J' if
and only if AP . J.(AB)" = J implying (G;)® = G; < GL,. It is immediate
that conjugation xp: GL, — GL,: A — AP := B"1AB is an automorphism
of algebraic groups, implying that (G )? = G as algebraic groups.

a) Let b be alternating, i. e. we have b(x,x) = 0 for all z € K”. This implies
0=bz+y,x+y)=blxz,y)+b(y,z), hence b(z,y) = —b(y,z) for all z,y € K,
i. e. bis symplectic, and thus J = —J%. If char(K) # 2, then from b(z,y) =
—b(y, x) we conversely get b(z,z) = —b(z, x), hence b(z,z) = 0. We show that
up to equivalence there is only one such form on K":

Let 0 # 2 € K™ There is y € K" such that b(x,y) # 0, in particular we
have y ¢ (x)k. Replacing y by m -y € K" we get b(x,y) = 1 = —b(y, z),
i. e. [z,y] is a hyperbolic pair. The restriction of b to the hyperbolic plane

0 1
-1 0
UNU*L ={0}. Hence K® = U @ U~ where b|;;. is non-degenerate as well. By
induction on n we deduce that n = 2m is even, and that K" can be written as
the orthogonal direct sum of m copies of the hyperbolic plane. Note that the
same argument works over any field. #

U := (z,y)x has matrix [ }, thus is non-degenerate, implying that

Reshuffling hyperbolic pairs suitably we deduce that up to equivalence J =

0 Jm nxn
|:_Jm 0 }EK , where

Jmi=| . .| e KM,
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The associated classical group S, = Sp,, = Sp,,(K) is called the symplectic
group. For the case m = 1 we get Sy = SLo, see Exercise (12.6), and by (10.2)
we always have S,, < SL,,.

b) Let char(K) # 2 and let b be symmetric, i. e. we have b(z,y) = b(y, x)
for all z,y € K”, thus J = J%. Let ¢: K® —» K: 2 %b(x,x). Then we have
q(cx) = ?q(x) and q(z +y) = q(z) + q(y) + b(z,y), for all z,y € K* and ¢ € K,
as well as ¢ # 0. Up to equivalence there is only one such form on K":

Let x € K™ such that ¢(x) # 0. Hence the restriction of b to U := (z)x

is non-degenerate, and we have K" = U @ UL where b|;;. is non-degenerate

as well. By induction on n we deduce that there is an orthogonal K-basis

{v1,...,v,} of K", i. e. the associated matrix of b is diag[2¢(v1),...,2q(v,)] €

K"*". Replacing v; by ——— - v; € K" yields an orthonormal K-basis, i. e.
b g Y V2aon) y

the associated matrix of b is F,,. Note that the same argument works over any
field of characteristic # 2 in which any element has a square root. #
Considering the case n = 2, given an orthonormal K-basis of K2, the basis
change given by B := % - { 1 _g ] € K2%2 yields B Eo - B = J, € K2¥2,
Hence we deduce that up to equivalence J = J,, € K™*™ the associated classical
group Q,, = 0,,(K) being called the orthogonal group. Let SO,, = SO,,(K) :=
0, NSL, = {A € O,;det(A) = 1} be the special orthogonal group. For
n = 1 we have SO; = {1} and @y = {£1}; for n = 2 and n = 3 see Exercise
(127) Since JQ‘JQ‘(J2)tr =Jy € K2%2 and det(Jg) = —1 we have Jy € @2\8@2,
implying that for any n € N we have [Q,,: SO,,] = 2.

(4.5) Example: Orthogonal groups in characteristic 2.

It remains to deal with symmetric bilinear forms in characteristic 2. To this end,
a quadratic form ¢: K" — K is a map such that g(cz) = c?q(z), for all x € K"
and ¢ € K, and such that the associated polar form b: K" x K" — K: [z,y] —
q(z +y) —q(x) — q(y) is K-bilinear; hence b is symmetric, but not necessarily is
non-degenerate. If char(K) # 2 then we have b(z,x) = ¢(2z) — 2¢q(z) = 2¢(x),
implying that ¢ is determined by b, thus if b is non-degenerate we recover the
situation in (4.4)(b).

Let now char(K) = 2. Then b(x,x) = 2¢(z) = 0 implies that b is alternating
as well, and that ¢ is not completely determined by b. A vector 0 # z € K"
such that g(z) = 0 is called singular, and a pair [z,y] of singular vectors
such that b(xz,y) = 1 is called a hyperbolic pair. Letting rad(b) < K" be
the radical of b, for z,y € rad(b) we have q(cx +y) = c*q(x) + q(y), showing
that glraqe): rad(b) — K is ®o-semilinear, where ®5: K — K: ¢ c?. The
quadratic form ¢ is called regular if ker(q|;aqap)) = {0}, i. e. rad(b) does not
contain singular vectors; this replaces the non-degeneracy condition on b.

From now we assume q to be regular. This implies dimg(rad(b)) < 1. We show
that K", for n > 2, contains a singular vector: If b is degenerate, then let x €
K™ \rad(b) and 0 # y € rad(b). Hence we have ¢(y) # 0 and thus q(z) = ?q(y),
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for some ¢ € K. This yields z+cy # 0 and q(z+cy) = q(x)+c?q(y) +b(z,y) =
If b is non- degenerate then let first n > 3. Let € K™ such that ¢(x) #0 a
since dimg ((x)x) > 2, let y € (x)¢ \ (z)g. Hence we have q(y) = c?q(z), for
some ¢ € K, yielding cz +y # 0 and q(cx +y) = ?q(z) + q(y) + b(z,y) =

Finally, let still b be non-degenerate but n = 2. Let z,y € K2 such that
b(xz,y) = 1 and ¢(z) # 0. Since K is algebraically closed there is ¢ € K such
that g(cz +y) = ®q(z) + q(y) + ¢ = 0. Note that for n > 3 the same argument
works over any perfect field of characteristic 2. i

We show that up to equivalence, i. e. up to change of K-bases, there is only
one regular quadratic form on K", proceeding similar to (4.4)(a): For n > 2 we
choose a singular vector = € K", i. e. we have ¢(z) = 0. Since z ¢ rad(b) there
is y € K" such that b(x,y) = 1. This yields q(q(y)z + y) = q(y)?q(z) + q(y) +
q(y)b(z,y) = 0, and b(z,q(y)z +y) = q(y)b(z, z) + b(z,y) = 1. Thus q(y)z +y
is singular and [z, q(y)x + y] form a hyperbolic pair. The restriction of b to
the hyperbolic plane U := (x,q(y)z + y)x is non-degenerate, implying that
UNU*+ = {0}. Since dimg(U+) > n — dimg(U), we conclude dimg (U @ U+) =
dimg (U) + dimg(U1) > n, thus U @ U+ = K". By induction on n € N we
deduce that K™ can be written as the orthogonal direct sum of rad(b) < K",
and m copies of the hyperbolic plane for some m € Ny. i

a) If b is non-degenerate then n = 2m for some m € N, and up to equivalence
we have J = J,, € K"*", where the standard K-basis of K™ consists of singular
vectors, and thus ¢(z) = Y1" | 2xp41-; €K, for all z = [21,...,2,] € K™

Let O, := {4 € K"*"; q(zA) = ¢(z) for all x € K"}. Since for A € Q,, we have
b(zA, yA) = q(xA+yA)+q(zA)+q(yA) = q(z+y)+q(x) +q(y) = bz, y), for all
x,y € K", we conclude that Q,, <S,, C K"*™ is a closed subgroup, see also (8.6),
hence is an algebraic group, called the associated even-dimensional orthogo-
nal group in characteristic 2; it is immediate that equivalent quadratic forms
yield isomorphic groups; for n = 2 see Exercise (12.7). We have det(A4) =1
for all A € Q,, but still there is a special orthogonal group SQO,,, a closed
subgroup such that [0Q,: SO,,] = 2, being defined as the kernel of Dickson’s
pseudo-determinant, see [15, Ch.11, p.160] or [14, Ch.14, p.131].

b) If b is degenerate then n = 2m+1 for some m € Ny, and up to equivalence we

have J = Jf)m 8 € K"*" hence rad(b) = (e,,)x. The subset {e1,...,eam}
of the standard K-basis of K™ consists of singular vectors, while we have ¢(e,,) =

1, and thus ¢(z) =22 + Y 1" mizn—; €K, forallx—[zl,...,xn]eK".

Let Oy, := {A € K"*";q(zA) = q(x) for all x € K"}. Hence for all A € O,, and
x,y € K™ we have b(zA,yA) = b(z,y). We show that any A € Q, is invertible:
Assume to the contrary that A is not invertible, then from AJA™ = J we get
dimg (im(A)) = n — 1 and im(A) Nrad(b) = {0}, implying that K" = im(A) &
rad(b) is an orthogonal direct sum, and thus b|ip,(4) is non-degenerate. From
b(zA, e, A) = b(x,e,) = 0 for all x € K" we conclude that e, A € rad(blim(a))
and hence e, A = 0, implying 1 = ¢(e,) = ¢(e, A) = 0, a contradiction.
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This implies that OQ,, < GL,, is a closed subgroup, see also (8.6), hence is an
algebraic group, called the associated odd-dimensional orthogonal group
in characteristic 2; it is immediate that equivalent quadratic forms yield iso-
morphic groups, and we have Q; = {1}. We show that for n = 2m+1 > 3 there
is a bijective homomorphism of algebraic groups Q,, — Sa,,; it then follows from
(5.4) that there is no notion of a ‘special orthogonal group’ in this case:

Let W := (e1,...,eam)k, hence we have an orthogonal direct sum K" =
W @ rad(b), where by is non-degenerate having matrix Jp, € K2™*2™_ Since
rad(b) is O,-invariant, we have e, A = ce, for some ¢ € K, and from 1 =

q(enA) = C2Q(en) = 0

KEm+D)xEm4D) - where a = [ay,...,a2,] € K*™ and A’ € Sy, C K2mx2m,
Hence ¢: Q,, — Sg,,: A — A’ is a homomorphism of algebraic groups. Let
A € ker(p), then for x € W we have ©A = x + ce,,, where ¢ := E?;”l a;z; € K,
and from ¢(z) = q(zA) = q(x) + ¢ we deduce ¢ = 0, hence ¢ is injective.
Let B € Son (W) 2 Sayp, then for i € {1,...,2m} let b; € K such that ¢(e;B) +
Y tr
q(e;) = b7, and b := [by,...,byy] € K*™. We show that B := [ lg bl ] €
0, C KCm+DxEm+1): For 2 € W and d € K we have q(z + de,) = q(x) + d?.
Letting ¢ := 227 b € K, we have ¢((z + de,)B ) = q(:I:B + (c+ d)e,) =
q(xB) + ¢ + d? and q(xB) = 212 1 q(acleZ ) + Z 1b(xie;B,xje;B) =

SO 2202+ 00 glaie) + 300 Z L b(xies, xjej) = ( ) + ¢?, which implies

q((z+de,)B B) = q(x)+d* = q(x—l—den). Hence ¢ is surjective as well, thus is an
isomorphism of groups; but due to taking square roots ¢ is not an isomorphism
of algebraic groups; see also (8.6). i

/
we conclude ¢ = 1. Hence we have A = { A 1 ] S

5 Basic properties

(5.1) Proposition. Let G be an algebraic group.
a) There is a unique irreducible component G° of G containing 1g.

b) The identity component G° < G is a closed normal subgroup of finite
index, and G°|G := {G°g;g € G} consists of the connected as well as of the
irreducible components of G.

In particular, G is equidimensional such that dim(G) = dim(G°), and G is
irreducible if and only if it is connected; in this case G is called a connected
algebraic group.

¢) The subgroup G° is contained in any closed subgroup of G of finite index.

Proof. a) Let V, /W C G be irreducible components such that 1 € V N W.
Multiplication p: G x G — G yields that VW = u(V x W) C G is irreducible,
hence VW C G is irreducible as well. Since both V C VW and W C VW, we
conclude that V =VW = W.
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b) In particular, we have G°G°® = G°. Since inversion :: G — G is an auto-
morphism of affine varieties, (G°)~! = +(G°) C G is an irreducible component
containing 1g, implying that (G°)~! = G°. Thus G° < G is a subgroup. For
any g € G conjugation r,: G — G: x — 29 := g~ lzg is an automorphism
of algebraic groups, hence (G°)9 = k4(G°) C G is an irreducible component
containing 1g, thus (G°)Y = G°, implying that G° <G is a normal subgroup.

Moreover, for any g € G right translation p;: G — G:  — zg is an automor-
phism of affine varieties, hence G°g = p4(G°) C G is an irreducible component,
and in particular is connected. Since G is Noetherian, G°|G is a finite set.
Since G = ngG°|G G°g is a finite disjoint union, we conclude that all the sets
G°g C G are open and closed, hence are the connected components of G. Fi-
nally, if V' C G is an irreducible component, then from V' =[] cgoc(V NG°g)
we conclude that V =V NG°g, hence V = G°g, for some g € G.

c) Let H < G be a closed subgroup of finite index. Hence G = ngHlG Hg is a

finite disjoint union of open and closed subsets. Thus G° = ngHlG(GO N Hg),
and since 1g € G° N H this implies G° = G° N H, hence G° < H.

For variations on subgroups see Exercises (12.11), (12.9) and (12.10).

(5.2) Lemma. Let G be an algebraic group.

a) Let V,W C G be open and dense. Then VW = G.

b) Let H < G be a subgroup. Then H < G is a subgroup as well. If moreover
H contains a non-empty open subset of H, then we have H = H.

Proof. a) Let g € G. Then V=g C G is open and dense as well, hence we
have V=g N W # (), implying that there is v='¢g = w € V"1g N W, for some
veVand we W, thus g =vw e VIV.

b) We have H'=H1=TH. Moreover, for any h € H we have Hh = Hh = H,
implying HH C H. Thus for any g € H we have gH C H, implying gH = gH C
H, thus H H C H. This shows that H < G is a closed subgroup. Moreover, if
() # U C H is open such that U C H, then H = J{Uh;h € H} C H is open

and dense, thus H = HH = H. i

(5.3) Proposition. Let ¢: G — H be a homomorphism of algebraic groups.
a) Kernel ker(¢) <G and image ¢(G) < H are closed subgroups.

b) We have ¢(G°) = p(G)°.

¢) We have dim(G) = dim(ker(¢)) + dim(o(G)).

Proof. a) Since {1y} C H is closed, ker(y) = ¢~ ({1x}) C G is closed as well.
Next we consider the restrictions ¢|go: G° — ¢(G°). Since G° is irreducible,
©(G®) is irreducible as well, hence there is ) # U C ¢(G°) open such that
U C ¢(G°®), implying that ¢(G°) < H is closed. Now, G = ngG°|G G°g being
a finite union implies that ¢(G) = Uyego s (G°)@(g) < H is closed.
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b) Since p(G°) < ¢(G) is closed and irreducible, containing ly, we have
»(G°) < p(G)°. Conversely, since G° < G is a closed subgroup of finite index,
»(G°) < ¢(G) is a closed subgroup of finite index, implying ¢(G)° < p(G°).

c) We may assume that ¢ is surjective, hence ¢y := ¢|go: G° — H° is a
surjective morphism between irreducible affine varieties. Since the fibres of g
are cosets of ker(pg) in G°, they all have dimension dim(ker(yp)). Moreover
ker(pg) = ker(¢) N G° < ker(yp) has finite index, hence ker(p)° < ker(pg) <
ker(y), implying that dim(ker(y)°) = dim(ker(¢p)) = dim(ker(y)). Hence we
have dim(G) = dim(G°) = dim(ker(yg)) + dim(H®) = dim(ker(p)) + dim(H). 4

(5.4) Example. a) Since K[X] is a domain, the additive group G, = K is
connected, and dim(G,) = 1. Since the multiplicative group G,, = Kx C K
is open in an irreducible space it is connected, and dim(G,,) = 1. By [11,
Thm.2.6.6] these are up to isomorphism the only connected algebraic groups of
dimension 1; see also Exercise (12.21).

b) The general linear group GL, = (K"*™)4e;, C K"*™ is connected, and
dim(GL,,) = dim(K"*") = n?. Since K[SL,] = K[X11,..., Xn,]/(det, —1) is
a domain, the special linear group SIL,, is connected as well, and since it is a
hypersurface in K™*" we have dim(SL,,) = n? — 1. For the examples mentioned
in Exercises (12.4) and(12.5) see Exercise (12.8).

c) By (10.2) Sy, is connected. If char(K) # 2 then by (10.2) SO, is connected,
hence [0, : SO,,] = 2 implies O, = SO,,. Similarly, if char(K) = 2 then 0%, =
SQs,,,. Finally, if char(K) = 2 it follows from the bijective morphism Qg,,4+1 —
Som, for m € N, that Qsg,,+1 is connected.

(5.5) Definition and Remark. a) Let G be an algebraic group, and let V' # ()
be an affine variety. A (right) group action ¢: V x G — V: [z, 9] — zg, such
that ¢ is a morphism, is called a morphical action, and V is called a G-variety.

In this case, for any g € G we have the automorphism of affine varieties ¢, : V' —
V: 2+ xg, and the associated automorphism of K-algebras ¢} : K[V] — K[V,
also called translation of functions. Since ppp, = @gp for all g,h € G, we
have o5, = ¢y, implying that g — ¢ is a K-representation of G on K[V].

Moreover, for any = € V we have the orbit morphism ¢,: G — V: g — g, its
image G = ¢, (G) C V is called the associated G-orbit. If G acts transitively
on V, i. e. we have zG = V for some and hence any x € V', then V is called a
homogeneous G-variety.

If G acts morphically on affine varieties V and W, then a morphism ¢: V. — W
is called G-equivariant if ¢(zg) = ¥(z)g, for allz € V and g € G.

b) E. g. G acts morphically on G by right translation p = pu: [z, g] — zg,
as well as by left translation \: [z,g] — g 'z, where G is homogeneous for
both of these regular actions; and G acts morphically on G by conjugation
k: [x,g] — 29 := g~ lxg, the orbits being called conjugacy classes; for any
g € G we have kg = pghg = Agpg.
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c) Let U C V be a subset, and let W C V be closed. Then the transporter
Trang (U, W) :={g € G;Ug C W} = N,y vz (W) C G is a closed subset.

In particular, for any « € V the isotropy group or centraliser or stabiliser
G, = Cg(x) = Stabg(z) := {g € G;2g = v} = Trang({z}, {z}) < G is a closed
subgroup, and hence C¢(U) := [, ¢y G2 < G is a closed subgroup as well; see
also Exercise (12.12).

For any g € G the set of fixed points V9 = Fixy (g) :={z € V;zg=2} CV
is closed, implying that V® = Fixy (G) := ngG V9 CV is closed as well: Let
g V =V x V:aw [z,2g], then the diagonal A(V) := {[z,z] € V x V;z €
V} CV x Vis closed, hence ¢, ' (A(V)) = {z € V;z = xg} CV is closed.

Each irreducible component of V5 C V is G°-invariant: The group G per-
mutes the finitely many irreducible components, hence {g € G;Vog = Vp} =
Trang(Vp, Vo) < G is a closed subgroup of finite index, thus contains G°.

(5.6) Lemma. Let G be an algebraic group, let H < G be a closed subgroup,
and let Z(H) < K[G] be the associated vanishing ideal. Then we have H = {g €
G; p2(Z(H)) C T(H)} and H = {g € G; \!(Z(H)) C Z(H)}.

Proof. See Exercise (12.13).

i) For g € H and f € Z(H) we have (p;(f))(z) = f(xg) = 0, for all x € H|,
implying p}(f) € Z(H). Conversely, let g € G such that p}(Z(H)) C Z(H).
Then for f € Z(H) we have f(g) = (p;(f))(1c) = 0, implying g € V(Z(H)) = H.
ii) For g € H and f € Z(H) we have (\}(f))(z) = f(g~'z) = 0, for all z € H,
implying A} (f) € Z(H). Conversely, let g € G such that A} (Z(H)) C Z(H). Then
for f € Z(H) we have f(g~') = (A;(f))(1g) = 0, implying g € V(Z(H)) = H.

6 Linearisation and Jordan decomposition

(6.1) Proposition. Let G be an algebraic group acting morphically on V' via
v, and let F' < K[V] be a K-subspace such that dimg(F) < co.

a) There is a K-subspace FF < E < K[V] such that dimg(E) < oo, which is
py-invariant for all g € G.

b) ' < K[V] is pj-invariant, for all g € G, if and only if ¢*(F) < F' @k K[G].

Proof. a) We may assume that F = (f)g, for some 0 # f € K[V]. Hence
O (f) = Xi_, fi ® gi € K[V] @k K[G], for some r € N as well as f; € K[V]
and g; € K[G]. For g € G and z € V we have (p;(f))(z) = flpy(z)) =
Fzg) = F@(lz.g) = (@ (D)2 g]) = Sy fi(2)gi(e), implying o (f) =
Soi_i fi-9i(g) € K[V]. Hence E := (f1,..., fr)x < K[V] is as desired.

b) If p*(F') < F @k K[G], then the above computation shows that ¢} (F) < F,
for all g € G. Conversely, if ¥ < K[V] is pj-invariant, for all g € G, then let
{fi,- s for fsr1, ...} CK[V] be a K-basis, where {f1, ..., fs} C F is a K-basis
and s := dimg (F'). For f € F we have ¢*(f) = > ;5 fi®g;, for some g; € K[G],

implying that ¢} (f) = 227y fi- 9i(9) + izt fi - gi(g). Since @%(f) € F, for
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all g € G, we deduce that for all i > s+ 1 we have g; = 0 € K[G], thus
" (f) = 221 fi ® gi € F @ K[G]. f

(6.2) Theorem. Let G be an algebraic group. Then G is isomorphic as an
algebraic group to a closed subgroup of GL,,, for some n € N.

Proof. We consider the regular action of G on G by right translation p =
u: G x G — G. Using the fact that K[G] is a finitely generated K-algebra,
we choose a K-linear independent subset {f1,..., fn} C K[G], for some n € N,
such that F' := (f1,..., fo)x < K[G] is pj-invariant, for all g € G, and such
that K(F) = K[G]. Hence for all i € {1,...,n} we have p*(f;) = >7_, f; ®
gi; € K[G] ®x K[G], where the g;; € K[G] are uniquely defined, and thus
py(fi) = 201 fi - gij(9) € K[G], for all g € G. Since p} is injective and
PyPh = Py, for all g,h € G, this implies that ¢: G — GL,: g = [g:5(9)] €
K™*™ ig a morphism of algebraic groups, called an algebraic or rational K-
representation of G on F. Since for ¢ € G we have fi(g) = fi(lg - g9) =
(p*(fi)([le,9]) = Xo5=, fi(lg) - 9ij(g), we get fi = 377, fi(le) - gij € K[G],
implying that K(g;;;2,7 € {1,...,n}) = K[G]. Hence ¢*: K[GL,] — K[G] is
surjective, implying that ¢ is a closed embedding, see Exercise (11.7). i

For linearisation of arbitrary actions see Exercise (12.15).

(6.3) Definition. A matrix A € K®*", where n € N, is called semisimple,
if its minimum polynomial is multiplicity-free, i. e. if it is diagonalisable; and
it is called nilpotent, if there is & € N such that A* = 0, i. e. if 0 is its only
eigenvalue. Hence A is both semisimple and nilpotent if and only if A = 0.

Moreover, A is called unipotent, if A — E,, € K"*™ is nilpotent, i. e. if 1 is
its only eigenvalue. Hence if A is unipotent, then A € GL,,, and it is both
semisimple and unipotent if and only if A = F,,; see also Exercise (12.17).

(6.4) Lemma. a) Let A € K"*". There are uniquely determined matrices
A A, € K", where Ay is semisimple and A, is nilpotent, such that A A, =
A,As and A = A; + A, called the additive Jordan decomposition of A,
where A; and A, are called the semisimple and nilpotent part, respectively.

Moreover, there are f,g € K[T] such that As = f(A) and A, = g(A4); see
also Exercise (12.16). If a matrix B € K"*"™ commutes with A, then B also
commutes with As and A,,, and we have (A4 B); = A+ B; as well as (A+B),, =
A, + By,.

b) Let A € GL,, C K"*™. Then there are uniquely determined matrices
A, A, € GL,,, where A, is semisimple and A, is unipotent, such that A =
AsA, = AL A, called the (multiplicative) Jordan decomposition of A,
where A, and A, are called the semisimple and unipotent part, respectively.
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Moreover, there are f,g € K[T] such that A; = f(A4) € K" and A, = g(4) €
K™*™ If a matrix B € GL,, commutes with A, then we have (AB), = A;Bs;
and (AB), = A, B, .

Proof. a) Let A1,..., A € K be pairwise distinct and nq,...,n, € N such that
xa | [Ti- (T = X)™ € K[T], where x4 € K[T] is the characteristic polynomial
of A. Moreover, let Ey, 1(A) = ker((A — \;E,)¥) < K", for k € N, be the
associated generalised eigenspaces, hence we have K™ =~ @_, Ej, »,(A4). By
the Chinese remainder theorem there is f € K[T] such that for all ¢ € {1,...,r}
we have f = \; (mod (T — \;)™). Letting A; = f(A) € K"*" we have
AS|EM,1L1:(A) = )\iEn|E>\i,n,i (a), hence A, is semisimple. Letting A, := A — A, €
K"»*" we get A"‘Emm,(“‘) =(A- AiE")|EMm7¢ (A, hence (A,)"
implying that A,, is nilpotent.

E)\q.’,n”’(A) = 0’

It remains to prove uniqueness: Let A = A’ + A/ be an additive Jordan decom-
position, then we have A, — A, = A/ — A,,, where A, A,, are as above. Then
both A’ and A/ commute with A, and hence with both As and A,. Thus A,
and A/, are simultaneously diagonalisable, implying that A5 — A/ is semisimple,
and it is immediate from the binomial formula that A/, — A,, is nilpotent. This
in turn implies A, — A, = Al — A,, = 0.

b) Let A= A, + A,, € K"*™ be the additive Jordan decomposition of A. Since
A € GL,, we infer that A, € GL,, as well, and we let 4, := E,, + (A,)"'4, €
K"™*™, Since A; and A,, commute we have A;A, = A, A, = A, + A, = A, and
we conclude that A, — E, is nilpotent, i. e. A, € GL,, is unipotent.

It remains to prove uniqueness: Let A = AL A/ be a Jordan decomposition,
then (A%)"1A, = A/, (A,)~!, where both A’ and A/, commute with A, and A,,.
Hence (A%)71A, is semisimple, and A/ (A,)" ! — E, = (A, — E,)((A,)"t —
E,) + (A, — E,) + ((A,)™! — E,) is nilpotent, i. e. A’ (A,)~! is unipotent,
hence (A))71A, = Al (A,)™! = E,. i

(6.5) Definition and Remark. a) Let E be an arbitrary K-vector space.
An element A € Endg(F) is called locally finite, if E is the union of finite
dimensional A-invariant K-subspaces. E. g. if G is an algebraic group acting
morphically on V' via ¢, then ¢} is locally finite on K[V].

A locally finite element A € Endg(F) is called (locally) semisimple if its
restriction to any finite dimensional A-invariant K-subspace is semisimple, it is
called (locally) nilpotent if its restriction to any finite dimensional A-invariant
K-subspace is nilpotent, and it is called (locally) unipotent if A—idg is locally
nilpotent.

b) For a locally finite element A € Endg(E) we get an additive Jordan decom-
position A = A, + A,, € Endg(FE) as follows: For « € E let (x) < F < E be any
finite dimensional A-invariant K-subspace, and let A, := 2(A|r)s € E as well
as ©A, := z(A|r), € E. This indeed yields well-defined maps: If (z) < F’ <
E also is a finite dimensional A-invariant K-subspace, then ((A|r)s)pnp =
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(Alpnr)s = ((Alp)s)rar and ((Alp)n)rar = (Alrar)n = (AlF)n)For:-
Hence we have A A, = A, As, where A, is locally semisimple and A,, is locally
nilpotent, and A, and A,, are uniquely determined by these properties.

Moreover, for a locally finite element A € Autg(E) we have A|p € Autg(F)
for all finite dimensional A-invariant K-subspaces F' < F, implying that As €
Autg(E). Hence we let A, := idg + (As)"'A, € Endg(E). Since A,|r =
(Ap)u € Autg(F), for all finite dimensional A-invariant K-subspaces F' < F,
we infer A, € Autg(FE), and thus obtain a Jordan decomposition A = A4, €
Autg (F). Hence we have A;A, = A, As, where Ay is locally semisimple and A,
is locally unipotent, and A, and A,, are uniquely determined by these properties.

(6.6) Theorem: Jordan decomposition.

Let G be an algebraic group.

a) For g € G there are uniquely determined elements gs,g, € G, called the
semisimple and unipotent part of g, respectively, such that ¢ = gsg. = gu9s
as well as (py)s = p;. and (p})u = P}, -

b) For G = GL,, the semisimple and unipotent parts coincide with (6.4).

¢) If p: G — H is a homomorphism of algebraic groups, then for all g € G we

have ¢(gs) = ¢(9)s and ©(gu) = ©(9)u-

Proof. a) Let yi: K[G] @k K[G] — K[G]: h®h' — hh'. Since v := p;: K[G] —
K[G] is a K-algebra homomorphism, we have u(y ® ) = yu. We show that
w(vs ® vs) = ~ysp: It suffices to consider finite dimensional ~-invariant K-
subspaces F, E < K[G] such that u(F ® F) < E, hence we have u(y|r @ vy|r) =
Y|gp. Since there is f € K[T] such that f(y|r ® v|r) = (7|F ® v|F)s and
f(vle) = (7]E)s, and since we have (V|r @7v|r)s = (Y|r)s ® (7|F)s, we conclude
that u((v]r)s © (v[F)s) = (v]E)spe

Hence v; = (p;)s is a K-algebra homomorphism. Thus the K-algebra homomor-
phism K[G] — K: h — ((p;)s(h))(1c) defines g5 € G such that ((p})s(h))(1c) =
h(gs), for all h € K[G]. Similarly, v, = (p} ). is a K-algebra homomorphisms as
well, yielding g, € G such that ((p;).(h))(1c) = h(gu)-

Letting G x G act on G via [z;2,y] — 2712y shows that K[G] is the union
of finite dimensional (A} py)-invariant K-subspaces for all z,y € G; see Exer-
cise (12.13). Since A} commutes with py, we deduce that A} also commutes
with (py)s and (p}).. Hence we have (p; (h))(z) = h(zgs) = (A\;-1(h))(gs) =
((pg)s Az (h))(1e) = (A5-1(py)s(h)(16) = ((pf)s(h))(x), for all h € K[G] and
z € G, implying pj_ = (p;)s. Similarly we get p; = (p;)u. Moreover, we have
Pouge = Po.Pg. = (P5)s(pg)u = Py = (Pp)u(py)s = pg,P5, = Pg,q,» and since the
representation G — K[G]: g +— pj is faithful we infer g = gsg, = gugs € G.

b) We have K[GL,,] = K[X]qet,, where X = {Xi1,...,X,,}. Let B :=
{X11,.. ., X1n} € K[X]get,, and F := (B)x < K[X]get,,. Then for A = [a;5] €
GL, we have p%(X1;) = >0, Xija;;, for i € {1,...,n}. Hence F is p}-
invariant, and its matrix with respect to B is (p%|r)s = A™. Hence we have
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(AS)H = ( *_ F)B = ((P2)5|F)B = ((PZ|F)5)B = ((PZlF)B)s = (Atr)m where
left and right hand side are abstract and matrix semisimple part, respectively.

Similarly, we deduce (A,)" = (A"),.

c) Since ¢(G) < H is closed, it is sufficient to consider the following two cases:
i) G < H is closed and ¢ is the natural embedding. Hence by (5.6) we have G =
{h € H; pj,(Z(G)) € Z(G)}, thus (pf(,))s(Z(G)) € Z(G) implies ¢(g)s € G, for
all g € G. Now p, ) and (p,,))s induce maps on K[H]/Z(G) = K[G], indicated
by . Thus g = (ph)s = (P5()s = (Phg)s = gy, = it Bence
9s = ¢~ (¢(9)s), implying ¢(g:) = ¢(g)s. Similarly, we deduce @(gu) = @(9)u-

w(g
5)
ii) ¢ is surjective, hence K[H] C K[G] and ¢* is the natural embedding. For

g € G we have (pgp™(h))(x) = (¢"(h))(xg) = h(p(x)p(9)) = (P (M) ((2)) =
(@l g)(h))(x), for all h € K[H] and = € G, hence py¢* = ¢*p ), implying

that pp (K[H]) € K[H] and p;) = PZ\K[H}- Thus we obtain pg ), = (Plg))s =
(pglie)s = (Pg)sleimy = P, lxim = P, IPlying ¢(g)s = ¢(gs). Similarly,
we deduce ©(g)y = ©(gu)- f

(6.7) Corollary. Let G be an algebraic group.

a) For g € G the following are equivalent:

i) The element g € G is semisimple (unipotent).

ii) There is an injective homomorphism of algebraic groups ¢: G — GL,, for
some n € N, such that ¢(g) € GL,, is semisimple (unipotent).

iii) For any homomorphism of algebraic groups ¢: G — GL,,, where n € N, the
image ¢(g) € GL,, is semisimple (unipotent).

b) The set G, := {g € G; g unipotent} C G is closed, called the unipotent
variety of G.

Proof. b) We have (GL,), = {4 € K™, (A — E,)" = 0} C K™*" closed.
Thus any injective homomorphism of algebraic groups ¢: G — GL,, shows that
Gy = ¢ YH((GL,),) C G is closed. 1

For the set G, := {g € G; g semisimple} a similar statement does in general not
hold, see Exercise (12.20). For examples see Exercises (12.18) and (12.19).

(6.8) Proposition. a) Let S C K"*" be a set of pairwise commuting matrices.
Then S is trigonalisable, i. e. there is B € GL,, such that S? := B~1SB C
K™*™ consists of upper triangular matrices.

If moreover S consists of semisimple matrices, then S is even diagonalisable,
i. e. there is B € GL,, such that S& C K"*" consists of diagonal matrices.

b) Let G < GL,, be a (not necessarily closed) subgroup consisting of unipotent
matrices. Then G is trigonalisable, i. e. there is B € GL,, such that G <
U,, :={[ai;] € GLp;a;; =0 for i > j,a;; = 1}, see also Exercise (12.4).
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In particular, a unipotent algebraic group H, i. e. we have H = H,,, is isomor-
phic as an algebraic group to a closed subgroup of U,,, for some n € N.

Proof. a) For general S we proceed by induction on n, the case n = 1 being
trivial. Now we may assume that there is A € S and A € K such that {0} <
Ey(A) :== Ex1(A) = ker(A — AE,) < K". Since E)(A) is S-invariant, by
induction there is 0 # x,, € Ex(A) such that (x,)x < K" is S-invariant. Again
by induction there are x1,...,z,-1 € K" such that {z1,...,z,} C K" is a K-
basis and (x;,...,xn—1)xk < K"/(2,)x is S-invariant, for all ¢ € {1,...,n — 1}.

If S consists of semisimple matrices, then we again proceed by induction on n,
the case n = 1 being trivial. Now we may assume that there is A € S such
that K® = @;_, E,(A) for some r > 1, where A, ..., \, € K are the pairwise
distinct eigenvalues of A, and we are done by induction.

b) We first show that G acts irreducibly on K" if and only if n = 1: Let
G act irreducibly, and let A := K(G) C K"*" be the (non-commutative) K-
subalgebra of K™*™ generated by G. Hence A acts faithfully on K", thus by
Schur’s Lemma and the double centraliser theorem we have A = K"*™. Since
for all A, B € G we have Tr((A — E,,)B) = Tr(AB) — Tr(B) = 0, we conclude
Tr((A— E,)C) =0 for all C € K™*", implying Tr(E;;(A — E,,)Ex) = 0 for all
i,j,k, 1€ {1,...,n}, where E;; = [§;x0;i]s € K"*" is the [4, j]-th matrix unit.
Thus we have A = E,,, hence G = {E,,} and n = 1.

We now proceed by induction on n, the case n = 1 being trivial. Let {0} < W <
K" be a G-invariant K-subspace. Then by induction there is 0 # z,, € W such
that x, A = x,, for all A € G. Again by induction there are z1,...,z,_1 € K"
such that {z1,...,z,} C K" is a K-basis and 2;A — 2; € (Ti11,...,Tn)K, for all
i€{l,...,n—1}and all A € G. i

(6.9) Theorem. Let G be an abelian algebraic group. Then both sets G
and G, are closed subgroups, and u: Gy x G, — G: [¢gs,9u] — gsgu IS an
isomorphism of algebraic groups, inducing an isomorphism (G;)° x (G,,)° — G°.

Proof. We may assume that G < GL,, closed, for some n € N. Since G is
abelian, G;,G, < G are subgroups, and p is a bijective homomorphism of
algebraic groups. The set G, C G is closed, and we show that G; C G also is
closed: For any family A := {A4 € K; A € G} let Wy := [ ¢, Ea(4) < K™
Hence we have K" = @._, Wy, for some r € N and certain families A,., where
the Wy, are G-invariant. Thus we may assume that G, C T, = {[a;;] €
GL,;a;; = 0fori # j} and G, C Uy, thus G C B,, := {[a;;] € GL,;a;; =
0 for i > j}; see also Exercise (12.4). Hence Gy, = GN T, C G is closed.
The morphism B,, — T, : [a;;] — diag[ai1, ..., any] restricts to the morphism
G — Gy: g+ gs, hence p=1: G — G4 x Gy: g +— [gs, 95 1g] is a morphism.
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7 Actions on affine varieties

(7.1) Lemma. Let G be an algebraic group acting morphically on V, and let
z € V. Then we have dim(zG) = dim(zG°) and dim(Cg (7)) = dim(Cg- (7)),
as well as dim(G) = dim(Cg(z)) 4+ dim(zG).

Proof. We have 2G = g0 JeGo
2G° C V is irreducible implying dim(zG) = dim(2G°); see also Exercise
(12.22). Since Cgo(z) < Cg(z) is a closed subgroup of finite index, we have
dim(Cg(z)) = dim(Cge (2)).

Hence to show the last assertion, we may assume that G is connected. Letting
¢ be the action morphism, the orbit map ¢, : G — G is a dominant morphism
between irreducible varieties. Hence there is ) # U C =G such that U C G,
and such that dim(¢;'(y)) = dim(G) — dim(zG) for all y € U. For any y € U

we have o 1(y) = {h € G;zh = y} = Cg(z)g C G, where g € G is fixed such
that y = zg, implying dim(y; ' (y)) = dim(Cg(2)). i

G 2G°g, implying 2G = (J G xG°g, since

(7.2) Proposition: Closed orbit lemma.

Let G be an algebraic group acting morphically on V.

a) Let O CV be a G-orbit. Then O C V is G-invariant, O C O is open, and if
O # O then dim(O \ 0) < dim(O).

b) For G-orbits O, O’ C V such that O’ C O we write O’ < O. Then the orbit
closure relation < is a partial order on the set of G-orbits in V. Moreover,
there are <-minimal orbits, all of which are closed.

Proof. a) Let ¢ be the action morphism. Since for all g € G the morphism ¢,
is continuous, we from ¢4(0) C O get ,(0) C O, hence O is G-invariant.

Let O = ¢,(G), for some x € V, let ) # U C O be open such that U C O,
and let h € G such that zh € U. Thus x € Uh™!, implying that O = 2G C
UgeG Ug C O, and hence O = UgeG Ug, where Ug C O is open for all g € G.

Let 0+#0= U:Zl Wi, where the W; C O are the irreducible components; hence
O\ O =._,(W;\ 0). Since O C O is open and dense, we have W; N O # 0
for alli € {1,...,r}, hence whenever W; Z O we have dim(W; \ O) < dim(W;).

b) To show that < is a partial order, we only have to check that Q’ <=0=0
implies O :Q’: Let O’ C O and O C O’. Hence O’ C O C O’, and both
0,0’ C O = O’ are open and dense, implying that O N O’ # (), thus O = O'. 4§

For examples see Exercise (12.23). For the Kostant-Rosenlicht Theorem,
dealing with orbits of unipotent groups, see Exercise (12.24).

(7.3) Example: The unipotent variety of SL,,.
Let G := SL,,, for some n € N. Then GL,, acts morphically on the unipotent
variety G, = (GL,,), € G C GL,,, which hence is a union of GL,-conjugacy
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classes, and a union of G-conjugacy classes. Since G < GL,, = Z,, - G, where
Z, :=K*-E, = Z(GL,) < GL,, elements of G are G-conjugate if and only if
they are GIL,,-conjugate.

By the Jordan normal form theorem we conclude G, = U cg(Un)? = im(k),
where k: U, x G — Gy: [u,g] — u9 is the conjugation map. Now U, :=
{laij] € GLyp;a;5 = 0fori > jja; = 1} € G € GL, € K" is closed
such that Z(U,) = (X;;, Xi — 1;4,5 € {1,...,n},i > j) < K[X], where X :=

{X11,-. ., X}, hence K[U,] = K[X)/Z(Up) = K[Xy50,5 € {L,...,n},j > i,
implying that U,, = K™ is irreducible. Since G is irreducible, G, is irre-

ducible as well. We proceed to describe the orbit closure relation < on Gy,:

Elements of G,, are conjugate if and only if their Jordan normal forms coincide.
The latter up to reordering are uniquely described by the sizes Aq,..., A\ € N,
for some | € N, of the Jordan blocks Jy,(1) € K*** with respect to the
eigenvalue 1 € K occurring. We have Zézl A; = n and we may assume that
A1 > -+ > N\ > 1; then the conjugacy class associated to A := [A1,...,\] is
denoted by C) C G,. Thus the conjugacy classes in G, are parametrised by
the partitions of n:

(7.4) Definition and Remark. a) Let n € Ny. A series A := [A1, A2,...] C Ny
such that A\; > Ay > --- and Zi>1 Ai = n is called a partition of n, the \;
being called its parts; we write A - n, where we have \,y; = 0 and usually
omit the zero parts. Let P, be the set of partitions of n.

Associated to A = [A1,...,\,] F n is the Young diagram or Ferrers dia-
gram Yy = {[i,j] € N%i € {1,...,n},j € {1,...,\;}}, allowing to identify
any partition with its Young diagram. Moreover, letting a; = a;(\) := |{j €
{1,...,n};A; =i} € No, fori € {1,...,n}, we also write A = [1%*, ..., n%] F n.

b) Let A = [A1,..., ] F n, and let X, := |[{j € {1,...,n}h; > i}| € Np
for i € {1,...,n}. Hence we have \| > --- > X, > 0 as well as ) . | A} =
S i e {1 ni < M\ = 20 A = ne Thus M= [, A ] Fon,
being called the associated conjugate partition.

Hence we have A, = Z;L:i a;(A), for i € {1,...,n}. Moreover, we have YV =

{li,5] € N%i € {1,...,n},5 € {1,...,\}} = {[i,4] € N%j € {1,...,n},i €
{Ee{t,....n} A > 53} ={li,5] e N%5 € {1,...,n},i € {1,...,\}}}, imply-
ing that Yy = {[i,j] € N%;[4,i] € Y}, and thus (') = \.

c) Let A = [A1,...,\n] F nand p = [p1,..., 0] F n. Then p is called to
dominate ), if for all k € {1,...,n} we have Zf;l Ai < Zle Hi; we write
A < u. The dominance relation < is a partial order on P,; if u # A < u we
write A <, and if moreover A is maximal with this property we write A\ <\pax i
see also Exercise (12.25).

d) We have A <pax it if and only if = [Aq, . ., A1, Ar L A, oo As—1, As —

1, A1y -+, A, where 1 <r < s <naswell as A\,_1 > A, and A\s > Agy1, such
that either s =r+ 1, or s > r+ 1 and A\, = X, see Exercise (12.26):
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If A <pmax i, let r := min{i € {1,....,n}; N\ # w;} and r < s := min{k €
{r + 1,...,n};2§21)\i = Zle pi} < n. Hence we have A\, < p,, and p, <
fr—1 = Ae—1 if 7 > 1, as well as Ay > ps > pise1 > Asy1. This yields A< v =
A, oo A, A+ L A1,y s, As — L Agq1, oo, An] S, hence v = p. Tt
remains to show A. = A; whenever s > r 4+ 1: Assume to the contrary that
Ar > Ag,and let r <t:=14minfi € {r,...,s = 1K\ X1} <s. Ift=s
then A< [)\1, . 7)\7*—17AT'+17/\7'+17 ey As—9, A1 — 1, A, .l ,)\n] <V = U, while
if t < s then >\<][)\1, e a)\t—17>\t+17At+17 R 7>\s—17As*15)\s+17 - ,An]<]l/ = W,
a contradiction.

Let conversely u be as asserted, and let v = [vy,...,v,] b n such that A <pax
v < p. Hence for i & {r,...,s} we have v; = A\;. Thus if s =r + 1 we conclude
vp = Apt+land vpq1 = A1 —1, thusv = p. If s > r+1 and hence A\, = Ag, then
there are r <1’ < s’ < ssuch that v; = \; fori € {r’,s'} as well as v,» = A\pv +1
and vy = Ay — 1. Since Ay = v —1 < vp_1—1=Av_1—1 < A\v_1, whenever
v >1,and \yy = vy +1 > vgi1+1=Ayy1 +1 > Agyq this implies ' = r
and s’ = s, hence v = 1 in this case as well. i

e) Finally, A <y implies ¢/ < ): Assume to the contrary that p/ € X. Then

for some k € {17..). ,n} we have S0yt < S N forall j e {1,....k— 1},
and Y2 | uf > S°F L X Hence we have ) > X, and /Z;L:Hl i < i Al
K

j=1

ik N = Zj/il()\j — k). Since p; > k for j € {1,...,u}}, this implies

Z?,il()\j —k)> ;il(,uj —k)> Zj/il(uj — k), thus A 4 p, a contradiction.

Considering Young diagrams shows >, 4 pu; = >."%, (u; — k) and similarly

(7.5) Proposition. Let G := SL,,, for some n € N, and let A F n.

a) Let A € G,. Then we have A € C, if and only if for all k € {1,...,n} we
have 328 N = n — rkg((A — E,)F).

b) The set Cqy = Uuﬁz\ Cyu € Gy is closed.

Proof. a) For a Jordan block J,,(1) € K™*™ for some m € N, we have
tki ((Jm(1) — E;n)F) = m — k for all k € {0,...,m}. Thus for A € Cy, where
A=[1%,...,n"] Fn, we get Y i (i — k)a; = rkg((A — E,)F) for all k €
{0,...,n—1}. Hence the rank vector [rkx((A— E,)*);k € {0,...,n—1}] € Q"
is determined by A, and since the above conditions form a unitriangular system
of n linear equations for [ay, ..., a,] € Q", the latter conversely is determined by
the rank vector; we anyway have kg ((A — E,)°) = n and kg ((4 — E,)") = 0.
Finally we have 25:1 A= Z?:1 ;= Z?:kJrl Ap=mn— EZ’:M(Z}; aj) =
n—3" g1 (G —k)aj =n—rkg((A - Ep)¥), for all k € {1,...,n}.

b) Let A € Cy and B € C},, where 1 - n. Then we have u < A if and only if
N <y, which by the above holds if and only if kg ((A— E,,)*) > tkx ((B—E,)*)
for all k € {1,...,n}. Thus we have

Cax = {B € Gu;tkg((B — E,)¥) < 1kg ((A — E,)*) for all k € {1,...,n}}.
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Given k € {1,...,n} and m € {0,...,n}, we have tkg((B — E,)*) < m, if
and only if all ((m + 1) x (m + 1))-minors of (B — E,,)* vanish. The latter are
polynomial conditions in the matrix entries of B, hence Cqy C G is closed. f

(7.6) Theorem: The unipotent variety of SL,,.
Let G := SL,, for some n € N, and let Cy,C},, C Gy, where A\, x = n. Then we
have C, = C) if and only if p < A

Proof. We have already shown that C,, < Cy, i. e. C), C C\ C G, implies
C,, C Cax, hence 1 I X. We prove the converse: Let A = [Aq,..., ] F n, where
A; > 0, and let Uy < U, the subgroup of all block unitriangular matrices

Ey | Bia | Biz| --- By
0 | Ex, | Baz | - By
B= : } . .. : € U,,
0 e 0 | Ex_, | Bi—1y
0 -] 0 0 | Ey

where B;; € KY>*Ni for 4,5 € {1,...,1}. It is immediate that Uy C U, is closed
and that Uy = KV, for some N € Ny, hence Uy is irreducible. Moreover, it is
immediate that rkx((B — E,)*) <n — Zle A, for all k € {1,...,n}. Let

By, | An] 0 | - 0
0 E>\2 Aos 0
Ay = : : € Uy,
0o |- 0 | Ex_, | Aim1y
0 | -] 0] 0 | Ey
where A; i1 1= ] ’“E] € KN>*Ai+t for all i € {1,. — 1}, and where

E;; is the [4,j]-th matrlx unit. It is again immediate that we have equality
kg ((Ax — E,)*) = n — Zle Ai, for all k € {1,...,n}. This implies that
Ay € Cyx. Moreover, we have tkx((B — E,)*) < rkx((Ax — E,)F), for all
ke {l,...,n} and all B € Uy, implying that Uy C Cqy.

We show that Uy € Cy C Cay: Let still k: U, x G — G, be the conjugation
map, and let Vy := im(k|y, xg) € G,. Hence V) is irreducible and G-invariant,
and thus V) is irreducible and G-invariant. Letting VA = U,en Cv, for some
N C P,, we get V) = Uue/\/ C,, and hence there is \ F n such that V\ = CA
Since Cqy C Gu is closed and G-invariant, we have Uy C V), C V) = CA -
Cay, implying )\<1)\ Conversely we have Ay € CX NU,, implying Cy C V),

C)\,l e. Oy = (5, and thus /\’<1)\ Hence N —)\andUACCAzC,\/

I ﬂ

Now, to prove that ¢ < A indeed implies C,, =< C), we may assume that p :=
Ay A A — L a1, ds—1, As + L 41,0 An] <<max A, where 1 <
r < s < n. Hence there are representatives diag[Jy, (1), Jx,(1),B] € C) and
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diag[Jx,~1(1), Jx,+1(1),B] € Cy, where m := A\, + A, < n and B € U,_pp,.
Let Ji := [\r — L,As + 1] F m and X := [\, A\s] - m. Hence we have ji < A
as well as diag[Jx,—1(1), Jx,+1(1)] € Ci C (SLy,), and diag[Jy, (1), Jx,(1)] €
C5x € (SLyp )y It is immediate that SL,,, — G: A — diag[A, Ep, ] is a closed
embedding of algebraic groups, which extends to a closed embedding of affine
varieties SL,, x {B} — G: [A, B] — diag[A, B], where B € U,,_,, is as above.
Thus it suffices to show that C; < C5,i. e. C C C_Xv since then C; x {B} C
G5 x {B} = C5 x {B} C G, implying C,, C Ci.

Hence we may assume that A = [n —k,kjFnand p =n—k—1k+1] F
n, for some k € {0,...,|%] —1}. We have X' = [1"72* 2*] - n and p/ =
[17=2k=2 2k+1] | p) which immediately implies U,» C Uy/. Hence we get A,/ €
Cu.NUy CC,NUN CCuN C\, where A, is as above, implying C,, C Cy. 1

(7.7) Corollary. For G := SL,,, where n € N, we have dim(G,,) =n(n — 1).

Proof. We have A < [n] for all A F n. Hence for J := J,(1) € G, we conclude
that J& = Chy) € Gy is open and dense; the elements of (Y, are called regular
unipotent. The centraliser K-algebra Cynxn(J) := {A € K"*"; AJ = JA} C
K™*™ is closed, and given as Cgnxn(J) = K(J) = K(J — E,,) = {A = [a;;] €
K®*™: a;; = 0 for i > j,a;; = a1,j—;4+1 for i < j}. Hence it is immediate that
dim(Cgnxn(J)) = n. Since Cg(J) = Cgnxn(J) N V(det,) C Cgnaxn(J) is a
hypersurface, we have dim(Cg(J)) = n — 1; see also Exercise (12.27). This
yields dim(G,) = dim(G) — dim(Cg(J)) = (n?> = 1) — (n — 1) = n(n — 1). i

8 Lie algebras

(8.1) Definition. a) Let G be an algebraic group with affine coordinate algebra
KI[G]. Since G = ][ cgo(g G°9 is the disjoint union of its irreducible components,
we have a notion of regularity for all g € G°g C G. Since G acts transitively
on G by right multiplication p, we conclude that G is smooth. Hence we have
g:=T1(G) = T1(G°) and dimg(71(G)) = dim(G).

b) We consider the Lie algebra Derg (K[G], K[G]) < Endg (K[G]), with Lie prod-
uct [4,0'] = 66" — ¢’5: The G-action on G by left multiplication A induces a
K-linear G-action A* on K[G]. Thus we let

L(G) := {6 € Derg(K[G],K[G]); \xd = d\; for all z € G}

be the Lie subalgebra of all left invariant derivations.

From A70(fg) = AL (6(f)g + fo(g)) = A20(f) - As(g) + AL(f) - Azd(g) = 0AL(S) -
A (9)+AL(F)-0X(g) = 6(AL(f)-A2(9)) = OAL(fg), for 6 € L(G) and f, g € K[G],
we conclude that the condition of being left invariant can be checked on K-
algebra generators of K[G].



II  Algebraic groups 35

(8.2) Theorem. Let G be an algebraic group.
a) Then the map L(G) — Derg(K[G],K;): § — §°(1) is an isomorphism of
K-vector spaces, where 6*(1): f +— 6(f)(1), for f € K[G].

Its inverse is given by Derg (K[G],K;) — L(G): v +— 7, where the right con-
volution 7 is defined by 7(f): G — K: x — y\:_, (f), for f € K[G].

b) By transport of structure T7(G) = Derg(K[G],K;) =: g becomes a non-
commutative associative algebra, by letting v+ := (y®@+")u* € Derg(K[G], K}),
for all v,+" € Derg(K[G],K;), where p*: K[G] — K[G] ®k K[G] is the comor-
phism associated to the multiplication y: G x G — G.

Thus g becomes a Lie algebra, called the Lie algebra of the algebraic group G.

c) If H is an algebraic group with Lie algebra b, and ¢: G — H is a homomor-
phism of algebraic groups, then the differential d; (¢): g — b is a homomorphism
of non-commutative associative algebras, and thus of Lie algebras.

Proof. a) For v € Derg(K[G],K;) and f € K[G] we show that 7(f) € K[G], im-

plying that 5 € Homg (K[G], K[G]): For € G we have A\,-1: G x {z~!} 486, 1
* ide* _,

G x G G, implying A, : K[G] 5 K[G] 0x K[G] 5" K[G] 9 K = K[G],

and thus yAX_, = (y ® €:_,)\*, implying that x — yA*_,(f) is polynomial.

We have 7(fg)(z) = vA; -1 (fg) = YA\ -1 (F)A;-1(9)) = A5 (f) - Ap-i (9) (1) +
N () AN Zi(g) = A(f)g+ fA(9))(x), for all f,g € K[G] and = € G, hence
7 € Derg(K[G], K[G]). For all f € K[G] and x,y € G we have (\;7(f))(x) =
T 2) = WA, () = X (1) = (X (F) (@), thus 7 € L(T).

—

Forall 0 € L(G) and f € K[G] and z € G we have 6*(1)(f)(z) = 6*(1)A:_.(f) =
X (£))(1) = (A*_,8(f))(1) = 8(f)(x), thus §*(1) = 6. Conversely, for all
v € Derx(K[G], K1) and | € K[G] we have 3°(1)(f) = 5(£)(1) = 11(f) = 1(f).
b) We show how multiplication, i. e. concatenation of maps, in L(G) transports
to Derg (K[G],Ky): For f € K[G] let p*(f) = Y\, g ® hi € K[G] ®x K[G],
for some r € N and suitable f;,g; € K[G]. Hence we deduce (v -+')(f) =
(Y@ Y)(Eim1 91 @ ha) = 3251 v(9:)7 (ha)-

For all z € G we have A7, (f)(y) = f(zy) = p*(/)([z,y]) = 3i_; gi(2)hi(y),
for all y € G, and hence A*_,(f) = >i_; gi(x)h;. Thus 5(f)(z) =\ (f) =
> iz 9i()y(hi), and hence J(f) = 377, gi - v(hs). This yields (37)*(1)(f) =

Y (N =iy g6 -7 (h))(1) = iy 7(9)7 (hi) = (-7 (f)-

c) Let v € DerK(K[G],K}\) and § := di(p)(y) = v¢* € Derg(K[H],K;). We
first show that ?@*A: ©*6: For all h € K[H] and = € G we have F¢*(h)(x) =
W% " () and @*B(h)(x) = 3(h) (p(x)) = 6Ny 1 () = 76" Ny 1 (h), where
indeed for all y € G we have (A\:_,p*(h))(y) = ¢*(h)(zy) = h(e(zy)) =
Bp(@)p()) = Aoy 1 (D) (2(3)) = 5Ny 1 () (1),

Let ' € Derg(K[G],K;) and &' := d1(p)(7’) € Derg(K[H],K;). Then for all
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h € K[H] we have (5 -")(h) = (08'(h))(1) = 68 (h) = 7¢*3'(h) = vY/¢*(h) =
(' (h)(1) = (v-¥)e*(h).

Given a closed subgroup H < G, the embedding h < g of their Lie algebras can
be described using the right convolution, see Exercise (12.29).

v

(8.3) Example: The additive and the multiplicative group.

a) Let G := G, = K be the additive group, hence K[G,] = K[X]. Thus we
have dimg(75(G,)) = 1, hence Tp(G,) is a commutative Lie algebra. From
ON (X)) =0X+2)=1= I _0(X), for all z € G, we deduce that 0 is left
invariant, hence L(G,) = (9)k.

b) Let G := G,, = Kx be the multiplicative group, hence K[G,,] = K[X]x.
Thus we have dimg(71(G,,)) = 1, hence T1(G,,) is a commutative Lie alge-
bra. We have L(G,,) & T1(G,,) = Derg(K[X]x,K1) & Derg(K[X],K;) =
Derg (K[X](x-1), K1) = Homg ((X — 1)/(X — 1)%,K;). Letting v := y(X)0d €
Derg (K[X],K;), where v(X) = (X — 1) := 1, for the right convolution 7 asso-
ciated to v we have 7(X)(x) = yA%_,(X) = v(2X) =z, for all z € G, and thus
J(X) = X. Hence we have 4(X)0 = X0 € L(G,,) and thus L(G,,) = (X9)k.

(8.4) Example: General and special linear groups.

a) Let G := GL,, be the general linear group, hence K[GL,,] & K[X]get, , where
X = {X11,..., Xpn} and det,, = 3 g (sgn(o) - [['m) Xiir) € K[X] is the
n-th determinant polynomial. Thus dimg (7, (GL,)) = n?, and Tg, (GL,) =
Derg (K[X]get, , Kg, ) & Derg(K[X],Kg,) & Tg, (K**™) =2 K"*" where § =
Z?:l Z?:l §(ij)8,j S DeI'K(K[X],KEn) is mapped to [(S(X”)]U e Knxn,

For all 4,5 € {1,...,n} we have p*(X;;) = > p_; Xir ® Xi; € K[GL,] ®x
K[GL,], hence for 6,6 € Derg (K[X],Kg, ) we get (6-6")(Xij) = > pey 6(Xin) ®
0’'(Xk;), which hence transported to K"*™ yields the usual matrix product.
Hence we have Ty, (GL,) = gl,, := K™*" as Lie algebras, where the latter is
endowed with the usual Lie product.

b) Let pget: GL, — G,,: A — det(A) be the determinant homomorphism.
Considering GL,, € K™"*" and G,, C K as principal open subsets, we extend
to the morphism @get: K" — K: A — det(A), and identify Tg, (GL,) =
Tg, (K™ =2 K" and T1(G,,) = 71(K) = K. Hence for the differential
we get dp, (paer): K™ — K [ty;] = 370, 350 tiy - Oij(dety,)(Ey). From
aij(detn> = (71)i+j ’ detn—l({Xlek 5& il ?’é ]}) we get aij(detn)(En) = 5ija
implying that dg, (@aet): [tij] — iy tis = Tr([ti;]) is the usual matrix trace.
c) Let G := SL,, < GL,, € K™*" be the special linear group, hence we have
K[SL,] = K[X]/(det,, —1) = K[X]qet,, /{det, —1)det,, . Thus dimg(Tg, (SLy,)) =
n2 - 1, and TEn(S]Ln) = V(BEn(detn—l)) = {[tij] S Knxn;zz;l Z?:l tij .
0ij(det, —1)(Ey) = 0} = {[t;;] € K™ Tr([ts;]) = 0} < Tg, (K™*™), hence
Tg, (SLy) = sl, := {A € gl,;; Tr(A) = 0} is the Lie subalgebra of gl,, = K"*"
consisting of the matrices of trace zero.
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For Lie algebras of the examples in Exercise (12.4) see Exercise (12.30). For a
differential of a homomorphism of algebraic groups see Exercise (12.32).

(8.5) Example: Classical groups.

Let J = [bi;] € K"*™ be the matrix of a non-degenerate K-bilinear form on K",
and let G = {A € K", AJAY = J} < GL,, € K™*" be the associated classical
group. Letting X = {Xi1,..., X} and frs = (X, Z;-L:l X,ibij Xs;) —bps €
K[X], where r,s € {1,...,n}, we have G = V(fs;7r,s € {1,...,n}) C K**".

For k,l € {17 R ,n} we have 6kl(frs) = Oy - Z?:l bleSj + Ops - Z?:l X,iby €
K[X], implying Oki(frs)(En) = Okrbis + Ogsbr. Thus for the total differen-
tials we get O, (frs) = ZZ:l ln:1 Okt (frs)(En) - Xp1 = Z:l ?:1(6’67‘1)15 +
Oksbrt) * X = Dopy bisXot + Y g b X, for all 7,5 € {1,...,n}, implying
08, (frs)lrs = [Xij]) - J + J - [X45]" € K[X]™*". Hence we have Tk, (G) =
Nrseqr,...ny Xer(0E, (frs)) = {A € gl,; AJ + JA™ = 0} =: g;, where the Lie
algebra structure is inherited from gl,,.

—Jm 0
K2m*2m - [ndexing rows and columns by Z := {—m,...,—1,1,...,m}, we have

a) For the symplectic group Sg,, < GLs,, we have J = [ 0 I } €

[a'i,—j . \g_:l]ij and JAY = [ZkeI bikajk}ij = [CLJ‘7_1'" ﬁ}u Hence A € 5Po,, =
{A e gly,,; AJ + JA™ = 0} if and only if a; _; - ﬁ =aj ;- ﬁ, or equivalently

—4 1

A—j,—j = Qj; * T ‘5—4‘, forall 4,5 € Z.

Hence there is no condition for a; _;, and we obtain (2;”) = m(2m—1) K-linearly

independent equations. Thus we have dim(Sgy,) = dimg(spsy,,) = (2m)? —
m2m—1)=m2m+1) = w, where n = 2m. Moreover, we have Sy, <
SLa,, and thus sp,,, < slay,: Indeed, from a—; _; = ay; - ﬁ . ﬁ = —ay;, for all

i €I, we for A € sp,,, get Tr(A4) =0.

b) For the orthogonal group O, < GL,, where char(K) # 2, we have J =
Jp = [6i,n+l—j]ij e K»*"™  Thus for A = [aij] e K" we have AJ =
> pe1 Girbrjlis = [@imy1—jli; and JAY™ = [0 bixajilij = [ajni1-ii;. Hence
A€o, :={Ac€gl,;AJ, + J, A" = 0} if and only if a; n+1-j + ajpt1-i = 0,
for all 4,5 € {1,...,n}. Hence there is the equation 2a; ,+1-; = 0, implying
@int+1—i = 0, and we obtain (g) +n= w K-linearly independent equations.

Thus we have dim(Q,,) = dimg (s0,,) = n? — n(nTH) = n(nz_l)'

For the special orthogonal group SQ,, = ker((¢qet)|0,,) < O, < GL,, we from
[0, : SO,] = 2 deduce O = SO, < SO,, < O, hence Tg,(SQ,,) = Tk, (0,),
and we let 0, =: so,, < sl,: Indeed, from a;; + any1—int1—i = 0, for all
i€{l,...,n}, we for A € so,, get Tr(A) = 0; see also Exercise (12.31).

(8.6) Example: Orthogonal groups in characteristic 2.
a) Let char(K) = 2 and let Oy, < Sy, < GLa,, be the even-dimensional
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orthogonal group. Indexing rows and columns by Z := {-m,...,—1,1,...,m},
the underlying quadratic form is given by q(z) = > /" x;z_;, for all z € K*™.

:| c K2m><2m, where A113A127A217A22 € Kmxm, we have q(:z:A) =

Az Az
AT AY A J AS
tr.tr tro_ 11JdmAq 11JmAo9
TAQAY™ ' where AQA'™ = [ A21JmA?f2 A21JmAEY2
have A € Qg,y,, i. e. q(xA) = q(z) for all x € K?™, if and only if Ay;J,, AS, +
A12JmAt2r1 = Jm € K™*™ and both AllijtlrQ S K™*™ and A21JmA5r2 S
K™>™ are symmetric matrices with zero diagonal. Since the K-bilinear form
0 Jn
Jm 0
A12JmA§r1 + AquAtlxé Algijgrl + AquAgQ
Agg Iy AV + Aoy I AV Ago J AY) + Aoy I AY,
0 J
tr _ — m
AJom A" = Jo, = g, 0
if Aj1JmAY, + Ao AY, = J, € K™*™ and both Ap;J, A%, € K™*™ and
Aoy I AY, € K™X™ are symmetric matrices.

Hence we have ¢(z) = zQz", where Q = [
{ Ay Ag

€ K2mx2m  Thus we

c KQmXQm

associated to ¢ is given by J = Jy,, = [ , we have

A € So,, if and only if {

€ K?m*2m  which hence holds if and only

Thus comparing the equations collected for membership in Qg,, < Si,, and
Som, we deduce that the additional equations are [A1;J,m A% = 0 for all
re{-m,...,—1}, and [A21J, A% ] = 0 for all » € {1,...,m}. These in turn
are given as Y .o, ar _sars = 0 for all 7 € Z. Letting X = {Xy;k,l € T} and
frr = Yom X —sXrs € K[X], we for k,I € T have Oi(frr) = Opr - Xp—1 €
K[X], implying Oki(frr)(Eam) = kr0k,—1. For the total differentials we get
8E2m (frr) = ZkeI Zlel’ akl(frr)(E2m) < Xp = Xr,fra for all r € 7.

Hence we get TE2m ((O)gm) = 09y 1= {A = [aij] € P9y, Q4 —i = 0 for all i € Z}
Comparing with the equations collected for S, where we had no condition for
a;,—i, we deduce that there are (2;”) +2m = m(2m + 1) K-linearly independent
equations, and thus we have dim(Qs,,) = dimg(02:,) = (2m)? —m(2m + 1) =
m(2m —1) = @, where n = 2m. Again, for the special orthogonal group
SOQ,,, < Oy we from [Qzp,: SOy,,] = 2 get Tr,,, (SOy,,) = Tr,,, (Q2y,), and
we let 09, 1= 502, < 5Py,

b) Let char(K) = 2 and let O, < GL, be the odd-dimensional orthogo-
nal group, where n = 2m + 1 > 3. Indexing rows and columns by 7 :=

{-m,...,—1,1,...,m,0}, the underlying quadratic form is given by ¢(z) =
z3+ Yot wiw_y, for all z € K™, and the K-bilinear form associated to ¢ is given
/ tr
by J = {JZOm 8] e K»*", Let ¢p: O, — Sg,,: A = [%'GT} — A’ be
the bijective homomorphism of algebraic groups from (4.5), where the vector
a € K?>™ is given by a? = q(e;A), for all i € 7’ := {-m,...,—1,1,...,m}.
Thus for A = [a;;] € K" we have A € O, if and only if A" € S, and
a? = q([ai—my - Qim]) = Z;nzl a;ja;—; for all i € 7', as well as agp = 1 and

ag; =0 for all j € 7'.
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Letting &’ := {X;; € X;4,j € 7'}, in addition to the polynomials in K[X'] C
K[X] describing membership of A’ in Sy, we get the polynomials f;o := X2 +
Z;nzl Xini,—j S K[X] foralli € I/, as well as foo = Xgo+1 € K[X] and ij =
Xo; € K[X] for all j € Z'. For the total differentials we get 9g,, (fo;) = Xo; and
Op, (fio) = 0u0(X2) (En) - Xio + Y ez Xir—j(En) - Xij = Xi i for all i,j € T'.

/
Thus Tg, (0,) = ogpmi1 = {4 = [AT’%] € glyi 13 A" € 021 }; indeed a
comparison of dimensions shows dim(Qay,4+1) = dimg(02+1) = dimg(02,,) +
2m = m(2m + 1) = 22 = qim(S,,,).

The comorphism ¢*: K[Ss,,] — K[OQ,] is induced by the natural embedding

K[X'] € K[X]. Hence on the associated Zariski tangential spaces we have
A % ) .

dp, ($): 02m41 — 8Pyt A = { 010 } — A’, implying dg, (¢)(02m+1) =

02, < 5Po,,, thus dg, (¢) is not an isomorphism of K-vector spaces.

9 The Lang-Steinberg Theorem

(9.1) Lemma. Let G be an algebraic group with Lie algebra g.

a) Identifying 71(G x G) := T} 1)(G x G) = T1(G) © T1(G) = g © g, for the
differential of the multiplication map we have dy(u): g® g — g: [t,t'] — t+ 1.
b) For the differential of the inversion map we have d; (1) = —idg: g — g.

Proof. a) The identification T} (G x G) = T1(G) & T1(G) is given by restricting
v € Derg(K[G] @k K[G], K1) to K[G] ®k {1} and {1} ®x K|[G], respectively,
and conversely for 4, € Derg(K[G],K;) we have (§ e ¢')(g @ h) = 6(g)h(1) +
g(1)d’(h), for all g, h € K[G]; see also Exercise (12.33).

For f € K[G] let p*(f) = Y_i_, 9i ® h;, for some r € N and g;, h; € K[G]. Hence
fla)=f(L-z) = f(z-1) =3 gi(Dhi(x) = 3oi_; gi(@)hi(1), for all z € G,
and thus f = >1_, g:i(1)h; = >.._, gihi(1). Hence for 6,0 € Derg(K[G],K;)
we have (0 @ 0")u*(f) = 321, 0(gi)hi(1) + gi(1)8" (hs) = 6(f) + &'(f).

b) We have u(idg xt) = 11: G - G x G — G: z — 1. The identification
T (G x G) 2 gd g yields dy(idg x ¢) = dy(idg) ® d1(¢). Since vf: K — K[G] is
the natural map, this implies 0 = dy(v1) = dy(u(idg x ¢)) = dq(p)dy (idg X ¢) =
dl (,[L)(dl (ld([;) D dl(L)) = dl (ld(g,) + d1 (L), hence dl(L) = 7d1 (ld([;) = 7idg. ﬁ

(9.2) Theorem. Let G be an algebraic group with Lie algebra g.

a) Forz € G let k,: G — G: y — o lyr and Ad(z) := d1(k,-1): g — g. Then
Ad: G — Autric(g) € GIL(g) = GLgim(g) is a rational representation, called the
adjoint representation; we have Z(G) < ker(Ad).

b) We have d;(Ad): g — Endk(g): = — ad(z), where ad(z): g — g: y — [z,9]
is the left adjoint action.
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Proof. a) Since k, is an isomorphism of algebraic groups, Ad(x) € GL(g) is a
Lie algebra automorphism. For z,y € G we have Ad(zy) = di(ky-1,-1) =
di(Kg-1Ky-1) = di(kgz-1)di(ky-1) = Ad(z)Ad(y), implying that Ad: G —
GL(g) is a group homomorphism. We show that Ad is a morphism:

Let G < GL,, closed, hence we have g < gl,,. Letting H := {j = [ :1 S ] €
GL(gl,); A € GL(g)} < GL(gl,,) closed, we have the morphism of algebraic
groups m: H — GL(g): A — A. For x € G we have an extension k,—1: GL,, —
GL,, inducing Ad: G — H < GL(gl,): © — [ Ad(2) 2 }, hence Ad = 7Ad.

*

Thus extending Ad to GL,, it suffices to consider Ad: GL,, — GL(gl,,) =2 GL,,2:

Letting X := {Xi1,...,Xnn} we for i,j € {1,...,n} have x’_,(Xy;)(y) =
Xij(xyx_l) = [xyx_l]ij = Zzzl Z?:l xikyklej = 22:1 27:1 l‘ikal(y)fUEj =
(@ [Xit] - 27 1)5(y), for all y = [y;;] € GL,, where z = [z;;] € GL,, and
a~! = [z};] € GL,. Hence v _, ([Xi;]) = = [Xy;]-2~" € K[X]"*". Hence for § €
Derg (K[X], Kg, ) we have Ad(x)(6)(Xi;) = 0k%_1(Xy5) = 0(x - [Xp] - 27 1)i5 =
(x - [6(Xk)] - 271);5. By the identification Tg, (GL,) = Tg, (K"*") = g,
where ¢ is mapped to [0(X;;)]i; € gl,,, we get Ad(z): gl,, — gl,,: A — zAz~".
Hence with respect to the K-basis {E;j. € K"ZX”Q;Z',j, ke {l,...,n}} C
Endk(gl,,), where E,s - Ejj.51 = 0ir0j5Ey € gl,,, the matrix of Ad(x) is given as
[xkix;-l]ij;kl S Y = K"ZX"2, the latter being a matrix Kronecker product.

b) We have dg, (Ad) = dp ,(7)dp, (Ad), where dp, (Ad): g — Tp ,(H) <
Tr ,(GL(gl,)) = Endg(gl,) = K" > as well as dp _,(7): Tp , (H) = {4 =
{ A 2 ] € Endg(gl,); A € Endg(g)} — Endg(g): A — A. Thus it suffices to
consider Ad: GL,, — GL(gl,,) and its differential dg, (Ad): gl,, — Endg(gl,):

Let o: gl,, — Endk(gl,): © — o(x), where o(z): gl,, — gl,,: A — zA. Hence
[U(x)(Eij)]kl = [inj]kl = ki, for 4,5, k,1 € {1,...,n}, and for fijie =
05Xk € K[X] we get ars(fij;kl)(En) = 0;10kr0is, for r,s € {1,...,n}. Thus on
Tg, (gl,) = gl,, and T, (Endk(gl,,)) = Endk(gl,,) we have dg, (0)(Ers): Eij —
Sorey Yo Ors(fijint) (Bn) - Exg = 6isEyrj = EpsEjj, hence dg, (0)(x) is left
multiplication with = € gl,,.

Similarly, 7: gl, — Endg(gl,): * — 7(x), where 7(z): gl, — gl,: A — Az
yields [Eijx]kl = 5ik1'jl7 and for Gij:kl = 5ikal € K[X] we get 3rs(gij;kl)(En) =
5ik5jr5ls~ Thus we have dEn (’Tz)(ETS) : Eij = ZZ:l 27:1 8” (gij;kl)(En) ‘Ekl =
d;rEis = E;jErg, hence dg, (7)(x) is right multiplication with z € gl,,.

Now we have Ad = (o x 7)(idg x ¢): G — G x G — GL(g) x GL(g) — GL(g).
This yields dg, (Ad) = dg _,(1)(dE, (o) ® (—dE, (7)) = dg, (o) — dg, (), and
thus for = € gl,, we get dg, (Ad)(x): gl,, — gl,,: y — 2y —yx = [z,y]. i

Further differentiation formulae are given in Exercises (12.34) and (12.35).
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(9.3) Definition and Remark. a) Let G be an algebraic group. A homo-
morphism of algebraic groups ®: G — G, such that di(®): T1(G) — T1(G) is
nilpotent, is called a Frobenius endomorphism on G.

If H < G is a closed subgroup which is ®-invariant, i. e. we have ®(V) C V|
then the restriction of ®|y is a Frobenius endomorphism on H.

b) Let char(K) = p > 0 and ¢ := p/ for some f € N. Then ®,: K® —
K™: [21,...,2,] — [2,...,2%] is called the associated geometric Frobenius
morphism on K". Hence the set of fixed points (K")%: := {z € K"; ®,(z) =
x} =T} coincides with the finite set of F,-rational points of K".

From ®F: K[X] — K[X]: X; — X! we for € K" and ¢ € Derg(K[X],K,)
as well as i € {1,...,n} get d(®g)(0)(X;) = 65(X;) = (X)) = 6(Xi) -
(qX{ ") (@) = 0, implying d(®,) = 0.

Considering GL,, = (K"*™)qet,, € K"*™ as a principal open subset, the geomet-
ric Frobenius morphism on K™*™ restricts to the standard Frobenius endomor-
phism ®,: GL,, — GL,: [a;;] = [a;] on GL,, where we still have d;(®,) = 0.
Moreover, ®,: GL,, — GL,: A — ®,(A~) = ,(A)~" is a homomorphism of

algebraic groups and we have 53 = ®,2, hence dy(®,)? = 0; the morphism & is
called the non-standard Frobenius endomorphism on GL,,.

c) Given a Frobenius endomorphism ® on G, let G® := {g € G;®(g) = g} <G
be the subgroup of fixed points of ® on G. Iterating yields a chain of closed
subgroups G > ®(G) > ®?(G) > ..., which hence eventually becomes stable.
Thus there is n € N such that H := ®"(G) = ®"T}(G), implying that ®|g: H —
H is surjective. Since we have G® < H, as far as fixed points are concerned we
might restrict ourselves to surjective Frobenius endomorphisms. Moreover if
G < GL,, is a ®,-invariant closed subgroup, and we have ®,|c = ®¢, for some

d € N, then we have G® < G®' = G2 < GL;{;‘J, hence G? is finite.

For the standard Frobenius endomorphism ®, on GL, we get the general
linear group GL,(F,) = G]Lf‘?, and since it is immediate that SL, < GL,

as well as Sy, < GL,, and O,, < GL,, are ®,-invariant, we get the special

linear group SL,(F,) = SLY*, the symplectic group Sp,,,(F,) = S;ﬁl, for
char(K) # 2 the general orthogonal groups GOg,,y1(F,) = @;‘;H and
GO3,,(F,) = @?;,’1 as well as the special orthogonal groups SOgp,41(Fy) =
GO2m+1(Fg)NSLam1 (Fg) = S(@;I):@-i-l and 8O3, (Fy) = GO3,, (Fy)NSLay (Fy) =

S0, and for char(K) = 2 the general orthogonal group GO3,,(F,) = 03

2m>» 2m>
since in the latter case SQ,,, = 03, is ®,-invariant we also get the special

orthogonal group SO, ,(F,) = S@;‘;.

For the non-standard Frobenius endomorphism 5(1 on GL,, we get the general
unitary group GU,(F,2) = GLY, and since it is immediate that SL,, < GL,,
and is ®,-invariant, we get the special unitary group SU,,(F,2) := GU,(F;2)N

SL,(Fgp2) = SLE{‘I. By a non-standard Frobenius endomorphism on SQ,,, we
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get the non-split special orthogonal group SO;,, (F,), see Exercise (12.36).

(9.4) Theorem: Lang (1965), Steinberg (1968).
Let G be a connected algebraic group, and let ®: G — G be a Frobenius
homomorphism. Then the Lang map £: G — G: x — x~1®(x) is surjective.

Proof. We consider the ®-conjugation action GxG — G: [z,z] — 27128 (z).
For 2z € G we have the orbit map £,: G — G: z — 27 12®(x) = 27 12®(z)27 12,
where in particular we have £; = L:

We have £, = p.u(t x (k,-1®)), where k,: G — G: z — z lzz, implying

dl(ﬁz) = dl(pz)(dl(liz—lq)) — idTl(G))- Lettlng d € N such that dl(é)d = 0,
we have (k,-1®)? = k;-1®%, where 2 := 2z - ®(2) - ®%(2) - --- - &7 1(2) € G.
Hence dy(k,-1®)? = dy(kz-1)d1(®)? = 0, implying that d (k,-1®) is nilpotent
as well, and thus dy (k.1 ®)—idp, @) : T1(G) — T1(G) is a K-isomorphism. Since
dy(p.): Th(G) — T,(G) is a K-isomorphism, this implies that dy(L,): T1(G) —
T.(G) is a K-isomorphism as well. For y € G we have £,(z) = 27 '2®(x) =
y Ny D 2®(zy HP(y) = y L. (xy H)®(y), for all x € G, thus £, =
P (y) Ay Lzpy—1. Hence we have dy(L.) = d.(pay)Ay)di(L:)dy(py~1), implying
that dy(L.): T,(G) — Tz_)(G) is a K-isomorphism, for any y € G.

Let V, := L.(G) C G, hence V, is irreducible. Since the regular points of V, form
a nonempty open subset, and £.(G) contains a nonempty open subset of V,
these sets intersect non-trivially, and hence there is y € G such that £, (y) € V,
is regular. Since Tz, (,)(G) = im(dy(L.)) < Tz, () (V2) < Tz, (y)(G) we deduce
dim(V,) = dimg (T, () (V2)) = Tz, () (G) = dlm( ), and thus V, = G, see also
Exercise (11.32). Being a G-orbit, £.(G) € L.(G) = V, = G is open. Hence
any two such G-orbits intersect non-trivially, thus £,(G) =G for all z € G.

(9.5) Corollary. Let G be a connected algebraic group with Frobenius homo-
morphism ®: G — G. Then G? is finite.

Proof. Given z,y € G we have L(z) = L(y) if and only if yz=! = ®(yx~1),
which holds if and only if G®2z = G®y. Hence the fibres of £ are the right
cosets of G* in G. Since £ is dominant there is z € G such that dim(£L71(z)) =
dim(G) — dim(G) = 0, hence £L71(z) is finite.

A different proof, for a ®,-invariant connected closed subgroup G < GL,, whose
Frobenius endomorphlsm @ fulfils ®? = @, for some d € N, showing that £
is a finite dominant morphism, is given in Exercise (12.38). For not necessarily
connected algebraic groups see Exercise (12.37).

(9.6) Proposition. Let G be an algebraic group with Frobenius endomorphism
®. Let Q be a G-set, and let ¢: Q@ — Q be P-equivariant, i. e. we have
p(wg) = p(w)P(g), for all w € N and g € G.
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a) If G is connected and € is a transitive G-set, then the set of fixed points
0% = {w € & ¢p(w) = w} is non-empty.

b) If moreover the stabiliser Stabg(w) < G is a connected closed subgroup, for
some and hence all w € Q, then Q¥ is a transitive G®-set.

Proof. a) For any w € Q we have p(w) = wg for some g € G. Letting h € G
such that g = h=1®(h), we get p(wh™1) = p(w)®(h™1) = p(w)g *h™! =wh™!,
hence wh~! € Q.

b) Let w € Q% be fixed such that H := Stabg(w) < G is closed and connected.
Then for ¢ € G® we have p(wg) = p(w)®(g) = wg, hence wg € Q¥. More-
over, for h € H we have w®(h) = p(w)®(h) = p(wh) = ¢(w) = w, hence H
is ®-invariant, and thus ®|g is a Frobenius endomorphism. For w’ € Q¥ arbi-
trary let now g € G such that wg = w’. Then we have wg = ' = p(W') =
o(wg) = p(w)®(g) = wP(g), hence g®(g—!) € H. Thus there is h € H such that
g®(g71) = h='®(h), implying hg = ®(hg) € G® and ' = why. i

A generalisation to the case of unconnected stabilisers is given in Exercise
(12.40). An application to conjugacy classes in G® is given in Exercises (12.39)
and (12.41).

10 Generation and connectedness

(10.1) Proposition. Let G be an algebraic group, let V) irreducible affine
varieties together with morphisms @y: V) — G such that 1g € Wy := oA (V)),
for all A € A, where A is an index set. Then H := (Wy; A € A) < G is closed

and irreducible. Moreover, there is [A1,...,A;] € A, for some r € Ny, and signs
€ € {1}, fori € {1,...,r}, such that H =W ----- Wy

Proof. We may assume that for any A € A thereis \' € A such that oy = tgpa.
For any r € Ny and « := [aq,...,a,] CAlet ot [[i_y Vo, = Gt [21,..., 2] —
Ty xr. Letting Wy :=Wq, -+ W, = im(p,) we conclude that W, CG
is closed and irreducible. For 3 := [01,...,08s] C A, where s € Ny, let aff :=
[a1,... 0, 0B1,...,8s] € A be the concatenation of o and 8. Then we have

W W3 = Weg € G, and moreover even WQWQ - W—o,g For h € Wy the
map W, — Wyg: g — gh is continuous, hence we have Woh = W,h C W3,
and thus W,W3 C Wog. Similarly, from gWs C W,s for g € W, we obtain
gWs C Wap, and thus W, Wz C Wg.

Choose o C A such that dim(W,,) € Ny is maximal. For any 8 C A we since
1g € Wg have W, = W, - 1g C WQW[} C Wag, hence by the maximality of
dim(W,) we conclude W, = W, W5 = Wog, and Ws = 1g - Wz C W, W5 =
W,. In particular, we have W, W, = W, and Wa_l C W,, implying that
W, <G is a closed subgroup, such that Wz C W, for all 5 C A. Finally, there
is ) # U C W, open, and hence dense, such that U C W, = im(g,). By (5.2)
we have UU = W, implying H = Waq = W, W, = W,,. #
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(10.2) Theorem. a) The symplectic group Sa,, is connected, and Sa,,, < SLay,.
b) The special orthogonal group SO, for char(K) # 2 is connected.
¢) The special orthogonal group SQs,,, for char(K) = 2 is connected.

Proof. a) Indexing rows and column by Z := {—m,...,—1,1,...,m}, fori,j €
T such that j # {+i} and t € Klet zi;(t) := En+t(Byj— - {4- B—j,~i) € SLam
and z; _;(t) := E, + tE; _; € SLa,, be symplectic transvections. Hence for
the unipotent root subgroups U;; := {z;;(t);t € K} < SLg,, the map G, =
K — Uj;: t — x;5(t) is an isomorphism of algebraic groups. It is immediate
that U;; < Sop, and by [12, p.186] we have (U;;;4,j € Z,1 # j) = Sop,.

b) Since SO; = {1} and SO, = G,,, see Exercise (12.7), we may assume
n > 3. Hence letting Q,, := [0,,0,] <O, by [15, Thm.11.45, 11.51] we have
Q, =[S0,,S0,] = SO0,,.

Let n = 2m. Indexing rows and columns by Z := {—m, ..., —1,1,...,m}, for
i,j € I such that j # {£i} and t € K let x;;(t) := E,, +t(E;; — E_; ;) € SLoy,
and Uj; := {z;;(t);t € K} < SLap,. It is immediate that U;; < SQy,,, and by
[12, p.185] we have (U;j;i,j € Z,j # {£i}) = Qop.

Let n = 2m + 1. Indexing rows and columns by Z := {—m,...,—1,0,1,...,m},
for i, j € T\{0} such that j # {£i} and t € Klet z;(t) := E,+t(E;; —E_; ;) €
SLQmJ,_l and l‘io(t) = b, + t(Eio — E(),_i) — % . E¢7_i S SL2m+1, as well as
Uij == {x;;(t);t € K} < SLap41. It is immediate that U;; < SO,,,, 4, and by
12, p.187] we have (Uyj:d,5 € T,i # 0,5 # {&i}) = Qo1

c) Since G, = T := {diag[t,t"1];t € K\ {0}} <Oy < SLy is connected such
that [@9: T] = 2, see Exercise (12.7), we deduce that T < Qs is the only
closed subgroup of index 2, and thus SOy = T = G,,. Hence we may assume
2m > 4, and letting Qo := [Q2pm, Q2] < Ogyp, by [15, Thm.11.45, 11.51] we
have Qo = [SQy,y,, SO,,,] = SO, .

Indexing rows and columns by Z := {—m,...,—1,1,...,m}, for i,j € T such
that J 7& {:l:Z} and t € K let ZZ?ZJ(t) =k, + t(EZ] + E_j7_1') € SLs,, and
Uij == {zj(t);t € K} < SLo,,; these are the same generators as for the case
n = 2m in (b), and a subset of the generators of Sy, in (a). It is immediate
that U;; < Qgyy, and by [12, p.185] we have (U;;;i,5 € Z,j # {£i}) = Qo #
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III Exercises and references

11 Exercises to Part I

(11.1) Exercise: Polynomial functions.

Let K be a field and X := {X;,...,X,}. For any = = [z1,...,2,] € K™ let
e K[X] — K: f — f(x) be the associated evaluation map, and for any
feK[X]let f*: K — K: z — f(x) be the polynomial function afforded
by f.

a) Show that in general f is not necessarily uniquely determined by f*°.

b) Show that if K is infinite then f indeed is uniquely determined by f°.

c) Show that an algebraically closed field is infinite.

(11.2) Exercise: Unions of algebraic sets.
Let K be an algebraically closed field, let X := {X7,..., X}, and let I, I'JK[X].
Show that V(I)uV({I') =V({I - I')=Vv{INI).

Proof. See [9, La.1.1.5]. i

(11.3) Exercise: Hilbert’s Nullstellensatz.

Let K be an algebraically closed field, let X := {X;,..., X, }, let I <K[X], and
let f € Z(V(I)). Assuming the weak form of Hilbert’s Nullstellensatz, show that
feVI

Hint (Rabinowitch, 1929). Consider J := (I,1 — fY) <K[X][Y], where Y
is an indeterminate over K[X], and show that V(.J) = ().

Proof. See [4, Thm.5.4]. i

(11.4) Exercise: Topological spaces.

Let V' be a topological space. Show the following:

a) A subset U C V is irreducible if and only if its closure UCVis.

b) If V is irreducible, then any open subset ) # U C V is dense and irreducible.
c) If V is irreducible and ¢: V. — W is a continuous map, where W is a
topological space, then (V) C W is irreducible.

d) V is Hausdorff if and only if the diagonal {[v,v] € V xV;0 eV} CV xV
is closed, where V x V is endowed with the product topology.

e) If V is Noetherian, then V is Hausdorff if and only if V' discrete.

f) If V # 0 is Noetherian, then it is a finite union V = V; U--- U V,., where the
Vi C V are closed and irreducible. If moreover V; Z V; for all ¢ # j, then the
Vi C V are precisely the maximal irreducible closed subsets, being called the
irreducible components of V.

g) If V # () is Noetherian and U C V is open and dense, then U has a non-empty
intersection with any irreducible component of V.
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Proof. See [11, Exc.1.2.2, La.1.2.3] or [6, Exc.I.1.6, 1.1.7]. 1

(11.5) Exercise: Regular maps.

Let K be an algebraically closed field, let V' C K™ and W C K™ be algebraic,
and let ¢: V — W be regular. Show that ¢ is continuous with respect to the
Zariski topologies on V and W.

Proof. See [6, La.I.3.1]. i

(11.6) Exercise: Affine varieties.

Let K be an algebraically closed field and let V' C K™ be algebraic. Show
that both the set V and its Zariski topology can be recovered from the affine
coordinate algebra K[V7:

a) Show that V induces a bijection between {I <K[V]} and {U C V closed}.
b) Show that this restricts to a bijection between {I < K[V] maximal} and V.

Proof. See [11, Prop.1.3.3]. i

(11.7) Exercise: Morphisms of affine varieties.

Let K be an algebraically closed field, let V, W be affine varieties, let ¢: V — W
be a morphism and let ¢*: K[IW] — K[V] be the associated comorphism.

a) Show that ¢* is injective if and only if ¢ is dominant, i. e. (V) C W is
dense.

b) Show that ¢* is surjective if and only if ¢ is a closed embedding, i. e.
©(V) C W is closed and ¢: V — (V) is an isomorphism of affine varieties.

Proof. See [11, La.1.9.1] or [9, Prop.2.2.1]. i

(11.8) Exercise: Morphisms.

Let K be an algebraically closed field.

a) Let p: K2 — K2: [z,y] — [zy,y]. Show that p(K?) C K2 is neither open nor
closed.

b) Let ¢: K — K?: 2 — [2%,23]. Show that ¢(K) C K2 is closed, and that
¥ K — 9(K) is bijective, but not an isomorphism of affine varieties.

c) Give an example of a continuous map between affine varieties which is not a
morphism.

Proof. a) b) See [10, Exc.1.4.5] or [7, Ex.I.4.N, 1.4.0] or [6, Exc.1.3.2].
c¢) See [10, Exc.I.1.6]. i
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(11.9) Exercise: Products of affine varieties.

Let K be an algebraically closed field and let V' C K™ and W C K™ be algebraic.
a) Show that V x W C K™ x K™ is algebraic.

b) Let K[X] and K[)] be the affine coordinate algebras of K™ and K™, respec-
tively. Show that the affine coordinate algebra of K™ x K™ can be identified
with K[X U )], and that the natural map K[X] @k K[Y] — K[X U Y] induces
an isomorphism K[V] @k [W] — K[V x W] of K-algebras.

¢) Show that V' x W is irreducible if and only if both V" and W are irreducible.
d) Show that the Zariski topology on V' x W is finer than the product topology
induced by the Zariski topologies on V and W, and give an example where the
former is strictly finer.

Proof. a) b) ¢) See [9, Sect.1.3.7, Prop.1.3.8]. d) See [11, Exc.1.5.5]. i

(11.10) Exercise: Principal open subsets.

Let V' be an affine variety over K.

a) For 0 # f,g € K[V] show that Vi, = VNV, and Vj» = V¢, for all r € N.
Moreover, show that V; C Vj, if and only if 1/(f) C /{g) <K[V].

b) Show that {V; C V;0 # f € K[V]} is a basis of the Zariski topology.

Proof. See [11, Sect.1.3.5, La.1.3.6]. i

(11.11) Exercise: Open subsets of affine varieties.

Let K be an algebraically closed field and U := K2\ {[0,0]}. Show that U cannot
be endowed with the structure of an affine variety, such that the inclusion maps
U CK? and (K?); C U, for all f € K[X1, X2]\Z([0,0]), are morphisms.

Proof. See [7, Ch.1.4, p.35]. i

(11.12) Exercise: Localisation.

Let R be a ring and let U C R be multiplicatively closed such that 1 € U.

a) Show that the localisation Ry is a ring, that v: R — Ry:r — 7 is a
ring homomorphism, and Ry has the following universal property: If p: R —
S is a ring homomorphism such that ¢(U) C S*, then there is unique ring
homomorphism @: Ry — S such that pr = .

b) Show that for J < Ry we have (v~1(J))y = J, and conclude that the map
t: {J<QRy} — {I<R}: J — v~1(J) is an inclusion-preserving and intersection-
preserving injection, mapping prime ideals to prime ideals.

c) Show that for an ideal I < R we have I C v~ i(Iy) = {f € R;fu €
I for some v € U} < R, conclude that if U NI = () then we have Iy # Ry,
and that a prime ideal P < R is in im(¢) if and only if U N P = {.

d) Let U C S be multiplicatively closed. Show that Rs = (Ry)s, -

Proof. See [1, Ch.2.1] or [4, Thm.4.1, 4.3]. i
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(11.13) Exercise: Integral ring extensions.

Let R C S be a ring extension.

a) Show that an element s € S is integral over R, if and only if there is an R-
subalgebra of S containing s, which is a finitely generated R-module. Conclude
that R C S is a finite ring extension, i. e. S is a finitely generated R-algebra
and integral over R, if and only if S is a finitely generated R-module.

b) Show that the integral closure R := {s € S;s integral over R} C S of R

in S is a subring of S, and that R = R holds. Show that a factorial domain R
is integrally closed, i. e. we have R = R C S := Q(R).

c) Let R C S be an integral ring extension, and let S be a domain. Show that
R is a field if and only S is a field.

d) Let R C S be an integral ring extension, and let J <5 and I := JNR < R.
Show that dim(I) = dim(J) € Ng U {oo} and ht(I) = ht(J) € Ng U {oo}.

Proof. a) b) See [3, Ch.9].
c) See [4, La.9.1] or [1, La.4.16]. d) See [5, Cor.6.10]. i

(11.14) Exercise: Infinite dimension (Nagata, 1962).

Let K be a field and R := K[X;;i € N], let dy := 0, and for 7 € N let d; € N such
that d; < di11, and P; := (Xg,_,+41,...,Xaq,) <R, and let U := R\|J,;~, P C R.
a) Show that R is not Noetherian.

b) Show that the localisation Ry is Noetherian.

c) Show that dim(Ry) = sup{d; — d;_1;i € N} € NU {c}.

Proof. See [1, Exc.9.6]. 1

(11.15) Exercise: Dimension and height.
Give an example of a finitely generated K-algebra, where K is a field, which is
not a domain, possessing an ideal I < R such that dim(I) 4+ ht(7) # dim(R).

(11.16) Exercise: Catenary rings.

A finite dimensional Noetherian ring R is called catenary, if for any prime
ideals P C @ < R all maximal chains P = Py C --- C P, = @ of prime ideals
have length r = ht(Q) — ht(P).

Let K be a field, and let R be a finitely generated K-algebra which is a domain.
Show that R is catenary.

(11.17) Exercise: Dimension of varieties.

Let V be an affine variety over K

a) Show that dim(V) = 0 if and only if V is a finite set. Which are the
irreducible varieties amongst them?

b) Let V' be irreducible. Show that dim(V') is the maximum of the lengths
d € Ny of chains ) # Vo C -+ C Vg = V of closed irreducible subsets.
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¢) Let V be irreducible such that K[V] is a factorial domain. Show that any
closed subset W C V having equidimension dim(W) = dim(V) — 1 is of the
form W = V(f) for some f € K[V].

d) Let V, W be irreducible. Show that dim(V x W) = dim(V) - dim(W).

Proof. a) See [10, Exc.1.3.1]. b) See [10, Exc.1.3.4].
c¢) See [10, Exc.1.3.6]. d) See [10, Prop.1.3.1]. i

(11.18) Exercise: Finite morphisms.
Let V, W be affine varieties and let ¢: V — W be a finite morphism. Show that
there is ¢ € N such that [p~1(y)| < ¢, for all y € W.

Proof. See [9, La.2.2.3]. i

(11.19) Exercise: Finite morphisms.

Let K be an algebraically closed field, and let ¢: K? — K2: [x,5] — [y, 1], see
Exercise (11.8).

a) Determine the dimensions of the irreducible components of the fibres of .
b) Is ¢ a dominant morphism? Is ¢ a finite morphism?

(11.20) Exercise: Constructible sets.

Let V' be a topological space. A subset U NW C V, where U C V is open
and W C V is closed, is called locally closed. A finite union of locally closed
subsets is called constructible.

a) Show that the set of constructible subsets is the smallest set of subsets
containing all open subsets and being closed under taking finite unions and
complements.

b) Let V' be Noetherian, and let W C V' be constructible. Show that there is
UCW open and dense such that U C W.

Proof. a) See [6, Exc.I.3.18] or [10, Exc.1.4.3]. b) See [9, Exc.2.7.7]. i

(11.21) Exercise: Chevalley’s Theorem (1955).
Let V., W be affine varieties and let ¢: V' — W be a morphism. Show that ¢
maps constructible subsets to constructible subsets, see Exercise (11.20).

Hint. It suffices to consider ¢(V), reduce to the case V,W irreducible, and
proceed by induction on dim(W).

Proof. See [6, Exc.I1.3.19] or [10, Thm.I.4.4]. i
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(11.22) Exercise: Open morphisms.

Let V, W be irreducible affine varieties and let ¢: V' — W be a dominant mor-
phism, such that for all Z C W closed and irreducible the preimage p~1(Z) C V
is equidimensional of dimension dim(Z) + dim(V) — dim(W). Show that ¢ is
an open map, i. e. maps open sets to open sets.

Hint. Use Chevalley’s Theorem.
Proof. See [10, Thm.I.4.5]. i

(11.23) Exercise: Upper semicontinuity of dimension.

Let V,W be irreducible affine varieties and let ¢: V. — W be a dominant
morphism. For any @ € V' let €,(z) € Ny be the maximum of the dimensions of
the irreducible components of p~1(¢(z)) C V containing . Show that for any
n € Ny the set {z € Ve, () > n} CV is closed.

Proof. See [10, Prop.1.4.4]. i

(11.24) Exercise: Diagonalisable matrices.
Let K be an algebraically closed field, and let n € N. Show that the set of
diagonalisable matrices is dense in K™*"™,

Hint. Let D, := {[a;;] € K"*";a,; = 0fori # j} be the set of diagonal

matrices, and consider fibres of ¢: D,, x GL,, — K"*": [z, g] — 29 := g lzg.

Proof. See [9, Exc.2.7.9]. i

(11.25) Exercise: Derivations.

Let A be an R-algebra, let U C A be multiplicatively closed such that 1 € U,
and let vy : A — Ay be the natural map. Let M be an A-module such that the
elements of U act invertibly on M. Show that vj;: Derg(Ay, M) — Derr(A, M)
is an isomorphism of abelian groups.

Proof. See [4, Exc.25.3]. i

(11.26) Exercise: Partial derivatives.

Let X :={Xy,...,X,} be indeterminates over the perfect field K.

a) Let char(K) = 0. Show that f € K[X] is constant if and only if 9;(f) = 0
for alli € {1,...,n}.

b) Let char(K) = p > 0, and let f € K[X] such that 0;(f) = 0 for all ¢ €
{1,...,n}. Show that there is g € K[X] such that f = ¢?.

c) Let f € K[X] be irreducible. Show that 0;(f) # 0 for some ¢ € {1,...,n}.

Proof. See [9, Exc.1.8.14]. i
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(11.27) Exercise: Tangent spaces.
Let V and W be affine varieties over K, and let z € V and y € W. Show that
Tay)(V x W) 2T, (V) @k T, (W) as K-vector spaces.

Proof. See [10, Prop.I.5.1]. i

(11.28) Exercise: Linear spaces.

Let K be an algebraically closed field, let V' < K™ and W < K™ be K-subspaces,
and let ¢: V — W be a K-linear map.

a) Show that V is an irreducible affine variety such that dim(V) = dimg (V).
Show that for any « € V there is a natural identification of T,,(V') with V.

b) Show that ¢ is a morphism of affine varieties. Show that for any x € V' using
the above identifications the differential d,(¢) can be identified with ¢.

Proof. See [10, Ch.1.5.4]. i

(11.29) Exercise: Zariski tangent spaces.

Let V. C K" be closed, let 0 # f € K[V] and let « € Vy. Using the closed
embedding Vy — K"y — [y, f(y)~!] give a definition of a Zariski tangent
space 7, (Vy), and show that it can be naturally identified with 7, (V).

(11.30) Exercise: Regular points.

Let V' be an irreducible affine variety over K.

a) Show that for any x € V' we have dimg (7, (V)) > dim(V).
b) Show that the set of regular points is an open subset of V.

Hint for (a). Consider the local ring O, associated to z, and by using the
Nakayama Lemma show that any subset S C P, generates the maximal ideal
P, as an O -module if and only if it generates P, /P2 as a K-vector space.

Hint for (b). Use the Jacobian matrix.
Proof. a) See [10, Ch.I.5.3]. b) See [10, Thm.I.5.2]. i

(11.31) Exercise: Singular points.

Let char(K) # 2. Show that the following hypersurfaces V(f;) € K2 and V(g;) C
K? are irreducible, and determine their singular points. For the case K := C
draw pictures of the R-rational points V(f;) N R? and V(g;) N R3.

) i) =Y+ X+ - X2 i) fo =Y — XY + X6
Vi) =Y Y24 X - X3 iv) 1= Y4 - XYV2 - X2Y 4+ X4

b) i) g1=22-XY? ii)g=22-Y?2—X? iii)gs=Y3+XY +X3

Proof. a) See [6, Exc.I.5.1]. b) See [6, Exc.1.5.2]. i
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(11.32) Exercise: Dominance criterion.

Let V, W be irreducible affine varieties, and let ¢: V' — W be a morphism such
that for all x € V the differential d,(¢): T2 (V) — Ty (z) (W) is a K-isomorphism.
Show that ¢ is dominant.

12 Exercises to Part 11

(12.1) Exercise: Algebraic groups.

a) Show that the direct product G x G’ of algebraic groups G and G’ again is
an algebraic group.

b) Let G be an algebraic group, let H C G be a closed subgroup, and let
p: H — G be the inclusion map. Show that H again is an algebraic group, such
that ¢ is a homomorphism of algebraic groups.

Proof. See [11, Exc.2.1.2]. 1

(12.2) Exercise: Automorphisms of algebraic groups.

Let K be an algebraically closed field.

a) Show that the maps G, — G,: z +— ax, for a € K\ {0}, are the only
automorphisms of G, as an algebraic group.

b) Show that id: G,, — G,,,: x — x and ¢: G,,, — G,,: x — 2~ ! are the only
automorphisms of G,, as an algebraic group.

¢) Show that G, and G,,, are not isomorphic.

Proof. See [10, Exc.IL.7.1, I1.7.4]. i

(12.3) Exercise: Determinant polynomials.

Let K be a field and let det,, € K[X11, X12,..., Xnn] be the n-th determinant
polynomial, for some n € N.

a) Show that det,, € K[X11, X19,..., X,y] is irreducible.

b) Show that det,, —a € K[X11, X12,- .., Xnn] is irreducible, for any a € K.

(12.4) Exercise: Examples of algebraic groups.

a) Show that the following are algebraic groups, where n € N:

i) The scalar group Z,, := {a- E, € GL,;0 # « € K},

ii) the torus T, := {[a;;] € GLy;a;; = 0 for i # j},

iii) the unipotent group U, := {[a;;] € GLy;a;; = 0 for i > j,a;; = 1},
iv) the Borel group B,, := {[a;;] € GL,;a;; = 0 for i > j},

v) the monomial group N,, := {A € GL,, monomial}.

b) Show that any finite group is an algebraic group.

Proof. See [11, Exc.2.1.3] or [10, Exc.I1.7.7]. i



IIT Exercises and references 53

(12.5) Exercise: Projective special linear groups.

Let K be an algebraically closed field, let A := K[X11, X192, Xo1, X20]/(deta —1)
be the affine coordinate algebra of SLo, let B := K(X;; Xxi;4, 4, k, 1 € {1,2}) C
A, and let PSLo be the affine variety having B as its coordinate algebra.

a) If char(K) # 2, show that B = {f € A; f(x) = f(—=) for all z € SLo}.

b) For char(K) arbitrary, show that PSLLy is endowed with the structure of an
algebraic group, such that there is a surjective homomorphism ¢: SLo — PSILy
of algebraic groups with ker(¢) = {+E-}.

c¢) If char(K) = 2, show that ¢ is an isomorphism of groups, but not an isomor-
phism of algebraic groups.

Proof. See [11, Exc.2.1.4.(3)]. i

(12.6) Exercise: Symplectic groups.
a) Show that SQ = SLQ S GLQ
b) Let m € N. Show that Sa,, has a closed subgroup isomorphic to GL,,.

Proof. See [14, Prop.3.1]. i

(12.7) Exercise: Orthogonal groups.
Let K be an algebraically closed field.

a) Let char(K) # 2. Show that SO, = { { a 0

0 a1 } EKQXQ;O#aEK}.

b) For char(K) arbitrary, give a similar description of Qs.
c) Let char(K) # 2 and let w € K such that w® = —2. Show that

2
1t 1 wt ¢t 10 1 0 0
N I 0 1 —wt and A wt 1 0|,
0 0 1 2 —wt 1

for all ¢ € K, defines a surjective homomorphism of algebraic groups ¢: SLo —
SO, and determine ker(y) <1 SLo.

Hint for (c¢). Consider the natural action of SLLy on the homogeneous poly-
nomials of degree 2 in two variables.

Proof. See [9, 1.3.15, 1.3.16. Exc.1.8.19]. i

(12.8) Exercise: Connectedness.

Determine the identity component and the dimension of the algebraic groups in
Exercises (12.4) and (12.5).

(12.9) Exercise: Closed subgroups.
Show that a closed subset of an algebraic group G, which contains 1g and is
closed under taking products, is a subgroup.
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Proof. See [10, Exc.I1.7.5]. 1

(12.10) Exercise: Abelian subgroups.
Let G be an algebraic group, and let H < G be an abelian subgroup. Show that
H < G is an abelian subgroup.

Proof. See [9, Exc.3.6.2]. i

(12.11) Exercise: Finite normal subgroups.

Let G be a connected algebraic group.

a) Show that a finite normal subgroup of G is central.

b) Let ¢: G — G be a surjective homomorphism of algebraic groups. Show
that ker(¢) < G is finite.

Proof. a) See [11, Exc.2.2.2.(3)]. b) See [11, Exc.4.3.6.(6)b)]. i

(12.12) Exercise: Normalisers.
Let G be an algebraic group, and let H < G be closed. Show that the nor-
maliser Ng(H) := {g € G;HY = H} < G is a closed subgroup.

Proof. See [10, Cor.I1.8.2]. i

(12.13) Exercise: Translation of functions.

Let G be an algebraic group over K, and let p and X\ be its regular right and
left translation actions, respectively.

a) Show that K[G] is the union of finite dimensional K-subspaces which are
py-invariant for all g € G.

b) Let F < K[G] such that dimg(F) < co. Show that there is F' < F < K[G]
such that dimg (FE) < oo, which is pj-invariant and Aj-invariant for all g, h € G.
c) Let H < G be a closed subgroup, and let Z(H) < K[G] be the associated
vanishing ideal. Show that H = {g € G;p;(Z(H)) C Z(H)} and H = {g €
G; A2 (Z(H)) C T(H)}.

Proof. a) See [10, Exc.I.8.3]. a) See [10, Exc.II.8.4].
c) See [11, La.2.3.6] or [10, La.I1.8.5]. i

(12.14) Exercise: linearisation.

Let G be an algebraic group, and let A be its regular left translation action.
Show that for all ¢ € G and the associated semisimple and unipotent parts
gs € G and g, € G, respectively, we have (A\7)s = A7 and (\})s = ;.

Proof. See [11, Exc.2.4.10.(1)]. i
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(12.15) Exercise: Linearisation of actions.

Let G be an algebraic group over K acting morphically on V. Show that there is
a closed embedding ¢: V — K™ and an algebraic representation ¢: G — GL,,,
for some n € N, such that ¢¥(xg) = ¥ (x)p(g), for all z € V and g € G.

Proof. See [11, Exc.2.3.7]. i

(12.16) Exercise: Additive Jordan decomposition.

Let A € K"*™ and let A, A, € K™"*™ be its semisimple and its nilpotent part,
respectively. Show that there are f,g € K[T] such that f(0) = 0 = g(0) and
such that A, = f(A) and A4,, = g(4).

Proof. See [11, Prop.2.4.4(ii)] or [10, La.VI.15.1.A]. i

(12.17) Exercise: Jordan decomposition.

Let K be an algebraically closed field.

a) Let char(K) = p > 0. Show that A € GL, is unipotent if and only if
AP = E,, for some k € Nj.

b) Let char(K) = 0. Show that any semisimple element of GL,, has finite order.
c) Let K:= Fq be the algebraic closure of the finite field F,. Give a description
of the Jordan decomposition in GL,, in terms of element orders.

Proof. a) See [10, Ch.VL15.1]. b) See [10, Exc.VI.15.5]. ¢) See [9, Ch.3.5]. 4§

(12.18) Exercise: Semisimple and unipotent elements.
Determine the subsets G4 and G,, of the additive group G, and the multiplicative
group G,y,.

(12.19) Exercise: Special linear group SL,.
a) Show that any element of SLo(K) is conjugate to precisely one of the following
elements, where 0 # z € K:

z 0 11
i{()xl] o [01]
b) Determine the Jordan decomposition of the elements of SLo(K). Is SLa(K),

a subgroup? Is SLy(K), a subgroup?
c¢) Determine the centralisers of the elements of SLy(K). Which are connected?

Proof. See [9, Exc.2.7.12]. i
(12.20) Exercise: Semisimple elements.

Give examples showing that the set G of semisimple elements of an algebraic
group G is neither necessarily closed nor necessarily open.
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(12.21) Exercise: One-dimensional groups.

Let G be a connected algebraic group such that dim(G) = 1.

a) Show that G is commutative.

b) Show that if G is not unipotent then G = G,,, as algebraic groups.

Hint for (a). For g € G consider the morphism ¢,: G — G: z — g% =z~ 'gz.
Proof. See [11, La.2.6.2]. i

(12.22) Exercise: Orbits.
Let G be an algebraic group acting morphically on V and let € V. Show that
x(G°) C aG is open and closed.

Proof. See [9, Exc.2.7.10]. i

(12.23) Exercise: Orbit closure relation.

a) Determine the orbits of the natural action of GL,,(K) on K", where n € N.
How are they related with respect to the partial order <7

b) How are the conjugacy classes of SLo(K) related with respect to the partial
order <7

Proof. a) See [10, Exc.IL.8.1]. i

(12.24) Exercise: Kostant-Rosenlicht Theorem.

Let G be an algebraic group acting morphically on V and let z € V.
a) Let W :=2G C V. Show that K[W]® = K- iy

b) Let G be unipotent. Show that G C V is closed.

Hint for (b). For U :=2G C 2G =: W consider Z(W \ U) < K[W], and use
local finiteness and trigonalisability.

Proof. b) See [8, Prop.1.4.10] or [11, Exc.4.3.6.(3)]. i

(12.25) Exercise: Hasse diagrams.

Let n € Nyg. The Hasse diagram of the dominance partial order < on P,
is defined as the directed graph on the vertex set P,, having a directed edge
A — p if and only if A <pax p.

a) Draw the Hasse diagrams for n < 8. For which n € Ny is < a total order?
b) Show that the lexicographical order on P, is a total order refining the
dominance partial order.

(12.26) Exercise: Dominance partial order.

Let A = [A1,...,A\y] F n. Show that for g - n we have X\ <pax p if and
only if p=[A1, s A1, A F L A1, -, As—1, As — 1, Asi1, -+, Ay, for some
1 <r < s < nsuch that A,—1 > A, and Ay > Ag41, and such that either
s=r+lors>r+1and A\, = A;.
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Proof. See [13, Thm.1.4.10]. 1

(12.27) Exercise: Centralisers of unipotent elements.
Let G := SL,, for some n € N, and let A = [A1,..., ] F n, where A\; > 0. For

B € Cy show that dim(Cg(B)) =n—1+2-3'_, (i — )\
Proof. See [9, Prop.2.6.1]. i

(12.28) Exercise: Restricted Lie algebras.

Let K be an algebraically closed field such that char(K) = p > 0, let A be a
Lie K-algebra, and for all x € A let ad(x): A — A: y — [y, z] be the associated
adjoint action. Then A is called a restricted Lie algebra, if there is a p-power
operation [p]: A — A: z — z[Pl having the following properties: We have
ad(zl?)) = ad(z)? and (Az)lPl = A\PzlPl as well as (z + y)P! = 2Pl 4 ylPl 1
Zf;ll % cai(z,y), for all z,y € A and A € K, where «;(x,y) € A is defined by
the K-linear expansion ad(Az + y)P~!(z) = 3P~ Moy (x,y).

a) If A is a restricted Lie algebra, determine (z 4 )Pl € A for commuting
elements z,y € A. Show that any non-commutative K-algebra A becomes a
restricted Lie algebra with respect to [p]: A — A: x +— zP.

b) Given any K-algebra A, show that Derg (A, A) becomes a restricted Lie alge-
bra with respect to [p]: A — A: § — 7. Show that the Lie algebra associated
to an algebraic group is restricted. Determine the p-power operation on the Lie
algebras associated to the groups G, and G,,.

c) Given a homomorphism ¢: G — H of algebraic groups, show that d; (¢): g —
h, where g and b are the associated Lie algebras, is a homomorphism of restricted
Lie algebras, i. e. we have d; () (z[?)) = di(¢)(2)P! for all z € g.

Proof. See [8, Ch.1.3.1] or [11, Ch.3.3] or [10, Exc.II1.9.3]. i

(12.29) Exercise: Right convolution.

Let G < GL,, be a closed subgroup with Lie algebra g < gl,,.

a) Let H < G be a closed subgroup having vanishing ideal Z(H) < K[G]. Show
that L(H) = {6 € L(G); 6(Z(H)) C Z(H)}.

b) Let K[X]qet, denote the affine coordinate algebra of GL,,, let Z(G) <K[X]qet,,
be the vanishing ideal of G, and let J := Z(G) N K[X] < K[X]. Show that
G ={z € GLy; p3(J) € J} and g = {z € gl,;;2(J) C J}.

Proof. a) See [10, La.II1.9.4] or [8, Prop.1.3.8].
b) See [10, Exc.II1.9.1] or [8, Cor.1.3.8]. i

(12.30) Exercise: Lie algebras of algebraic groups.
Determine the Lie algebras associated to the algebraic groups in Exercise (12.4).

Proof. See [11, Exc.3.3.10.(2)]. i
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(12.31) Exercise: Skew-symmetric matrices.

Let K be an algebraically closed field such that char(K) # 2, and let S := {4 €
gl,; A = —A"} be the set of all skew-symmetric matrices. Show that S is a
Lie algebra, which is isomorphic to the Lie algebra o,,.

Proof. See [11, Exc.3.3.10.(4)]. i

(12.32) Exercise: Differential of homomorphisms.
Determine the differential dg,(¢) of the homomorphism ¢: SLs — PSLy of
algebraic groups in Exercise (12.5). Is dg, () an isomorphism?

Proof. See [11, Exc.3.3.10.(3)]. i

(12.33) Exercise: Differential of multiplication.

Let G be an algebraic group with multiplication map pu: G x G — G, and let
r,y € G. Identifying T, (G xG) with T.,(G) DT, (G), determine the differential
dig (1) : T (G) © Ty(G) — Ty (G).

(12.34) Exercise: Differential of the commutator map.

Let G be an algebraic group with Lie algebra g.

a) Forz € G let v,: G — G: y — y~'2~lyx be the commutator map. Show
that di(v;) = —Ad(z) —idg: g — g.

b) For y € G let ky: G — G: x — 2~ 'yz be the associated orbit map of the
conjugation action. Derive a formula for the differential di(k,): g — Ty(G).

Proof. See [10, Prop.I11.10.1.(c)] or [8, 1.3.16]. i

(12.35) Exercise: Differential of right translation.

Let G be an algebraic group with Lie algebra g, let E < K[G] be a K-subspace
such that n := dimg (F) < oo, which is pj-invariant for all g € G, and let p: G —
GL(E) be the rational representation induced by right multiplication. Identi-
fying T (GL(E)) 2 gl,, with Endg(E), show that di(p): g — Endg(E): v — 7,
where 7 is the right convolution associated to ~.

Proof. See [10, I111.10.2] or [8, Prop.1.3.11]. 1
(12.36) Exercise: Non-split orthogonal groups. '
Let K be an algebraically closed field such that char(K) = p > 0, let q := p/

for some f € N, and let ®, be the standard Frobenius endomorphism on GLy,.
Moreover, let

T := 0 J, 0 e KEm)x(@m),
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Show that T' € Q2 < GlLay,, and that @ : SOy, — SOy,,: A — &, (T~ AT)
is a Frobenius endomorphism on SQOs,,.

The fixed point set SO5,, (Fy) = S@i‘; is called the associated non-split special
orthogonal group.

Hint. Distinguish the cases p =2 and p > 2.
Proof. See [9, Ex.4.1.10.(d)]. i

(12.37) Exercise: Lang map.
Let G be a not necessarily connected algebraic group with Frobenius endomor-
phism ®, and let z € G. Describe the image of £,: G — G: z +— z~12®(x).

Proof. See [8, Thm.V.16.3]. i

(12.38) Exercise: Lang-Steinberg Theorem.

Let K be an algebraically closed field such that char(K) = p > 0, let ¢ := p/ for
some f € N, let G < GL,, be a ®,-invariant connected closed subgroup, let ®
be a Frobenius endomorphism on G such that ®¢ = ®,|g for some d € N, and
let £L: G — G: z+ 27 '®(z) be the Lang map.

a) From G® := {g € G; ®(g) = g} being finite deduce that £ is dominant.

b) Show that K[G] is a finitely generated £*(K[G])-module, i. e. L is finite.

¢) Deduce that L is surjective.

Proof. See [9, Thm.4.1.12]. i

(12.39) Exercise: Conjugacy classes.

a) Let G be a connected algebraic group with Frobenius endomorphism @, let
C C G be a ®-invariant conjugacy class of G, and let g € C such that Cg(g) is
connected. Show that C® C G® is non-empty conjugacy class of G®.

b) Let K be an algebraically closed field such that char(K) = p > 0, let ¢ := p/
for some f € N, let ®, be the standard Frobenius endomorphism on GL,,, and
let A € GL,(F;). Show that Cgr., (A) is connected. In the light of (a), which
well-known fact from linear algebra is recovered?

Hint for (b). Consider {C € K"*"; AC = CA}.
Proof. a) See [11, Exc.3.3.17.(1)]. b) See [9, Ex.4.3.6]. i

(12.40) Exercise: Component groups.

Let G be a connected algebraic group with Frobenius endomorphism ®. Let 2
be a transitive G-set, and let ¢: Q — Q be ®-equivariant. Moreover, let w €
and let H := Stabg(w) < G be closed.

a) Show that ® induces a group homomorphism on the finite component
group C(w) := H/H°.
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b) Show that the ®-conjugacy classes of C(w), i. e. the orbits of the ®-
conjugation action C(w) x C(w) — C(w): [g,h] — h~1g®(h), are in natural
bijection with the G®-orbits in Q¥.

Proof. See [9, 4.3.4, Thm.4.3.5]. i

(12.41) Exercise: Conjugacy classes of SLs.
Let K be an algebraically closed field such that char(K) = p > 0, let ¢ := p/ for
some f € N, let ®, be the standard Frobenius endomorphism on SLs.

Determine the ®-invariant conjugacy classes of SlLo, see also Exercise (12.19).
How do their F,-rational points split into conjugacy classes of SLa(F,), and
into GLo(IF,)-orbits? Determine the associated component groups and their
®-conjugacy classes, see Exercise (12.40).
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