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Abstract

Algebraic groups are analogues of the classical Lie groups, such as the linear, or-
thogonal or symplectic groups, over arbitrary algebraically closed fields. Hence
they are no longer classical manifolds, but varieties in the sense of algebraic
geometry. In particular, they are used in the uniform description of the finite
groups of Lie type, which encompass a substantial part of all finite simple groups.
Subject of the lecture is an introduction to linear algebraic groups. Here, tools
both from group theory as well as from algebraic geometry come into play.
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I Algebraic geometry

1 Affine algebraic varieties

All rings, R say, occurring will be commutative with identity 1 = 1R, unless
otherwise specified. Let K be a field, and let K be an algebraically closed field.

(1.1) Theorem: Hilbert’s Basissatz (1890).
Let R be Noetherian, and let X := {X1, . . . , Xn}, for n ∈ N0, be indeterminates
over R. Then the polynomial ring R[X ] is Noetherian as well.

Proof. See [3, Thm.IV.4.1] or [5, Thm.1.7]. ]

(1.2) Definition. Let X := {X1, . . . , Xn}.
a) Let S ⊆ K[X ]. Then V(S) := {x ∈ Kn; f(x) = 0 for all f ∈ S} is called the
algebraic set defined by S; for polynomial functions see Exercise (11.1).

We have V(S) = V(〈S〉), by Hilbert’s Basissatz there are f1, . . . , fr ∈ S such
that V(S) = V(f1, . . . , fr), and we have V(K[X ]) = ∅ and V(0) = K

n.

b) Let V ⊆ Kn. Then I(V ) := {f ∈ K[X ]; f(x) = 0 for all x ∈ V } E K[X ] is
called the vanishing ideal of V .

We have I(V ) < K[X ] if and only if V 6= ∅, and I(Kn) = {0}. Moreover,
I(V ) =

√
I(V ) is a radical ideal. Here, for any I C R we let

√
I := {f ∈

R; fr ∈ I for some r ∈ N} =
⋂
{P C R prime; I ⊆ P} C R denote the radical

of I, and
√
R := R.

(1.3) Proposition. a) For V ⊆ Kn we have V ⊆ V(I(V )).
b) For I EK[X ] we have I ⊆

√
I ⊆ I(V(I)).

c) Let Λ be an index set. Then for {Vλ ⊆ Kn;λ ∈ Λ} we have I(
⋃
λ∈Λ Vλ) =⋂

λ∈Λ I(Vλ), and for {Iλ EK[X ];λ ∈ Λ} we have V(
∑
λ∈Λ Iλ) =

⋂
λ∈Λ V(Iλ).

d) For I, I ′ EK[X ] we have V(I) ∪ V(I ′) = V(I · I ′) = V(I ∩ I ′).

Proof. See [6, Prop.I.1.1, I.1.2] or [7, Ch.I.2] or Exercise (11.2). ]

(1.4) Theorem: Hilbert’s Nullstellensatz (1890).
Let I, P CK[X ], where I ⊆ P and P is maximal.
a) Weak form. There are x1, . . . , xn ∈ K such that P = 〈X1−x1, . . . , Xn−xn〉,
implying {[x1, . . . , xn]} = V(P ) ⊆ V(I) 6= ∅.
b) Strong form. We have

√
I = I(V(I)).

Proof. See [4, Thm.5.3, 5.4] or [7, Ch.I.1, Thm.I.2.1], or Exercise (11.3) on how
to derive the strong form from the weak form. ]
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(1.5) Corollary. The map

V : {I EK[X ]; I =
√
I} → {V ⊆ Kn algebraic} : I 7→ V(I)

is an inclusion-reversing bijection with inverse map I.

(1.6) Definition and Remark. a) The algebraic sets V(I) ⊆ Kn, for some
I =
√
I EK[X ], are the closed sets of the Zariski topology on Kn.

If V ⊆ Kn is algebraic, then the topology on V induced by the Zariski topology
is also called the Zariski topology.

b) The closure of any V ⊆ Kn with respect to the Zariski topology is given as
V :=

⋂
{W ⊆ Kn closed;V ⊆W} = V(I(V )).

The Zariski topology is Noetherian, i. e. any strictly decreasing chain of closed
subsets is finite, in particular it is quasi-compact, i. e. any open covering has a
finite subcovering. Moreover, it is a T1-space, i. e. singleton subsets are closed.

Algebraic sets, by the induced Zariski topology, are Noetherian and T1 as well.

c) A non-empty Noetherian topological space is called irreducible, if it cannot
be written as the union of two proper closed subsets. Hence in particular an
irreducible topological space is connected, i. e. it cannot be written as the
disjoint union of two proper open and closed subsets.

(1.7) Proposition. Let V 6= ∅ be a Noetherian topological space. Then
there are V1, . . . , Vr ⊆ V , for some r ∈ N, closed and irreducible such that
V =

⋃r
i=1 Vi. If we moreover have Vi 6⊆ Vj , for all i 6= j ∈ {1, . . . , r},

then V1, . . . , Vr are precisely the maximal irreducible closed subsets, hence are
uniquely determined, and are called the irreducible components of V .

Proof. See [6, Prop.I.1.5] or Exercise (11.4). ]

(1.8) Corollary. Let I =
√
I CK[X ] be a radical ideal.

a) Then there are only finitely many prime ideals of K[X ] minimal over I.
b) The algebraic set V(I) ⊆ Kn is irreducible if and only if I is prime.
c) We have I =

⋂
{P CK[X ] maximal; I ⊆ P}, i. e. K[X ] is a Jacobson ring.

(1.9) Definition. a) Let V ⊆ Kn and W ⊆ Km be algebraic. Then a map
ϕ : V → W is called regular, if there are f1, . . . , fm ∈ K[X ] = K[X1, . . . , Xn]
such that ϕ(x) = [f1(x), . . . , fm(x)], for all x ∈ V .

In particular, a regular map is continuous with respect to the Zariski topology;
see Exercise (11.5). Let Hom(V,W ) be the set of all regular maps from V to
W .

b) In particular, Hom(V,K) is a K-algebra, called the algebra of regular
functions on V . We have a K-algebra epimorphism

K[X ]→ Hom(V,K) : f 7→ (f• : V → K : x 7→ f(x)),
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whose kernel equals I(V ). We have K[V ] := K[X ]/I(V ) ∼= Hom(V,K) as K-
algebras, where K[V ] is called the affine coordinate algebra of V .

Since I(V ) =
√
I(V ) the K-algebra K[V ] is reduced, i. e. K[V ] does not

possess nilpotent elements, and K[V ] is a domain if and only if V is irreducible.

c) The algebraic set V together with its Zariski topology and its affine coordinate
algebra K[V ] is called an affine (algebraic) variety over K. Together with
the regular maps as morphisms this defines the category of affine varieties
over K; see also Exercise (11.6).

(1.10) Theorem. a) For affine varieties V,W there is a bijection

Hom(V,W )→HomK−algebra(K[W ],K[V ]) : ϕ 7→ (ϕ∗ : K[W ]→K[V ] : f 7→ f ◦ ϕ).

The K-algebra homomorphism ϕ∗ is called the comorphism associated to ϕ.
b) Assigning V 7→ K[V ] and ϕ 7→ ϕ∗ yields an anti-equivalence from the cat-
egory of affine varieties over K to the category of reduced finitely generated
K-algebras together with K-algebra homomorphisms.

Proof. See [7, Prop. I.3.1, I.3.2]. ]

(1.11) Example. See Exercises (11.7) and (11.8).
a) Let y = [y1, . . . , yn] ∈ Kn. Then εy : {y} → K

n : y 7→ y is a morphism,
and ε∗y : K[X1, . . . , Xn] → K : Xi 7→ yi is the evaluation map at y. Similarly,
νy : Kn → {y} : x 7→ y is a morphism, and ν∗y : K → K[X1, . . . , Xn] : 1K 7→
1K[X1,...,Xn] is the natural embedding. This yields εyνy : Kn → K

n : x 7→ y and
(εyνy)∗ = ν∗yε

∗
y : K[X1, . . . , Xn]→ K[X1, . . . , Xn] : Xi 7→ yi.

b) Let ϕ : K2 → K
2 : [x, y] 7→ [xy, y]. Then ϕ is a morphism, and we have

ϕ∗ : K[X,Y ] → K[X,Y ] : X 7→ XY, Y 7→ Y . Moreover, we have ϕ(K2) =
{[0, 0]}

.
∪ (K× (K \ {0})) ⊆ K2, which is neither open nor closed.

c) Let char(K) = p > 0 and q := pf for some f ∈ N. Then the geomet-
ric Frobenius map Φq : K → K : x 7→ xq is a bijective morphism, and we
have Φ∗q : K[X] → K[X] : X 7→ Xq. Since Φ∗q is not surjective, Φq is not an
isomorphism of affine varieties.

(1.12) Theorem. Let V,W be affine varieties over K. Then the Cartesian
product V ×W again is an affine variety such that K[V ×W ] ∼= K[V ]⊗KK[W ].

This is a direct product in the category of affine varieties over K. Moreover,
V ×W is irreducible if and only if both V and W are.

Proof. See [7, Prop.I.6.1] or [11, Thm.1.5.4] or [10, Prop.I.1.4, I.2.4], and also
Exercise (11.9). ]



I Algebraic geometry 4

(1.13) Definition. Let V be an affine variety, and let 0 6= f ∈ K[V ]. Then
the set Vf := {x ∈ V ; f(x) 6= 0} 6= ∅ is called the associated principal or
elementary open subset, which since Vf = V \ V(f) ⊆ V is indeed open in V .

The set {Vf ⊆ V ; 0 6= f ∈ K[V ]} is a basis of the Zariski topology on V ; see
Exercise (11.10).

(1.14) Remark. a) Let V be an affine variety, and let 0 6= f ∈ K[V ]. We
consider the localisation K[V ]f of K[V ] at the multiplicative set {fr ∈
K[V ]; r ∈ N0}, i. e. the set of equivalence classes of fractions g

fr , where g ∈
K[V ] and r ∈ N0, with respect to the equivalence relation g

fr = g′

fs if and only
if there is t ∈ N0 such that (gfs − g′fr)f t = 0 ∈ K[V ]; see Exercise (11.12).

Then K[V ]f = K〈 1
f ,

g
1 ; g ∈ K[V ]〉 is a finitely generated K-algebra. Moreover,

K[V ]f is reduced: If ( g
fr )s = 0 ∈ K[V ]f , for some s ∈ N, then we have gsf t =

0 ∈ K[V ], for some t ∈ N0, which since K[V ] is reduced implies gf = 0 ∈ K[V ],
thus g

1 = 0 ∈ K[V ]f and g
fr = 0 ∈ K[V ]f .

b) Hence there is an affine variety Ṽf associated to K[V ]f , and we show that Ṽf
can be identified with Vf : We have the natural homomorphism of K-algebras
ϕ∗f : K[V ] → K[V ]f : g 7→ g

1 , hence a morphism ϕf : Ṽf → V . The inclusion-
preserving bijection (ϕ∗f )−1 : {P C K[V ]f prime} → {Q C K[V ] prime; f 6∈ Q},
see Exercise (11.12), yields a bijection (ϕ∗f )−1 : {P C K[V ]f maximal} → {Q C
K[V ] maximal; f 6∈ Q}, i. e. we have a bijection ϕf : Ṽf → Vf .

We have a bijection (ϕ∗f )−1 : {I =
√
I C K[V ]f} → {J =

√
J C K[V ]; f 6∈ J}.

Since the non-empty closed subsets of Vf , with respect to the topology induced
by the embedding Vf ⊆ V , are the sets V(J) ∩ Vf , for some J =

√
J C K[V ]

such that f 6∈ J , we conclude that ϕf : Ṽf → Vf is a homeomorphism. ]

Hence ϕf carries the structure of an affine variety from Ṽf to Vf , whose Zariski
topology coincides with the topology induced by the embedding Vf ⊆ V . The set
Vf is also called an affine open subset, by definition we have an isomorphism
of K-algebras K[V ]f → K[Vf ] : g

1 7→ g|Vf , 1
f 7→

1
f |Vf

. The inclusion map Vf ⊆ V
is a morphism, whose associated comorphism is K[V ]→ K[Vf ] : g 7→ g|Vf .

Not all open subsets of an affine variety can be endowed with the structure of
an affine variety compatible with the given affine variety and its affine open
subsets, see Exercise (11.11).

(1.15) Proposition. Let V be an affine variety, let 0 6= f ∈ K[V ] and let V̂f :=
{[v, y] ∈ Vf ×K; f(v)y = 1}. Then the projection map πf : V̂f → Vf : [v, y] 7→ v
is an isomorphism of affine varieties, whose associated comorphism yields

K[Vf ] ∼= K[V̂f ] ∼= K[V ][Y ]/〈fY − 1〉 =: K[V ]〈f−1〉.
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Proof. Let V ⊆ K
n. Then V̂f = {[v, y] ∈ V × K; f(v)y − 1 = 0} ⊆ K

n ×
K = K

n+1 is algebraic. We have 〈fY − 1〉 ⊆ I(V̂f ) C K[V ][Y ]. Conversely,
let g =

∑r
i=0 giY

i ∈ I(V̂f ), where gi ∈ K[V ]. Letting h :=
∑r
i=0 gif

r−i ∈
K[V ], we obtain gfr+1 = f ·

∑r
i=0 gif

r−i(fY )i ≡ fh (mod 〈fY − 1〉). Since
gfr+1 ∈ I(V̂f ), this implies fh ∈ I(V̂f ) ∩ K[V ]. For v ∈ V \ Vf we have
f(v) = 0, while for v ∈ Vf we have f(v) 6= 0 and hence h(v) = 0. Thus we
have fh = 0 ∈ K[V ] ⊆ K[V ][Y ], implying g ≡ gfr+1Y r+1 ≡ fhY r+1 ≡ 0
(mod 〈fY − 1〉), and K[V̂f ] ∼= K[V ][Y ]/〈fY − 1〉.
Since for g ∈ K[V ] we have π∗f (g|Vf ) : [v, y] 7→ g(v), and π∗f ( 1

f |Vf
) : [v, y] 7→

1
f(v) = y, we conclude that indeed π∗f : K[Vf ] → K[V̂f ], i. e. πf is a morphism.

Moreover, πf is bijective, hence π∗f is injective, and from Y = 1
f ∈ K[V̂f ] we

conclude that π∗ is surjective, thus π is an isomorphism of affine varieties. ]

2 Morphisms

(2.1) Definition. a) Let R 6= {0} be a ring, and let P C R be prime. The
supremum of the lengths r ∈ N0 of chains P0 ⊂ P1 ⊂ · · · ⊂ Pr = P of prime
ideals Pi CR is called the height ht(P ) ∈ N0

.
∪ {∞} of P . If R is Noetherian,

by (2.2) we have ht(P ) ∈ N0.

Moreover, dim(R) := sup{ht(P );P C R prime} ∈ N0

.
∪ {∞} is called the

(Krull) dimension of R. For a Noetherian ring having infinite dimension
see Exercise (11.14).

b) For I C R let the dimension dim(I) := dim(R/I) ∈ N0

.
∪ {∞} and the

height ht(I) := min{ht(P ); I ⊆ P CR prime} ∈ N0

.
∪ {∞}.

We have dim(I) ≤ dim(R) and dim(I) + ht(I) ≤ dim(R).

(2.2) Theorem: Krull’s Hauptidealsatz (1928).
Let R be Noetherian, let f1, . . . , fr ∈ R, for some r ∈ N, and let P C R be a
minimal prime over 〈f1, . . . , fr〉. Then we have ht(P ) ≤ r.

Proof. See [4, Thm.13.5] or [5, Thm.6.8]. ]

(2.3) Lemma: Prime avoidance.
Let R be a ring, let P1, . . . , Pn C R be prime, for some n ∈ N, and let I C R
such that I ⊆

⋃n
i=1 Pi. Then there is i ∈ {1, . . . , n} such that I ⊆ Pi.

Proof. See [4, Exc.1.6] or [5, La.6.3]. ]

(2.4) Theorem. Let R be Noetherian and P CR be prime such that ht(P ) =
r ∈ N. Then there are f1, . . . , fr ∈ R such that P is a minimal prime over I :=
〈f1, . . . , fr〉CR, and for any minimal prime P ′ CR over I we have ht(P ′) = r.



I Algebraic geometry 6

Proof. By induction, quotiening out 〈f1, . . . , fr−1〉 C R, we may assume that
r = 1. Since the Zariski topology on the prime spectrum Spec(R) :=
{P CR prime} is Noetherian, there are only finitely many minimal prime ideals
Q1, . . . , QsCR, for some s ∈ N. Since ht(P ) = 1 we have P 6∈ {Q1, . . . , Qs}, thus
by prime avoidance there is f ∈ P \

⋃s
i=1Qi. Hence P is a minimal prime over

〈f〉CR, and for any minimal prime P ′CR over 〈f〉 we have P ′ 6∈ {Q1, . . . , Qs},
by Krull’s Hauptidealsatz implying ht(P ′) = 1. ]

(2.5) Theorem: Cohen-Seidenberg (1946).
Let R ⊆ S be an integral ring extension.
a) Let P C R be prime. Then there is a prime ideal QC S (lying over) such
that Q ∩ R = P . Moreover, if J C S is any ideal such that J ∩ R ⊆ P , then Q
can be chosen (going up) such that J ⊆ Q.
b) Let Q 6= Q′ C S be prime such that Q ∩ R = Q′ ∩ R. Then we have
(incomparability) Q 6⊆ Q′ 6⊆ Q.

Proof. See [4, Thm.9.3] or [5, Thm.6.9]. ]

(2.6) Theorem. Let R := K〈f1, . . . , fr〉 for some r ∈ N0.
a) We have dim(R) ≤ r, and dim(R) = r holds if and only if {f1, . . . , fr} ⊆ R
is algebraically independent over K.
b) Let additionally R be a domain. Then we have dim(R) = trdegK(Q(R)),
where Q(R) denotes the field of fractions of R.

Proof. See [4, Thm.5.6] or [5, Cor.7.3, 7.5]. ]

(2.7) Theorem: Refined Noether normalisation.
Let R := K〈f1, . . . , fr〉, for some r ∈ N0, and let I1 ⊂ · · · ⊂ Is ⊂ R, for some
s ∈ N0, be ideals such that n > n1 > · · · > ns ≥ 0, where n := dim(R) and
nk := dim(Ik). Then there is {X1, . . . , Xn} ⊆ R algebraically independent over
K, such that S := K[X1, . . . , Xn] ⊆ R is a finite ring extension, i. e. R is
a finitely generated S-algebra and integral over S, and such that Ik ∩ S =
〈Xnk+1, . . . , Xn〉C S, for k ∈ {1, . . . , s}. Moreover, if K is infinite then we may
choose Xi ∈ 〈f1, . . . , fr〉K , for i ∈ {1, . . . , n}.

Proof. For infinite fields by Noether (1926), for finite fields by Zariski (1943),
and the refined version, actually involving only a single ideal, by Nagata (1962).

See [1, Thm.II.13.3] or [5, Thm.7.4]. ]

(2.8) Theorem. Let R := K〈f1, . . . , fr〉 be a domain, where r ∈ N0, and let
I CR. Then we have dim(I) + ht(I) = dim(R).

This implies that R is catenary, i. e. given prime ideals P ⊆ Q C R, then
for all maximal chains P = P0 ⊂ · · · ⊂ Pr = Q of prime ideals we have
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r = ht(Q) − ht(P ), see Exercise (11.16). The assumption R being a domain is
cannot be dispensed of, see Exercise (11.15).

Proof. It suffices to show the assertion for Q C R prime, and we may assume
Q 6= {0}, implying that dim(Q) < dim(R). Let S := K[X1, . . . , Xn] ⊆ R
be a Noether normalisation such that P := Q ∩ S = 〈Xm+1, . . . , Xn〉 C S,
where n := dim(R) = dim(S) and m := dim(Q). By the Cohen-Seidenberg
Theorem, see also Exercise (11.13), we have dim(P ) = dim(Q) and ht(P ) =
ht(Q). Moreover, we have dim(P ) = dim(S/P ) = dim(K[X1, . . . , Xm]) = m,
and it is immediate that ht(P ) ≥ n−m, hence n = dim(S) ≥ dim(P )+ht(P ) ≥ n
implies dim(P ) + ht(P ) = n. ]

(2.9) Definition and Remark. a) Let V 6= ∅ be an affine variety. Then
dim(V ) := dim(K[V ]) ∈ N0 is called the dimension of V .

We have dim(V ) = max{dim(W );W ⊆ V irreducible component}. For the
dimension 0 case, and the dimension of direct products, see Exercise (11.17).

b) Let V be irreducible. Then for any ∅ 6= W ⊂ V closed we have ht(I(W )) > 0
and thus dim(W ) = dim(K[W ]) = dim(K[V ]/I(W )) < dim(K[V ]) = dim(V ).

If W ⊂ V is closed and irreducible such that dim(W ) = dim(V )− 1, then there
is 0 6= f ∈ K[V ] \ K[V ]∗ such that W is an irreducible component of the hy-
persurface V(f) ⊆ V ; for the question when W is a hypersurface see Exercise
(11.17). Conversely, for any 0 6= f ∈ K[V ]\K[V ]∗ Krull’s Hauptidealsatz implies
that V(f) ⊆ V has equidimension dim(V )−1, i. e. all irreducible components
of V(f) have dimension dim(V )− 1.

Let 0 6= f ∈ K[V ]. We have K[V ] ⊆ K[V ]f ⊆ K(V ), where the field of fractions
K(V ) := Q(K[V ]) is called the field of rational functions on V . Hence we
have dim(V ) = dim(K[V ]) = trdeg

K
(K(V )) = dim(K[V ]f ) = dim(Vf ).

c) Let again V 6= ∅ be arbitrary. A morphism of affine varieties ϕ : V → W is
called finite, if ϕ∗(K[W ]) ⊆ K[V ] is a finite ring extension; see also Exercise
(11.18) and the example in Exercise (11.19).

E. g. let K[X ] = K[X1, . . . , Xn] ⊆ K[V ] be a Noether normalisation, where
n := dim(V ), and let ϕ∗ : K[X ] → K[V ] be the natural embedding of K-
algebras. Hence the associated morphism ϕ : V → K

n is finite and dominant,
i. e. ϕ(V ) ⊆ Kn is dense; see Exercise (11.7).

(2.10) Proposition. Let V,W be affine varieties and let ϕ : V →W be a finite
morphism. Let Z ⊆ W be closed, and let ∅ 6= U ⊆ ϕ−1(Z) be closed. Then
ϕ|U : U → Z is finite and ϕ(U) ⊆ Z is closed.

Proof. Let R := K[V ] and S := K[W ], hence ϕ∗(S) ⊆ R is a finite ring
extension. Letting I := I(U) =

⋂
{I(x);x ∈ U} C R we get J := (ϕ∗)−1(I) =⋂

{(ϕ∗)−1(I(x));x ∈ U} =
⋂
{I(ϕ(x));x ∈ U} = I(ϕ(U)) C S. Hence we
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have ϕ(U) ⊆ ϕ(U) = V(J) ⊆ Z ⊆ W , and the comorphism associated to

ϕ|U : U → Z is the homomorphism of K-algebras S/I(Z)→ S/J
ϕ∗→ R/I , where

S/I(Z) → S/J is the natural epimorphism and ϕ∗ : S/J → R/I is injective.
Since ϕ∗(S/J) ⊆ R/I is a finite ring extension, we conclude that ϕ|U : U → Z
is finite. Given QCS/J maximal, by the Cohen-Seidenberg Theorem there is a
maximal ideal of R/I lying over ϕ∗(Q). Hence ϕ|U : U → V(J) is surjective. ]

(2.11) Theorem. Let V,W be irreducible affine varieties and let ϕ : V → W
be a dominant morphism. Let Z ⊆ W be closed and irreducible, and let U ⊆
ϕ−1(Z) 6= ∅ be an irreducible component such that ϕ|U : U → Z is dominant.
Then we have dim(U)− dim(Z) ≥ dim(V )− dim(W ) ≥ 0.

In particular, for any x ∈ V any irreducible component of the fibre ϕ−1(ϕ(x)) ⊆
V has dimension ≥ dim(V )−dim(W ); see also the example in Exercise (11.19).

Proof. We have an injective homomorphism of K-algebras ϕ∗ : K[W ]→ K[V ],
and hence dim(K[W ]) = trdeg

K
(K(W )) ≤ trdeg

K
(K(V )) = dim(K[V ]).

We may assume that Z 6= W , hence r := dim(W )−dim(Z) ∈ N. Let f1, . . . , fr ∈
K[W ] such that Z is an irreducible component of V(f1, . . . , fr) ⊆ W . Letting
gi := ϕ∗(fi) ∈ K[V ], for i ∈ {1, . . . , r}, we conclude that U ⊆ V(g1, . . . , gr) ⊆
V , and there is an irreducible component U0 ⊆ V(g1, . . . , gr) such that U ⊆
U0. Thus we have Z = ϕ(U) ⊆ ϕ(U0) ⊆ ϕ(V(g1, . . . , gr)) ⊆ V(f1, . . . , fr) =
V(f1, . . . , fr), implying Z = ϕ(U0), hence U ⊆ U0 ⊆ ϕ−1(Z) and thus U = U0.
Since V is irreducible by Krull’s Hauptidealsatz we get dim(U) = dim(U0) =
dim(V )− ht(I(U0)) ≥ dim(V )− r = dim(V )− dim(W ) + dim(Z). ]

(2.12) Proposition. Let V,W be irreducible affine varieties and let ϕ : V →W
be a dominant morphism. Then there is 0 6= f ∈ K[W ] such that we have

ϕ|Vϕ∗(f) : Vϕ∗(f)
ϕ0−→Wf ×Kr

π1−→Wf ,

where ϕ0 : Vϕ∗(f) →Wf ×Kr is a finite dominant morphism, hence is surjective,
r := dim(V )−dim(W ) ∈ N0, and π1 : Wf ×Kr →Wf is the natural projection.

Proof. We may consider S := K[W ] ⊆ K[V ] =: R as an extensions of domains.
Let K ⊆ F := Q(S) ⊆ E := Q(R) and F ⊆ T := { gh ∈ E; g ∈ R, 0 6= h ∈ S} ⊆
E. Since R is a finitely generated S-algebra, we conclude that T is a finitely
generated F -algebra, and we have trdegF (Q(T )) = trdegF (E) = trdeg

K
(E) −

trdeg
K

(F ) = r. By Noether normalisation there is Z = {z1, . . . , zr} ⊆ R and
z ∈ S, such that Z ⊆ T is algebraically independent over F and such that
F [ 1

z · Z] ⊆ T is integral. Letting g ∈ R, then g is integral over F [ 1
z · Z]. From

this it is immediate that there is 0 6= h ∈ S such that g is integral over Sh[Z].
Hence it is also immediate that there is 0 6= f ∈ S such that all elements of a
finite S-algebra generating set of R are integral over Sf [Z], which implies that
R and thus Rf are integral over Sf [Z].
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Hence from the ring extension Sf ⊆ Rf we get a embedding of K-algebras
ϕ∗0 : Sf [Z1, . . . , Zr] → Rf : Zi 7→ zi, where {Z1, . . . , Zr} is algebraically inde-
pendent over F , such that im(ϕ∗0) ⊆ Rf is finite. Since Rf and Sf as well
as Sf [Z1, . . . , Zr] are the affine coordinate algebras of Vϕ∗(f) and Wf as well
as Wf × Kr, respectively, associated to ϕ∗0 there is a finite dominant mor-
phism ϕ0 : Vϕ∗(f) → Wf ×Kr. Moreover, the natural embedding of K-algebras
Sf ⊆ Sf [Z1, . . . , Zr] yields the natural projection π1 : Wf ×Kr →Wf as associ-
ated morphism. And finally the concatenation ϕ∗0π

∗
1 : Sf → Rf is the embedding

induced by ϕ∗, hence we have π1ϕ0 = ϕ|Vf . ]

(2.13) Theorem. Let V,W be irreducible affine varieties and let ϕ : V → W
be a dominant morphism.
a) For any ∅ 6= U ⊆ V open there is ∅ 6= Z ⊆W open such that Z ⊆ ϕ(U).
b) There is ∅ 6= Z ⊆W open such that Z ⊆ ϕ(V ) and such that dim(ϕ−1(y)) =
dim(V )− dim(W ) for all y ∈ Z.

Proof. Let r := dim(V ) − dim(W ) and 0 6= f ∈ K[W ] such that we have a
factorisation ϕ|Vf = π1ϕ0 : Vϕ∗(f) →Wf ×Kr →Wf as in (2.12).
a) For the case U = V , since ϕ0 and π1 are surjective, we have Z := Wf ⊆ ϕ(V ).
Now it suffices to show the assertion for a basis of the Zariski topology on V ,
hence let U = Vg ⊆ V be a principal open subset, where 0 6= g ∈ K[V ]. Then
ϕ|Vg : Vg →W corresponds to the embedding of K-algebras ϕ∗ : K[W ]→ K[V ]g,
hence still is a dominant morphism of irreducible affine varieties, thus ϕ(Vg)
contains a non-empty open subset of W .
b) We show that Z := Wf is as desired: Let y ∈Wf and let U1, . . . , Us ⊆ ϕ−1(y)
be the irreducible components of ϕ−1(y). From ϕ−1(Wf ) = Vϕ∗(f) we conclude
that ϕ−1(y) = ϕ−1

0 ({y} ×Kr) and hence ϕ0|Ui : Ui → {y} ×Kr is finite, for all
i ∈ {1, . . . , s}. Thus ϕ0|∗Ui(K[{y}×Kr]) ⊆ K[Ui] being a finite ring extension we
get dim(Ui) = dim(ϕ0|∗Ui(K[{y} × Kr])) ≤ dim({y} × Kr) = r. Since {y} × Kr
is irreducible such that ϕ0(ϕ−1(y)) = {y} × Kr, and im(ϕ0|Ui) ⊆ {y} × Kr is
closed and irreducible, we infer that there is j ∈ {1, . . . , s} such that ϕ0|Uj is
surjective, implying that ϕ0|∗Uj is injective and dim(Uj) = r. ]

(2.14) Corollary. Let V,W be affine varieties and let ϕ : V → W be a mor-
phism. Then there is Z ⊆ ϕ(V ) open and dense such that Z ⊆ ϕ(V ).

Proof. See Exercise (11.20).
We may assume that V 6= ∅ and ϕ is dominant. Let V =

⋃r
i=1 Vi be the

irreducible components of V , for some r ∈ N. Letting Wi := ϕ(Vi) ⊆ W , for
i ∈ {1, . . . , r}, we have

⋃r
i=1Wi = ϕ(V ) = W , and there are Zi ⊆ W open

such that ∅ 6= Zi ∩ Wi ⊆ ϕ(Vi), in particular Zi ∩ Wi ⊆ Wi is dense. Let
Ui := Zi ∩

⋂
j 6=i(W \Wj) ⊆ W open, hence Ui ⊆ Zi ∩Wi ⊆ ϕ(Vi) ⊆ Wi. If

Ui 6= ∅ then Ui = Wi, while if Ui = ∅ then Zi ∩Wi ⊆ Zi ⊆
⋃
j 6=iWj , implying
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that Wi = Zi ∩Wi ⊆
⋃
j 6=iWj anyway. Hence

⋃r
i=1 Ui ⊆ ϕ(V ) ⊆ W is open

and
⋃r
i=1 Ui =

⋃r
i=1 Ui =

⋃r
i=1Wi = W . ]

For more details on images of morphisms, in particular Chevalley’s Theorem
(1955), see Exercises (11.20) and (11.21) as well as (11.22) and (11.23). For an
application of the dimension formulas see Exercise (11.24).

3 Derivations

(3.1) Definition and Remark. a) Let R be a ring, A be an R-algebra, and
M be an A-module. An R-linear map δ : A → M obeying the product rule
δ(ab) = δ(a)b+ δ(b)a, for a, b ∈ A, is called an R-derivation of A with values
in M . The set DerR(A,M) := {δ : A→M R-derivation} becomes an A-module
via δc : a 7→ δ(a)c, for all c ∈ A.

In particular, δ ∈ DerR(A,M) is uniquely determined by its values on an R-
algebra generating set of A. Moreover, from δ(1) = δ(1 · 1) = δ(1) + δ(1) we get
δ(1) = 0, and thus for a ∈ A∗ we obtain 0 = δ(1) = δ(aa−1) = δ(a)a−1+δ(a−1)a,
implying the quotient rule δ(a−1) = −δ(a)a−2.

b) An R-module A together with an R-bilinear map [·, ·] : A×A→ A such that
[a, a] = 0, and such that the Jacobi identity [[a, b], c] + [[b, c], a] + [[c, a], b] = 0
holds, for all a, b, c ∈ A, is called a Lie (R-)algebra.

E. g. any non-commutative associative R-algebra becomes a Lie algebra with
respect to [a, b] := ab− ba, where we only have to check the Jacobi identity: We
have [[a, b], c] + [[b, c], a] + [[c, a], b] = (ab− ba)c− c(ab− ba) + (bc− cb)a−a(bc−
cb) + (ca− ac)b− b(ca− ac) = 0.

c) Considering A as the regular A-module, DerR(A,A) becomes a Lie algebra
with respect to [δ, δ′] := δδ′− δ′δ: Since EndR(A) is a Lie algebra, we only have
to show that the Lie product restricts to DerR(A,A) ⊆ EndR(A): We have
[δ, δ′](ab) = δδ′(ab)−δ′δ(ab) = δ(δ′(a)b+aδ′(b))−δ′(δ(a)b+aδ(b)) = (δδ′(a)b+
δ′(a)δ(b)) + (aδδ′(b) + δ(a)δ′(b))− (δ′δ(a)b+ δ(a)δ′(b))− (aδ′δ(b) + δ′(a)δ(b)) =
(δδ′(a)b− δ′δ(a)b) + (aδδ′(b)− aδ′δ(b)) = [δ, δ′](a)b+ a[δ, δ′](b), for all a, b ∈ A.

Moreover, for δ ∈ DerR(A,A) and n ∈ N we have the Leibniz rule δn(ab) =∑n
i=0

(
n
i

)
δi(a)δn−i(b): This by definition holds for n = 1, and by induction

n ∈ N we get δn+1(ab) =
∑n
i=0

(
n
i

)
δ(δi(a)δn−i(b)) =

∑n
i=0

(
n
i

)
(δi+1(a)δn−i(b) +

δi(a)δn−i+1(b)) =
∑n+1
i=1

(
n
i−1

)
δi(a)δn+1−i(b) +

∑n
i=0

(
n
i

)
δi(a)δn+1−i(b), which

yields δn+1(ab) =
∑n+1
i=0

(
n+1
i

)
δi(a)δn+1−i(b). The Leibniz rule implies that for

char(K) = p > 0 the Lie-algebra DerK(A,A) is restricted, see Exercise (12.28).

d) Let X := {X1, . . . , Xn} be indeterminates over R. For i ∈ {1, . . . , n} let
∂i : R[X ] → R[X ] : f 7→ ∂f

∂Xi
be the partial derivative with respect to Xi. It

is immediate that ∂i ∈ DerR(R[X ], R[X ]). See also Exercise (11.26).

Let M be an R[X ]-module, and let v ∈ M . For i ∈ {1, . . . , n} let ∂•i (v) ∈
HomR(R[X ],M) be defined by f 7→ v∂i(f). Since ∂•i (v)(fg) = v∂i(fg) =
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v(∂i(f)g + f∂i(g)) = ∂•i (v)(f) · g + ∂•i (v)(g) · f , for all f, g ∈ R[X ], we have
∂•i (v) ∈ DerR(R[X ],M). Since any δ ∈ DerR(R[X ],M) is uniquely determined
by δ(X1), . . . , δ(Xn) ∈ M , we get δ =

∑n
i=1 ∂

•
i (δ(Xi)) : f 7→

∑n
i=1 δ(Xi)∂i(f).

In particular, we infer that {∂1, . . . , ∂n} ⊆ DerR(R[X ], R[X ]) is an R[X ]-basis.

For x ∈ Rn the evaluation map ε∗x : R[X ]→ R : f 7→ f(x) induces aR[X ]-module
structure on R, which is denoted by Rx. For ∂•i (x) : R[X ] → R : f 7→ ∂i(f)(x),
where i ∈ {1, . . . , n}, it is immediate that ∂•i (x) ∈ DerR(R[X ], Rx). Letting
∂x : R[X ]→ R[X ]1 : f 7→

∑n
i=1Xi · ∂•i (x)(f) =

∑n
i=1Xi · ∂i(f)(x) be the total

differential at x, it is immediate that ∂x ∈ DerR(R[X ], R[X ]1,x). For all t ∈ Rn
we have the Taylor expansion f(x+ tY ) = f(x)+∂x(f)(t) ·Y +g ·Y 2 ∈ R[Y ],
for some g ∈ R[Y ], where Y is an indeterminate over R.

For a treatment using Kähler differentials see [11, Ch.3.2] or [8, Ch.AG.15].

(3.2) Definition and Remark. a) Let V be an affine variety with affine
coordinate algebra K[V ], and let Px CK[V ] be the maximal ideal associated to
x ∈ V . Again the evaluation map ε∗x : K[V ]→ K : f 7→ f(x), whose kernel is Px,
induces a K[V ]-module structure on K, which is denoted by Kx.

The localisationOx = OV,x := K[V ]Px := K[V ]K[V ]\Px is called the local ring of
V at x. We have the K-algebra homomorphism νx = νV,x : K[V ]→ Ox : f 7→ f

1 ,
see Exercise (11.12). In general, νx is not necessarily injective; but if K[V ] is an
integral domain, i. e. if V is irreducible, we have K[V ] ⊆ Ox ⊆ K(V ).

We have an inclusion-preserving bijection {Q C K[V ] prime;Q ⊆ Px} → {Q C
Ox prime} : Q 7→ QPx with inverse map Q 7→ ν−1

x (Q). Hence Ox is a local
ring with unique maximal ideal Px = PV,x := (Px)Px COx. Since the elements
of K[V ] \ Px act invertibly on Kx, by the universal property of localisations
we get a K-algebra epimorphism Ox → K, hence Ox has residue class field
Ox/Px ∼= K, and Kx becomes an Ox-module, where the K[V ]-action is recovered
by restriction through νx.

b) If x is only contained in a single irreducible component W ⊆ V , we may
reduce to the irreducible case as follows: Letting P := I(W ) C K[V ] be the
associated prime ideal, we infer that PPx C Ox is the unique minimal prime
ideal, which since Ox is Noetherian is nilpotent.

Since for the K-algebra homomorphism νV,W,x : K[V ] → K[W ] ∼= K[V ]/P →
(K[V ]/P )Px/P ∼= OW,x we have νV,W,x(K[V ]\Px) ⊆ O∗W,x, by the universal prop-
erty of localisations we have a K-algebra epimorphism ν̂V,W,x : Ox = K[V ]Px →
OW,x. Since OW,x ⊆ K(W ) is a domain, ker(ν̂V,W,x) C Ox is prime, which by
the description of the prime ideals in Ox implies ker(ν̂V,W,x) = PPx . Hence we
conclude Ox/PPx ∼= OW,x, and in particular we have dim(Ox) = dim(OW,x).

c) For 0 6= f ∈ K[V ] let Vf ⊆ V be the associated principal open subset, and
let ϕ∗f : K[V ] → K[V ]f ∼= K[Vf ] : g 7→ g

1 be the associated natural map, where
ϕf : Vf → V is the inclusion map, see (1.14). For x ∈ Vf we have f 6∈ PxCK[V ],
and thus Ox := K[V ]Px ∼= (K[V ]f )(Px)f =: OVf ,x, see Exercise (11.12), where
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the isomorphism is induced by ϕ∗f .

(3.3) Definition. Let V be an affine variety and x ∈ V . The Ox/Px-module
T ∗x (V ) := Px/P2

x becomes a K-vector space, called the cotangent-tangent
space of V at x. Since PxCOx is finitely generated we have dimK(T ∗x (V )) <∞.

Its K-dual space Tx(V ) := (T ∗x (V ))∗ = (Px/P2
x)∗ := HomK(Px/P2

x,K) is called
the tangent space of V at x. The latter becomes an Ox-module via Ox →
Ox/Px ∼= K, which is denoted by the subscript in HomK(Px/P2

x,Kx).

In particular, if x is only contained in a single irreducible component W ⊆ V ,
we have T ∗x (V ) = Px/P2

x
∼= PW,x/P2

W,x = T ∗x (W ), and thus Tx(V ) ∼= Tx(W ).
Moreover, for 0 6= f ∈ K[V ] we have T ∗x (V ) = Px/P2

x
∼= PVf ,x/P2

Vf ,x
= T ∗x (Vf ),

and thus Tx(V ) ∼= Tx(Vf ).

(3.4) Proposition. Let V be an affine variety and let x ∈ V .
a) Restriction to Px yields an isomorphism of Ox-modules DerK(Ox,Kx) →
HomK(Px/P2

x,Kx). Similarly, restriction to Px yields an isomorphism of K[V ]-
modules DerK(K[V ],Kx)→ HomK(Px/P 2

x ,Kx).
b) The map ν∗x : DerK(Ox,Kx) → DerK(K[V ],Kx) : δ 7→ δνx is an isomorphism
of K-vector spaces; see also Exercise (11.25).

Proof. a) We only prove the first assertion, the second one follows similarly:
Let δ ∈ DerK(Ox,Kx). Then for f, g ∈ Px we have δ(fg) = δ(f)g(x) +
f(x)δ(g) = 0, hence P2

x ⊆ ker(δ), thus δ|Px ∈ HomK(Px/P2
x,Kx) is well-defined.

Since δ(1) = 0 and Ox = K ·1⊕Px as K-vector spaces, δ is uniquely determined
by δ|Px , implying that the restriction map is injective.

Conversely, for δ̃ ∈ HomK(Px/P2
x,Kx) let δ ∈ HomK(Ox,Kx) be defined by

δ(α+ f) := δ̃(f), where α ∈ K and f ∈ Px. Then for α, β ∈ K and f, g ∈ Px we
have δ((α+ f)(β + g)) = δ(αβ + αg + fβ + fg) = αδ̃(g) + δ̃(f)β = (α+ f)(x) ·
δ(β + g) + δ(α+ f) · (β + g)(x), hence δ ∈ DerK(Ox,Kx).

b) Any K-derivationOx → Kx by the quotient rule is uniquely determined by its
values on νx(K[V ]), hence ν∗x is injective. Moreover, given δ ∈ DerK(K[V ],Kx),
we let δ̂( fg ) := δ(f)

g(x) −
f(x)δ(g)
g(x)2 ∈ Kx, for f ∈ K[V ] and g ∈ K[V ] \ Px. We

show that this is well-defined; it is immediate then that δ̂ ∈ DerK(Ox,Kx) and
ν∗x(δ̂) = δ, implying that ν∗x is surjective as well:

Let f ′ ∈ K[V ] and g′, h ∈ K[V ] \ Px such that (fg′ − f ′g)h = 0. This implies
fg′ − f ′g ∈ Px as well as δ(fg′) · h(x) + (fg′)(x) · δ(h) = δ(fg′h) = δ(f ′gh) =
δ(f ′g)·h(x)+(f ′g)(x)·δ(h), hence (δ(f ′g)−δ(fg′))·h(x) = (fg′−f ′g)(x)·δ(h) = 0
and thus δ(f ′)g(x) + f ′(x)δ(g) = δ(f ′g) = δ(fg′) = δ(f)g′(x) + f(x)δ(g′),
hence δ(f ′)

g′(x) −
f ′(x)δ(g′)
g′(x)2 = δ(f ′)

g′(x) −
f(x)δ(g′)
g(x)g′(x) = δ(f ′)

g′(x) −
δ(f ′)g(x)+f ′(x)δ(g)−δ(f)g′(x)

g(x)g(x)′ =
δ(f)
g(x) −

f ′(x)δ(g)
g(x)g′(x) = δ(f)

g(x) −
f(x)δ(g)
g(x)2 . ]
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(3.5) Proposition. Let V ⊆ K
n be closed and let Tx(V ) = TKn,x(V ) :=

V(∂x(I(V )) ⊆ Kn, for x ∈ V , be the Zariski tangent space of V ⊆ Kn at
x. Then the map ∂•x : Tx(V ) → DerK(K[X ]/I(V ),Kx) ∼= DerK(K[V ],Kx) : t 7→
∂•x(t) : f 7→ ∂x(f)(t) is an isomorphism of K-vector spaces, where : K[X ] →
K[X ]/I(V ) ∼= K[V ] is the natural map.

Proof. For all t ∈ K
n and f, g ∈ K[X ] we get ∂•x(t)(fg) = ∂x(fg)(t) =

(∂x(f)g(x) + f(x)∂x(g))(t) = ∂•x(t)(f) · g(x) + f(x) · ∂•x(t)(g), hence ∂•x(t) ∈
DerK(K[X ],Kx). Since ∂x(f)(t) = 0 for all t ∈ Tx(V ) and f ∈ I(V ), we conclude
∂•x(t) ∈ DerK(K[X ]/I(V ),Kx) for all t ∈ Tx(V ). From im(∂x) ⊆ K[X ]1 we get
that Tx(V ) ≤ Kn is a K-subspace, and that ∂•x : t 7→ ∂•x(t) is a K-linear map. For
t = [t1, . . . , tn] ∈ ker(∂•x) we have 0 = ∂x(Xj)(t) = (

∑n
i=1Xi ·∂i(Xj)(x))(t) = tj ,

for all j ∈ {1, . . . , n}, thus t = 0 and ∂•x is injective.

Moreover, for δ ∈ DerK(K[X ]/I(V ),Kx) let t := [δ(X1), . . . , δ(Xn)] ∈ Kn. Lift-
ing δ to δ̂ ∈ DerK(K[X ],Kx), via the natural map : K[X ] → K[X ]/I(V ), we
get δ̂ =

∑n
i=1 ∂

•
i (δ̂(Xi)). Thus for all f ∈ K[X ] we obtain δ̂(f) =

∑n
i=1 δ̂(Xi) ·

∂i(f)(x) = ∂x(f)([δ̂(X1), . . . , δ̂(Xn)]) = ∂x(f)(t), hence δ̂ = ∂•x(t). Finally, for
all f ∈ I(V ) we have 0 = δ̂(f) = ∂x(f)(t), hence t ∈ Tx(V ), and thus ∂•x is
surjective as well. ]

(3.6) Corollary. Let V ⊆ Kn be closed and I(V ) = 〈f1, . . . , fr〉 C K[X ], for
some r ∈ N. Then for x ∈ V we have Tx(V ) = V(∂x(f1), . . . , ∂x(fr)) ⊆ Kn.
Hence Tx(V ) = ker(J(f1, . . . , fr)(x)) ≤ Kn, where J(f1, . . . , fr) := [∂i(fj)]ij ∈
K[X ]n×r is the associated Jacobian matrix.

Proof. For f ∈ I(V ) there are g1, . . . , gr ∈ K[X ] such that f =
∑r
j=1 fjgj ∈

K[X ], implying ∂x(f) =
∑r
j=1(∂x(fj)gj(x)+fj(x)∂x(gj)) =

∑r
j=1 ∂x(fj)gj(x) ∈

〈∂x(f1), . . . , ∂x(fr)〉K ⊆ K[X ]1. ]

(3.7) Definition. Let V,W be affine varieties, let ϕ : V → W be a mor-
phism, and let x ∈ V . Then for δ ∈ DerK(K[V ],Kx) we have δϕ∗(fg) =
δ(ϕ∗(f)ϕ∗(g)) = δ((fϕ)(gϕ)) = δ(fϕ) · gϕ(x) + fϕ(x) · δ(gϕ) = δϕ∗(f) · g(y) +
f(y) · δϕ∗(g), for all f, g ∈ K[W ], thus δϕ∗ ∈ DerK(K[W ],Kϕ(x)).

The K-linear map dx(ϕ) : DerK(K[V ],Kx) → DerK(K[W ],Kϕ(x)) : δ 7→ δϕ∗ is
called the differential of ϕ at x.

For idV we have dx(idV ) = idDerK(K[V ],Kx); and if W is an affine variety and
ψ : W → Z is a morphism, then we have the chain rule dx(ψϕ) = dϕ(x)(ψ)dx(ϕ)
In particular, if ϕ is an isomorphism of varieties, then dx(ϕ) is an isomorphism
of K-vector spaces, for all x ∈ V . For tangent spaces of K-vector spaces and
differentials of K-linear maps see Exercise (11.28).

(3.8) Remark. a) Let V ⊆ K
n and W ⊆ K

m be closed, and let X :=
{X1, . . . , Xn} as well as Y := {Y1, . . . , Ym}, and let the morphism ϕ : V →W be
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given by f1, . . . , fm ∈ K[X ]. Then for x ∈ V the K-linear map dx(ϕ) : Tx(V )→
Tϕ(x)(W ) between the associated Zariski tangent spaces is given by the matrix
J(f1, . . . , fm)(x) ∈ Kn×m, where J(f1, . . . , fm) := [∂i(fj)]ij ∈ K[X ]n×m is the
associated Jacobian matrix:

Let t = [t1, . . . , tn] ∈ Tx(V ) ≤ Kn and dx(ϕ)(∂•x(t)) = ∂•ϕ(x)(u), for a unique
u = [u1, . . . , um] ∈ Tϕ(x)(W ) ≤ Km. Then for j ∈ {1, . . . ,m} we have uj =
∂•ϕ(x)(u)(Yj) = ∂•x(t)ϕ∗(Yj) = ∂•x(t)(fj) = ∂x(fj)(t) =

∑n
i=1 ti · ∂i(fj)(x) =

[t · J(f1, . . . , fm)(x)]j , where both the natural maps K[X ]→ K[V ] and K[Y]→
K[W ] are denoted by , and where [. . .]j denotes the j-th entry of [. . .] ∈ Km.

b) Letting f ∈ K[X ], the element f ∈ K[V ] can be considered as a morphism
f : V → K, with comorphism f

∗
: K[Y ] → K[V ] : Y 7→ f . Since I(K) = {0} C

K[Y ], the Zariski tangent space of K at y ∈ K is given as Ty(K) = V({0}) = K.

Using this identification we for x ∈ V get dx(f) : Tx(V )→ Tf(x)(K) ∼= K, whose
matrix is given by [∂i(f)(x)] ∈ Kn×1; in particular we have dx(f) ∈ T ∗x (V ).
Considering ∂x(f) as a K-linear form on Tx(V ), i. e. ∂x(f)|Tx(V ) ∈ T ∗x (V ), we
also obtain the matrix [∂i(f)(x)] ∈ Kn×1. Thus we have an identification of the
total differential ∂x(f)|Tx(V ) and the differential dx(f).

c) Let W ⊆ V be closed, with associated ideal I(W ) = 〈f1, . . . , fr〉CK[V ], for
some r ∈ N, and let x ∈ W . Letting ϕ : W → V be the natural embedding,
the associated comorphism ϕ∗ : K[V ]→ K[V ]/I(W ) ∼= K[W ] is the natural epi-
morphism. Hence the differential dx(ϕ) : DerK(K[W ],Kx) → DerK(K[V ],Kx)
is injective, having image im(dx(ϕ)) = {δ ∈ DerK(K[V ],Kx); δ(I(W )) = {0}}.
Thus we have Tx(W ) ≤ Tx(V ) as K-vector spaces, and using the closed em-
bedding W ⊆ V ⊆ K

n, we deduce that Tx(W ) =
⋂
f∈I(W ) ker(dx(f)) =⋂

j∈{1,...,r} ker(dx(fj)) ≤ Tx(V ).

d) Let x ∈ V and y ∈ W . Then we have K[x,y]
∼= Kx ⊗K Ky ∼= K as

well as T[x,y](V × W ) ∼= DerK(K[V ] ⊗K K[W ],K[x,y]) ∼= DerK(K[V ],Kx) ⊕
DerK(K[W ],Ky) ∼= Tx(V )⊕ Ty(W ) as K-vector spaces, see Exercise (11.27):

The injective comorphisms associated to the natural projections π : V ×W → V
and π′ : V × W → W are given as π∗ : K[V ] → K[V ] ⊗K K[W ] : f 7→ f ⊗ 1
and π′∗ : K[W ] → K[V ] ⊗K K[W ] : g 7→ 1 ⊗ g. Hence we have an induced K-
linear map dx(π) ⊕ dy(π′) : DerK(K[V ] ⊗K K[W ],K[x,y]) → DerK(K[V ],Kx) ⊕
DerK(K[W ],Ky) : γ 7→ [γ|K[V ], γ|K[W ]]. Conversely, the comorphisms associated
to the natural embeddings ε : V → V × W : z 7→ [z, y] and ε′ : W → V ×
W : z 7→ [x, z] are given as ε∗ : K[V ] ⊗K K[W ] → K[V ] : f ⊗ g 7→ fg(y) and
ε′∗ : K[V ] ⊗K K[W ] → K[W ] : f ⊗ g 7→ f(x)g. Hence we have an induced K-
linear map dx(ε)⊕ dy(ε′) : DerK(K[V ],Kx)⊕DerK(K[W ],Ky)→ DerK(K[V ]⊗K
K[W ],K[x,y]) : [δ, δ′] 7→ δ • δ′ : f ⊗ g 7→ δ(f)g(y) + f(x)δ′(g).

For γ ∈ DerK(K[V ]⊗KK[W ],K[x,y]) we have (γ|K[V ]•γ|K[W ])(f⊗g) = γ(f)g(y)+
f(x)γ(g) = γ((f ⊗ 1)(1 ⊗ g)) = γ(f ⊗ g), and for δ ∈ DerK(K[V ],Kx) and
δ′ ∈ DerK(K[W ],Ky) we get (δ • δ′)|K[V ](f) = δ(f)1(y) + f(x)δ′(1) = δ(f) and
(δ • δ′)|K[W ](g) = δ(1)g(y) + 1(x)δ′(g) = δ′(g), for all f ∈ K[V ] and g ∈ K[W ]. ]
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e) Let ϕ : V →W be a morphism, and let 0 6= f ∈ K[V ] as well as 0 6= g ∈ K[W ]
such that ϕ restricts to a morphism ϕ|Vf : Vf → Wg. Then for x ∈ Vf we
have Tx(Vf ) ∼= Tx(V ) and Tϕ(x)(Wf ) ∼= Tϕ(x)(W ), where the isomorphisms are
induced by ϕ∗f and ϕ∗g, respectively. Since both dx(ϕ|Vf ) and dx(ϕ) are induced
by ϕ∗, the differential dx(ϕ|Vf ) : Tx(Vf ) → Tϕ(x)(Wg) can be identified with
dx(ϕ) : Tx(V )→ Tϕ(x)(W ).

More explicitly, for x ∈ Vf we show how to define the Zariski tangent space
Tx(Vf ), and how to identify it with Tx(V ), see Exercise (11.29):

Let f̂ ∈ K[X ] such that f̂ = f ∈ K[V ]. We have a closed embedding Vf → V̂f ⊆
K
n+1 : y 7→ [f(y)−1, y], with inverse V̂f → Vf : [f(y)−1, y] 7→ y, where K[V ]f ∼=
K[V̂f ] ∼= K[X , X0]/〈I(V ), f̂X0 − 1〉, see (1.15). While for g ∈ I(V ) C K[X ] we
have ∂[f(x)−1,x](g) =

∑n
i=0 ∂i(g)([f(x)−1, x]) ·Xi =

∑n
i=1 ∂i(g)(x) ·Xi = ∂x(g),

we moreover get ∂[f(x)−1,x](f̂X0 − 1) =
∑n
i=0 ∂i(f̂X0 − 1)([f(x)−1, x]) · Xi =

f(x) · X0 +
∑n
i=1 ∂i(f̂)(x) · f(x)−1 · Xi. Thus the projection map Tx(Vf ) :=

T[f(x)−1,x](V̂f )→ Tx(V ) : [t0, t1, . . . , tn] 7→ [t1, . . . , tn] is an isomorphism. ]

(3.9) Theorem. Let V be an irreducible affine variety.
a) For all x ∈ V we have dimK(Tx(V )) ≥ dim(V ).
b) The set U := {x ∈ V ; dimK(Tx(V )) = dim(V )} ⊆ V is non-empty and open.

The elements of U are called regular points, the elements of V \ U are called
singular points, and if V = U then V is called smooth.

Proof. See [6, Thm.I.5.3], or Exercise (11.30) for (a) and part of (b). ]

A differential criterion for dominance is given in Exercise (11.32).
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II Algebraic groups

4 Affine algebraic groups

(4.1) Definition and Remark. a) An affine variety G over K, endowed with
a group structure such that multiplication µ = µG : G×G→ G : [x, y] 7→ xy and
inversion ι = ιG : G→ G : x 7→ x−1 are morphisms, is called an affine or linear
algebraic group over K, see (6.2), or just an algebraic group for short.

If H also is an algebraic group, then a morphism ϕ : G → H which also is a
group homomorphism is called a homomorphism of algebraic groups.

Since the Zariski topology on G × G is finer that than the product topology
induced by the Zariski topology on G, see Exercise (11.9), in general G is not
necessarily a topological group.

b) Letting εG = ε1G : {1G} → G : 1G 7→ 1G and νG = ν1G : G → {1G} : g 7→ 1G,
the group laws can be translated into commutative diagrams of affine varieties
and of affine coordinate rings, respectively; see also Exercise (12.1):
i) Associativity: For all x, y, z ∈ G we have (xy)z = x(yz).

G×G×G µG×idG−→ G×G
idG×µG↓ ↓µG
G×G µG−→ G

K[G]⊗K K[G]⊗K[G]
µ∗
G
⊗Kid∗

G←− K[G]⊗K K[G]
id∗
G
⊗µ∗

G↑ ↑µ∗G

K[G]⊗K K[G]
µ∗
G←− K[G]

ii) Identity: For all x ∈ G we have x · 1G = x = 1G · x.

G
(εGνG)×idG−→ G×G

id×(εGνG)↓ ↘idG ↓µG
G×G µG−→ G

K[G]
(εGνG)∗⊗Kid∗

G←− K[G]⊗K K[G]
id∗
G
⊗(εGνG)∗↑ ↖id∗

G ↑µ∗G

K[G]⊗K K[G]
µ∗
G←− K[G]

iii) Inversion: For all x ∈ G we have x · x−1 = 1G = x−1 · x.

G
ιG×idG−→ G×G

id×ιG↓ ↘εGνG ↓µG
G×G µG−→ G

K[G]
ι∗
G
⊗Kid∗

G←− K[G]⊗K K[G]
id∗
G
⊗ι∗
G↑ ↖(εGνG)∗ ↑µ∗G

K[G]⊗K K[G]
µ∗
G←− K[G]

(4.2) Example: The additive and the multiplicative group.
a) Ga := K is an algebraic group, called the additive group, where µ : K2 →
K : [x, y] 7→ x+y and ι : K→ K : x 7→ −x and ε : {0} → K, yielding µ∗ : K[X]→
K[X]⊗K K[X] : X 7→ (X ⊗ 1) + (1⊗X) and ι∗ : K[X] → K[X] : X 7→ −X and
ε∗ : K[X]→ K : X 7→ 0.

Similarly, Kn is an additive algebraic group, where µ : Kn×Kn → K
n : [x, y] 7→

x + y and ι : Kn → K
n : x 7→ −x and ε : {0} → K

n, yielding µ∗ : K[X ] →
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K[X ]⊗KK[X ] : Xi 7→ (Xi⊗1) + (1⊗Xi) and ι∗ : K[X ]→ K[X ] : Xi 7→ −Xi and
ε∗ : K[X ]→ K : Xi 7→ 0, where X = {X1, . . . , Xn}.
b) Gm := K \ {0} = KX ⊆ K is an affine variety with affine coordinate algebra
K[Gm] ∼= K[X]X . It is an algebraic group, called the multiplicative group,
where µ : Gm × Gm → Gm : [x, y] 7→ xy and ι : Gm → Gm : x 7→ x−1 and
ε : {1} → Gm, yielding µ∗ : K[X]X → K[X]X ⊗K K[X]X : X 7→ X ⊗ X and
ι∗ : K[X]X → K[X]X : X 7→ X−1 and ε∗ : K[X]X → K : X 7→ 1.

For n ∈ Z the map ϕn : Gm → Gm : x 7→ xn, thus ϕ∗n : K[X]X → K[X]X : X 7→
Xn, is a morphism and a group homomorphism, thus a homomorphism of al-
gebraic groups. If char(K) = p > 0 and q = pf , for some f ∈ N, then the
Frobenius morphism Φq is a group isomorphism, but since Φ∗q is not surjective,
Φq is not an isomorphism of algebraic groups.

For the automorphisms of Ga and Gm as algebraic groups see Exercise (12.2).

(4.3) Example: General and special linear groups.
a) We considerKn×n, for some n ∈ N, whose affine coordinate algebra is given as
K[X ] = K[X11, . . . , Xnn]. Let detn :=

∑
σ∈Sn(sgn(σ)·

∏n
i=1Xi,iσ ) ∈ K[X ] be the

n-th determinant polynomial. The principal open subset GLn = GLn(K) :=
(Kn×n)detn = {[aij ] ∈ Kn×n; det([aij ]) = detn(a11, a12, . . . , ann) 6= 0} ⊆ Kn×n
is called the general linear group; we have GL1 = Gm. Its affine coordinate
algebra is K[GLn] ∼= K[X ]detn , and it is an algebraic group:

Multiplication µ : GLn × GLn → GLn : [[aij ], [bij ]] 7→ [
∑n
j=1 aijbjk]ik yields

µ∗ : K[X ]detn → K[X ]detn⊗KK[X ]detn : Xik 7→
∑n
j=1Xij⊗Xjk. Moreover, using

the adjoint matrix, inversion ι : GLn → GLn : A 7→ A−1 = det(A)−1 · adj(A),
where adj(A) := [(−1)i+j · det([akl]k 6=j,l 6=i)]ij ∈ Kn×n, yields ι∗ : K[X ]detn →
K[X ]detn : Xij 7→ (−1)i+j · det−1

n (X ) · detn−1({Xkl; k 6= j, l 6= i}); we let
adj([a11]) = [1] and det0 = 1. Finally, ε : {En} → GLn yields ε∗ : K[X ]detn →
K : Xij 7→ δij , where δ denotes the Kronecker function.

The map ϕdet : GLn → Gm : A 7→ det(A) is a homomorphism of algebraic groups
with comorphism ϕ∗det : K[X]X → K[X ]detn : X 7→ detn.

b) Similarly, SLn = SLn(K) := V(detn−1) = {[aij ] ∈ K
n×n; det([aij ]) =

detn(a11, a12, . . . , ann) = 1} ⊆ Kn×n is called the special linear group.

We show that detn−1 ∈ K[X ] is irreducible; see Exercise (12.3): We first show
by induction that detn ∈ K[X ] is irreducible, which holds for n = 1. For
n ≥ 2 assume to the contrary that detn is reducible. Expansion with respect
to the n-th row yields detn = detn−1 ·Xnn + δn, where δn :=

∑n−1
i=1 (−1)n−i ·

detn−1({Xkl; k 6= n, l 6= i}) · Xni. Since degXnn(detn) = 1, and by induction
detn−1 ∈ K[{Xkl; k 6= n, l 6= n}] is irreducible, this implies that detn−1 divides
δn. By specifying Xnj 7→ 0, for all i 6= j ∈ {1, . . . , n−1}, this yields that detn−1

divides detn−1({Xkl; k 6= n, l 6= i}), for all i ∈ {1, . . . , n−1}, which by induction
is a contradiction. Hence detn is irreducible, and now assume to the contrary
that detn−1 is reducible. Then we conclude similarly that detn−1 divides δn−1,
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which by specifying Xni 7→ 0, for all i ∈ {1, . . . , n− 1}, is a contradiction. ]

This implies that 〈detn−1〉CK[X ] is prime, and K[SLn] ∼= K[X ]/〈detn−1〉; in
particular K[SLn] is a domain. Since SLn ≤ GLn is closed, SLn is an algebraic
group, and the structure morphisms are carried over from GLn using the inclu-
sion morphism its associated comorphism K[X ]detn → K[X ]/〈detn−1〉 : Xij 7→
Xij ,det−1

n 7→ 1; see Exercise (12.1).

Further examples are given in Exercises (12.4) and (12.5).

(4.4) Example: Classical groups.
Let b be a non-degenerate K-bilinear form on Kn, having matrix J = Jb ∈
K
n×n with respect to the standard K-basis {e1, . . . , en} of Kn. Let {A ∈
K
n×n; b(xA, yA) = b(x, y) for all x, y ∈ Kn} = {A ∈ Kn×n;AJAtr = J} =: GJ

be the set of isometries of b. Since det(J) 6= 0 implies det(A) ∈ {±1}, we
indeed have GJ ≤ GLn as groups, and since AJAtr = J translates into poly-
nomial equations for the matrix entries of A, see also (8.5), we deduce that
GJ ⊆ GLn ⊆ Kn×n is closed, thus an algebraic group, called a classical group.

Let b′ is a K-bilinear form on Kn equivalent to b, having matrix J ′ ∈ Kn×n, and
let B ∈ GLn such that J ′ = BJBtr. Then for A ∈ GLn we have AJ ′Atr = J ′ if
and only if AB · J · (AB)tr = J , implying (GJ′)B = GJ ≤ GLn. It is immediate
that conjugation κB : GLn → GLn : A 7→ AB := B−1AB is an automorphism
of algebraic groups, implying that (GJ′)B ∼= GJ as algebraic groups.

a) Let b be alternating, i. e. we have b(x, x) = 0 for all x ∈ Kn. This implies
0 = b(x+ y, x+ y) = b(x, y) + b(y, x), hence b(x, y) = −b(y, x) for all x, y ∈ Kn,
i. e. b is symplectic, and thus J = −J tr. If char(K) 6= 2, then from b(x, y) =
−b(y, x) we conversely get b(x, x) = −b(x, x), hence b(x, x) = 0. We show that
up to equivalence there is only one such form on Kn:

Let 0 6= x ∈ Kn. There is y ∈ Kn such that b(x, y) 6= 0, in particular we
have y 6∈ 〈x〉K. Replacing y by 1

b(x,y) · y ∈ K
n we get b(x, y) = 1 = −b(y, x),

i. e. [x, y] is a hyperbolic pair. The restriction of b to the hyperbolic plane

U := 〈x, y〉K has matrix
[

0 1
−1 0

]
, thus is non-degenerate, implying that

U ∩ U⊥ = {0}. Hence Kn ∼= U ⊕ U⊥ where b|U⊥ is non-degenerate as well. By
induction on n we deduce that n = 2m is even, and that Kn can be written as
the orthogonal direct sum of m copies of the hyperbolic plane. Note that the
same argument works over any field. ]

Reshuffling hyperbolic pairs suitably we deduce that up to equivalence J =[
0 Jm
−Jm 0

]
∈ Kn×n, where

Jm :=


0 . . . 0 1
0 . . . 1 0
...

...
1 . . . 0 0

 ∈ Km×m.
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The associated classical group Sn = Spn = Spn(K) is called the symplectic
group. For the case m = 1 we get S2 = SL2, see Exercise (12.6), and by (10.2)
we always have Sn ≤ SLn.

b) Let char(K) 6= 2 and let b be symmetric, i. e. we have b(x, y) = b(y, x)
for all x, y ∈ Kn, thus J = J tr. Let q : Kn → K : x 7→ 1

2b(x, x). Then we have
q(cx) = c2q(x) and q(x+ y) = q(x) + q(y) + b(x, y), for all x, y ∈ Kn and c ∈ K,
as well as q 6= 0. Up to equivalence there is only one such form on Kn:

Let x ∈ Kn such that q(x) 6= 0. Hence the restriction of b to U := 〈x〉K
is non-degenerate, and we have Kn ∼= U ⊕ U⊥ where b|U⊥ is non-degenerate
as well. By induction on n we deduce that there is an orthogonal K-basis
{v1, . . . , vn} of Kn, i. e. the associated matrix of b is diag[2q(v1), . . . , 2q(vn)] ∈
K
n×n. Replacing vi by 1√

2q(vi)
· vi ∈ Kn yields an orthonormal K-basis, i. e.

the associated matrix of b is En. Note that the same argument works over any
field of characteristic 6= 2 in which any element has a square root. ]

Considering the case n = 2, given an orthonormal K-basis of K2, the basis

change given by B := 1
2 ·
[

1
√
−1

1 −
√
−1

]
∈ K2×2 yields B ·E2 ·Btr = J2 ∈ K2×2.

Hence we deduce that up to equivalence J = Jn ∈ Kn×n, the associated classical
group On = On(K) being called the orthogonal group. Let SOn = SOn(K) :=
On ∩ SLn = {A ∈ On; det(A) = 1} be the special orthogonal group. For
n = 1 we have SO1 = {1} and O1 = {±1}; for n = 2 and n = 3 see Exercise
(12.7). Since J2 ·J2 ·(J2)tr = J2 ∈ K2×2 and det(J2) = −1 we have J2 ∈ O2\SO2,
implying that for any n ∈ N we have [On : SOn] = 2.

(4.5) Example: Orthogonal groups in characteristic 2.
It remains to deal with symmetric bilinear forms in characteristic 2. To this end,
a quadratic form q : Kn → K is a map such that q(cx) = c2q(x), for all x ∈ Kn
and c ∈ K, and such that the associated polar form b : Kn×Kn → K : [x, y] 7→
q(x+ y)− q(x)− q(y) is K-bilinear; hence b is symmetric, but not necessarily is
non-degenerate. If char(K) 6= 2 then we have b(x, x) = q(2x) − 2q(x) = 2q(x),
implying that q is determined by b, thus if b is non-degenerate we recover the
situation in (4.4)(b).

Let now char(K) = 2. Then b(x, x) = 2q(x) = 0 implies that b is alternating
as well, and that q is not completely determined by b. A vector 0 6= x ∈ Kn
such that q(x) = 0 is called singular, and a pair [x, y] of singular vectors
such that b(x, y) = 1 is called a hyperbolic pair. Letting rad(b) ≤ K

n be
the radical of b, for x, y ∈ rad(b) we have q(cx + y) = c2q(x) + q(y), showing
that q|rad(b) : rad(b) → K is Φ2-semilinear, where Φ2 : K → K : c 7→ c2. The
quadratic form q is called regular if ker(q|rad(b)) = {0}, i. e. rad(b) does not
contain singular vectors; this replaces the non-degeneracy condition on b.

From now we assume q to be regular. This implies dimK(rad(b)) ≤ 1. We show
that Kn, for n ≥ 2, contains a singular vector: If b is degenerate, then let x ∈
K
n \ rad(b) and 0 6= y ∈ rad(b). Hence we have q(y) 6= 0 and thus q(x) = c2q(y),
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for some c ∈ K. This yields x+cy 6= 0 and q(x+cy) = q(x)+c2q(y)+b(x, y) = 0.
If b is non-degenerate, then let first n ≥ 3. Let x ∈ Kn such that q(x) 6= 0 and,
since dimK(〈x〉⊥

K
) ≥ 2, let y ∈ 〈x〉⊥

K
\ 〈x〉K. Hence we have q(y) = c2q(x), for

some c ∈ K, yielding cx + y 6= 0 and q(cx + y) = c2q(x) + q(y) + b(x, y) = 0.
Finally, let still b be non-degenerate but n = 2. Let x, y ∈ K2 such that
b(x, y) = 1 and q(x) 6= 0. Since K is algebraically closed there is c ∈ K such
that q(cx+ y) = c2q(x) + q(y) + c = 0. Note that for n ≥ 3 the same argument
works over any perfect field of characteristic 2. ]

We show that up to equivalence, i. e. up to change of K-bases, there is only
one regular quadratic form on Kn, proceeding similar to (4.4)(a): For n ≥ 2 we
choose a singular vector x ∈ Kn, i. e. we have q(x) = 0. Since x 6∈ rad(b) there
is y ∈ Kn such that b(x, y) = 1. This yields q(q(y)x + y) = q(y)2q(x) + q(y) +
q(y)b(x, y) = 0, and b(x, q(y)x+ y) = q(y)b(x, x) + b(x, y) = 1. Thus q(y)x+ y
is singular and [x, q(y)x + y] form a hyperbolic pair. The restriction of b to
the hyperbolic plane U := 〈x, q(y)x + y〉K is non-degenerate, implying that
U ∩U⊥ = {0}. Since dimK(U⊥) ≥ n− dimK(U), we conclude dimK(U ⊕U⊥) =
dimK(U) + dimK(U⊥) ≥ n, thus U ⊕ U⊥ = K

n. By induction on n ∈ N we
deduce that Kn can be written as the orthogonal direct sum of rad(b) ≤ Kn,
and m copies of the hyperbolic plane for some m ∈ N0. ]

a) If b is non-degenerate then n = 2m for some m ∈ N, and up to equivalence
we have J = Jn ∈ Kn×n, where the standard K-basis of Kn consists of singular
vectors, and thus q(x) =

∑m
i=1 xixn+1−i ∈ K, for all x = [x1, . . . , xn] ∈ Kn.

Let On := {A ∈ Kn×n; q(xA) = q(x) for all x ∈ Kn}. Since for A ∈ On we have
b(xA, yA) = q(xA+yA)+q(xA)+q(yA) = q(x+y)+q(x)+q(y) = b(x, y), for all
x, y ∈ Kn, we conclude thatOn ≤ Sn ⊆ Kn×n is a closed subgroup, see also (8.6),
hence is an algebraic group, called the associated even-dimensional orthogo-
nal group in characteristic 2; it is immediate that equivalent quadratic forms
yield isomorphic groups; for n = 2 see Exercise (12.7). We have det(A) = 1
for all A ∈ On, but still there is a special orthogonal group SOn, a closed
subgroup such that [On : SOn] = 2, being defined as the kernel of Dickson’s
pseudo-determinant, see [15, Ch.11, p.160] or [14, Ch.14, p.131].

b) If b is degenerate then n = 2m+1 for some m ∈ N0, and up to equivalence we

have J =
[
J2m 0

0 0

]
∈ Kn×n, hence rad(b) = 〈en〉K. The subset {e1, . . . , e2m}

of the standard K-basis of Kn consists of singular vectors, while we have q(en) =
1, and thus q(x) = x2

n +
∑m
i=1 xixn−i ∈ K, for all x = [x1, . . . , xn] ∈ Kn.

Let On := {A ∈ Kn×n; q(xA) = q(x) for all x ∈ Kn}. Hence for all A ∈ On and
x, y ∈ Kn we have b(xA, yA) = b(x, y). We show that any A ∈ On is invertible:
Assume to the contrary that A is not invertible, then from AJAtr = J we get
dimK(im(A)) = n − 1 and im(A) ∩ rad(b) = {0}, implying that Kn = im(A) ⊕
rad(b) is an orthogonal direct sum, and thus b|im(A) is non-degenerate. From
b(xA, enA) = b(x, en) = 0 for all x ∈ Kn we conclude that enA ∈ rad(b|im(A))
and hence enA = 0, implying 1 = q(en) = q(enA) = 0, a contradiction.
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This implies that On ≤ GLn is a closed subgroup, see also (8.6), hence is an
algebraic group, called the associated odd-dimensional orthogonal group
in characteristic 2; it is immediate that equivalent quadratic forms yield iso-
morphic groups, and we have O1 = {1}. We show that for n = 2m+1 ≥ 3 there
is a bijective homomorphism of algebraic groups On → S2m; it then follows from
(5.4) that there is no notion of a ‘special orthogonal group’ in this case:

Let W := 〈e1, . . . , e2m〉K, hence we have an orthogonal direct sum K
n =

W ⊕ rad(b), where b|W is non-degenerate having matrix J2m ∈ K2m×2m. Since
rad(b) is On-invariant, we have enA = cen for some c ∈ K, and from 1 =

q(enA) = c2q(en) = c2 we conclude c = 1. Hence we have A =
[
A′ atr

0 1

]
∈

K
(2m+1)×(2m+1), where a = [a1, . . . , a2m] ∈ K2m and A′ ∈ S2m ⊆ K

2m×2m.
Hence ϕ : On → S2m : A 7→ A′ is a homomorphism of algebraic groups. Let
A ∈ ker(ϕ), then for x ∈ W we have xA = x+ cen, where c :=

∑2m
i=1 aixi ∈ K,

and from q(x) = q(xA) = q(x) + c2 we deduce c = 0, hence ϕ is injective.

Let B ∈ S2m(W ) ∼= S2m, then for i ∈ {1, . . . , 2m} let bi ∈ K such that q(eiB) +

q(ei) = b2i , and b := [b1, . . . , b2m] ∈ K2m. We show that B̂ :=
[
B btr

0 1

]
∈

On ⊆ K(2m+1)×(2m+1): For x ∈ W and d ∈ K we have q(x+ den) = q(x) + d2.
Letting c :=

∑2m
i=1 bixi ∈ K, we have q((x + den)B̂) = q(xB + (c + d)en) =

q(xB) + c2 + d2 and q(xB) =
∑2m
i=1 q(xieiB) +

∑2m
i=1

∑i−1
j=1 b(xieiB, xjejB) =∑2m

i=1 x
2
i b

2
i +

∑2m
i=1 q(xiei) +

∑2m
i=1

∑i−1
j=1 b(xiei, xjej) = q(x) + c2, which implies

q((x+den)B̂) = q(x)+d2 = q(x+den). Hence ϕ is surjective as well, thus is an
isomorphism of groups; but due to taking square roots ϕ is not an isomorphism
of algebraic groups; see also (8.6). ]

5 Basic properties

(5.1) Proposition. Let G be an algebraic group.
a) There is a unique irreducible component G◦ of G containing 1G.

b) The identity component G◦ E G is a closed normal subgroup of finite
index, and G◦|G := {G◦g; g ∈ G} consists of the connected as well as of the
irreducible components of G.

In particular, G is equidimensional such that dim(G) = dim(G◦), and G is
irreducible if and only if it is connected; in this case G is called a connected
algebraic group.

c) The subgroup G◦ is contained in any closed subgroup of G of finite index.

Proof. a) Let V,W ⊆ G be irreducible components such that 1G ∈ V ∩W .
Multiplication µ : G×G→ G yields that VW = µ(V ×W ) ⊆ G is irreducible,
hence VW ⊆ G is irreducible as well. Since both V ⊆ VW and W ⊆ VW , we
conclude that V = VW = W .
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b) In particular, we have G◦G◦ = G
◦. Since inversion ι : G → G is an auto-

morphism of affine varieties, (G◦)−1 = ι(G◦) ⊆ G is an irreducible component
containing 1G, implying that (G◦)−1 = G

◦. Thus G◦ ≤ G is a subgroup. For
any g ∈ G conjugation κg : G → G : x 7→ xg := g−1xg is an automorphism
of algebraic groups, hence (G◦)g = κg(G◦) ⊆ G is an irreducible component
containing 1G, thus (G◦)g = G

◦, implying that G◦ EG is a normal subgroup.

Moreover, for any g ∈ G right translation ρg : G → G : x 7→ xg is an automor-
phism of affine varieties, hence G◦g = ρg(G◦) ⊆ G is an irreducible component,
and in particular is connected. Since G is Noetherian, G◦|G is a finite set.
Since G =

∐
g∈G◦|GG

◦g is a finite disjoint union, we conclude that all the sets
G
◦g ⊆ G are open and closed, hence are the connected components of G. Fi-

nally, if V ⊆ G is an irreducible component, then from V =
∐
g∈G◦|G(V ∩G◦g)

we conclude that V = V ∩G◦g, hence V = G
◦g, for some g ∈ G.

c) Let H ≤ G be a closed subgroup of finite index. Hence G =
∐
g∈H|GHg is a

finite disjoint union of open and closed subsets. Thus G◦ =
∐
g∈H|G(G◦ ∩Hg),

and since 1G ∈ G◦ ∩H this implies G◦ = G
◦ ∩H, hence G◦ ≤ H. ]

For variations on subgroups see Exercises (12.11), (12.9) and (12.10).

(5.2) Lemma. Let G be an algebraic group.
a) Let V,W ⊆ G be open and dense. Then VW = G.
b) Let H ≤ G be a subgroup. Then H ≤ G is a subgroup as well. If moreover
H contains a non-empty open subset of H, then we have H = H.

Proof. a) Let g ∈ G. Then V −1g ⊆ G is open and dense as well, hence we
have V −1g ∩W 6= ∅, implying that there is v−1g = w ∈ V −1g ∩W , for some
v ∈ V and w ∈W , thus g = vw ∈ VW .
b) We haveH

−1
= H−1 = H. Moreover, for any h ∈ H we haveHh = Hh = H,

implying HH ⊆ H. Thus for any g ∈ H we have gH ⊆ H, implying gH = gH ⊆
H, thus HH ⊆ H. This shows that H ≤ G is a closed subgroup. Moreover, if
∅ 6= U ⊆ H is open such that U ⊆ H, then H =

⋃
{Uh;h ∈ H} ⊆ H is open

and dense, thus H = HH = H. ]

(5.3) Proposition. Let ϕ : G→ H be a homomorphism of algebraic groups.
a) Kernel ker(ϕ)EG and image ϕ(G) ≤ H are closed subgroups.
b) We have ϕ(G◦) = ϕ(G)◦.
c) We have dim(G) = dim(ker(ϕ)) + dim(ϕ(G)).

Proof. a) Since {1H} ⊆ H is closed, ker(ϕ) = ϕ−1({1H}) ⊆ G is closed as well.
Next we consider the restrictions ϕ|G◦ : G◦ → ϕ(G◦). Since G◦ is irreducible,
ϕ(G◦) is irreducible as well, hence there is ∅ 6= U ⊆ ϕ(G◦) open such that
U ⊆ ϕ(G◦), implying that ϕ(G◦) ≤ H is closed. Now, G =

∐
g∈G◦|GG

◦g being
a finite union implies that ϕ(G) =

⋃
g∈G◦|G ϕ(G◦)ϕ(g) ≤ H is closed.
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b) Since ϕ(G◦) ≤ ϕ(G) is closed and irreducible, containing 1H, we have
ϕ(G◦) ≤ ϕ(G)◦. Conversely, since G◦ ≤ G is a closed subgroup of finite index,
ϕ(G◦) ≤ ϕ(G) is a closed subgroup of finite index, implying ϕ(G)◦ ≤ ϕ(G◦).
c) We may assume that ϕ is surjective, hence ϕ0 := ϕ|G◦ : G◦ → H

◦ is a
surjective morphism between irreducible affine varieties. Since the fibres of ϕ0

are cosets of ker(ϕ0) in G◦, they all have dimension dim(ker(ϕ0)). Moreover
ker(ϕ0) = ker(ϕ) ∩ G◦ ≤ ker(ϕ) has finite index, hence ker(ϕ)◦ ≤ ker(ϕ0) ≤
ker(ϕ), implying that dim(ker(ϕ)◦) = dim(ker(ϕ0)) = dim(ker(ϕ)). Hence we
have dim(G) = dim(G◦) = dim(ker(ϕ0)) + dim(H◦) = dim(ker(ϕ)) + dim(H). ]

(5.4) Example. a) Since K[X] is a domain, the additive group Ga = K is
connected, and dim(Ga) = 1. Since the multiplicative group Gm = KX ⊆ K
is open in an irreducible space it is connected, and dim(Gm) = 1. By [11,
Thm.2.6.6] these are up to isomorphism the only connected algebraic groups of
dimension 1; see also Exercise (12.21).
b) The general linear group GLn = (Kn×n)detn ⊆ K

n×n is connected, and
dim(GLn) = dim(Kn×n) = n2. Since K[SLn] ∼= K[X11, . . . , Xnn]/〈detn−1〉 is
a domain, the special linear group SLn is connected as well, and since it is a
hypersurface in Kn×n we have dim(SLn) = n2−1. For the examples mentioned
in Exercises (12.4) and(12.5) see Exercise (12.8).
c) By (10.2) S2m is connected. If char(K) 6= 2 then by (10.2) SOn is connected,
hence [On : SOn] = 2 implies O◦n = SOn. Similarly, if char(K) = 2 then O◦2m =
SO2m. Finally, if char(K) = 2 it follows from the bijective morphism O2m+1 →
S2m, for m ∈ N, that O2m+1 is connected.

(5.5) Definition and Remark. a) Let G be an algebraic group, and let V 6= ∅
be an affine variety. A (right) group action ϕ : V × G → V : [x, g] 7→ xg, such
that ϕ is a morphism, is called a morphical action, and V is called a G-variety.

In this case, for any g ∈ G we have the automorphism of affine varieties ϕg : V →
V : x 7→ xg, and the associated automorphism of K-algebras ϕ∗g : K[V ]→ K[V ],
also called translation of functions. Since ϕhϕg = ϕgh for all g, h ∈ G, we
have ϕ∗gϕ

∗
h = ϕ∗gh, implying that g 7→ ϕ∗g is a K-representation of G on K[V ].

Moreover, for any x ∈ V we have the orbit morphism ϕx : G→ V : g 7→ xg, its
image xG = ϕx(G) ⊆ V is called the associated G-orbit. If G acts transitively
on V , i. e. we have xG = V for some and hence any x ∈ V , then V is called a
homogeneous G-variety.

If G acts morphically on affine varieties V and W , then a morphism ψ : V →W
is called G-equivariant if ψ(xg) = ψ(x)g, for all x ∈ V and g ∈ G.

b) E. g. G acts morphically on G by right translation ρ = µ : [x, g] 7→ xg,
as well as by left translation λ : [x, g] 7→ g−1x, where G is homogeneous for
both of these regular actions; and G acts morphically on G by conjugation
κ : [x, g] 7→ xg := g−1xg, the orbits being called conjugacy classes; for any
g ∈ G we have κg = ρgλg = λgρg.
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c) Let U ⊆ V be a subset, and let W ⊆ V be closed. Then the transporter
TranG(U,W ) := {g ∈ G;Ug ⊆W} =

⋂
x∈U ϕ

−1
x (W ) ⊆ G is a closed subset.

In particular, for any x ∈ V the isotropy group or centraliser or stabiliser
Gx = CG(x) = StabG(x) := {g ∈ G;xg = x} = TranG({x}, {x}) ≤ G is a closed
subgroup, and hence CG(U) :=

⋂
x∈U Gx ≤ G is a closed subgroup as well; see

also Exercise (12.12).

For any g ∈ G the set of fixed points V g = FixV (g) := {x ∈ V ;xg = x} ⊆ V
is closed, implying that V G = FixV (G) :=

⋂
g∈G V

g ⊆ V is closed as well: Let
ψg : V → V × V : x 7→ [x, xg], then the diagonal ∆(V ) := {[x, x] ∈ V × V ;x ∈
V } ⊆ V × V is closed, hence ψ−1

g (∆(V )) = {x ∈ V ;x = xg} ⊆ V is closed.

Each irreducible component of V0 ⊆ V is G◦-invariant: The group G per-
mutes the finitely many irreducible components, hence {g ∈ G;V0g = V0} =
TranG(V0, V0) ≤ G is a closed subgroup of finite index, thus contains G◦.

(5.6) Lemma. Let G be an algebraic group, let H ≤ G be a closed subgroup,
and let I(H)CK[G] be the associated vanishing ideal. Then we have H = {g ∈
G; ρ∗g(I(H)) ⊆ I(H)} and H = {g ∈ G;λ∗g(I(H)) ⊆ I(H)}.

Proof. See Exercise (12.13).
i) For g ∈ H and f ∈ I(H) we have (ρ∗g(f))(x) = f(xg) = 0, for all x ∈ H,
implying ρ∗g(f) ∈ I(H). Conversely, let g ∈ G such that ρ∗g(I(H)) ⊆ I(H).
Then for f ∈ I(H) we have f(g) = (ρ∗g(f))(1G) = 0, implying g ∈ V(I(H)) = H.
ii) For g ∈ H and f ∈ I(H) we have (λ∗g(f))(x) = f(g−1x) = 0, for all x ∈ H,
implying λ∗g(f) ∈ I(H). Conversely, let g ∈ G such that λ∗g(I(H)) ⊆ I(H). Then
for f ∈ I(H) we have f(g−1) = (λ∗g(f))(1G) = 0, implying g ∈ V(I(H)) = H. ]

6 Linearisation and Jordan decomposition

(6.1) Proposition. Let G be an algebraic group acting morphically on V via
ϕ, and let F ≤ K[V ] be a K-subspace such that dimK(F ) <∞.
a) There is a K-subspace F ≤ E ≤ K[V ] such that dimK(E) < ∞, which is
ϕ∗g-invariant for all g ∈ G.
b) F ≤ K[V ] is ϕ∗g-invariant, for all g ∈ G, if and only if ϕ∗(F ) ≤ F ⊗K K[G].

Proof. a) We may assume that F = 〈f〉K, for some 0 6= f ∈ K[V ]. Hence
ϕ∗(f) =

∑r
i=1 fi ⊗ gi ∈ K[V ] ⊗K K[G], for some r ∈ N as well as fi ∈ K[V ]

and gi ∈ K[G]. For g ∈ G and x ∈ V we have (ϕ∗g(f))(x) = f(ϕg(x)) =
f(xg) = f(ϕ([x, g])) = (ϕ∗(f))([x, g]) =

∑r
i=1 fi(x)gi(g), implying ϕ∗g(f) =∑r

i=1 fi · gi(g) ∈ K[V ]. Hence E := 〈f1, . . . , fr〉K ≤ K[V ] is as desired.
b) If ϕ∗(F ) ≤ F ⊗K K[G], then the above computation shows that ϕ∗g(F ) ≤ F ,
for all g ∈ G. Conversely, if F ≤ K[V ] is ϕ∗g-invariant, for all g ∈ G, then let
{f1, . . . , fs, fs+1, . . .} ⊆ K[V ] be a K-basis, where {f1, . . . , fs} ⊆ F is a K-basis
and s := dimK(F ). For f ∈ F we have ϕ∗(f) =

∑
i≥1 fi⊗gi, for some gi ∈ K[G],

implying that ϕ∗g(f) =
∑s
i=1 fi · gi(g) +

∑
i≥s+1 fi · gi(g). Since ϕ∗g(f) ∈ F , for
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all g ∈ G, we deduce that for all i ≥ s + 1 we have gi = 0 ∈ K[G], thus
ϕ∗(f) =

∑s
i=1 fi ⊗ gi ∈ F ⊗K K[G]. ]

(6.2) Theorem. Let G be an algebraic group. Then G is isomorphic as an
algebraic group to a closed subgroup of GLn, for some n ∈ N.

Proof. We consider the regular action of G on G by right translation ρ =
µ : G × G → G. Using the fact that K[G] is a finitely generated K-algebra,
we choose a K-linear independent subset {f1, . . . , fn} ⊆ K[G], for some n ∈ N,
such that F := 〈f1, . . . , fn〉K ≤ K[G] is ρ∗g-invariant, for all g ∈ G, and such
that K〈F 〉 = K[G]. Hence for all i ∈ {1, . . . , n} we have ρ∗(fi) =

∑n
j=1 fj ⊗

gij ∈ K[G] ⊗K K[G], where the gij ∈ K[G] are uniquely defined, and thus
ρ∗g(fi) =

∑n
j=1 fj · gij(g) ∈ K[G], for all g ∈ G. Since ρ∗g is injective and

ρ∗gρ
∗
h = ρ∗gh, for all g, h ∈ G, this implies that ϕ : G → GLn : g 7→ [gij(g)] ∈

K
n×n is a morphism of algebraic groups, called an algebraic or rational K-

representation of G on F . Since for g ∈ G we have fi(g) = fi(1G · g) =
(ρ∗(fi))([1G, g]) =

∑n
j=1 fj(1G) · gij(g), we get fi =

∑n
j=1 fj(1G) · gij ∈ K[G],

implying that K〈gij ; i, j ∈ {1, . . . , n}〉 = K[G]. Hence ϕ∗ : K[GLn] → K[G] is
surjective, implying that ϕ is a closed embedding, see Exercise (11.7). ]

For linearisation of arbitrary actions see Exercise (12.15).

(6.3) Definition. A matrix A ∈ Kn×n, where n ∈ N, is called semisimple,
if its minimum polynomial is multiplicity-free, i. e. if it is diagonalisable; and
it is called nilpotent, if there is k ∈ N such that Ak = 0, i. e. if 0 is its only
eigenvalue. Hence A is both semisimple and nilpotent if and only if A = 0.

Moreover, A is called unipotent, if A − En ∈ Kn×n is nilpotent, i. e. if 1 is
its only eigenvalue. Hence if A is unipotent, then A ∈ GLn, and it is both
semisimple and unipotent if and only if A = En; see also Exercise (12.17).

(6.4) Lemma. a) Let A ∈ Kn×n. There are uniquely determined matrices
As, An ∈ Kn×n, where As is semisimple and An is nilpotent, such that AsAn =
AnAs and A = As + An, called the additive Jordan decomposition of A,
where As and An are called the semisimple and nilpotent part, respectively.

Moreover, there are f, g ∈ K[T ] such that As = f(A) and An = g(A); see
also Exercise (12.16). If a matrix B ∈ Kn×n commutes with A, then B also
commutes with As and An, and we have (A+B)s = As+Bs as well as (A+B)n =
An +Bn.

b) Let A ∈ GLn ⊆ K
n×n. Then there are uniquely determined matrices

As, Au ∈ GLn, where As is semisimple and Au is unipotent, such that A =
AsAu = AuAs, called the (multiplicative) Jordan decomposition of A,
where As and Au are called the semisimple and unipotent part, respectively.
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Moreover, there are f, g ∈ K[T ] such that As = f(A) ∈ Kn×n and Au = g(A) ∈
K
n×n. If a matrix B ∈ GLn commutes with A, then we have (AB)s = AsBs

and (AB)u = AuBu .

Proof. a) Let λ1, . . . , λr ∈ K be pairwise distinct and n1, . . . , nr ∈ N such that
χA |

∏r
i=1(T − λi)ni ∈ K[T ], where χA ∈ K[T ] is the characteristic polynomial

of A. Moreover, let Eλi,k(A) := ker((A − λiEn)k) ≤ Kn, for k ∈ N, be the
associated generalised eigenspaces, hence we have Kn ∼=

⊕r
i=1Eλi,ni(A). By

the Chinese remainder theorem there is f ∈ K[T ] such that for all i ∈ {1, . . . , r}
we have f ≡ λi (mod (T − λi)ni). Letting As := f(A) ∈ Kn×n, we have
As|Eλi,ni (A) = λiEn|Eλi,ni (A), hence As is semisimple. Letting An := A− As ∈
K
n×n, we get An|Eλi,ni (A) = (A − λiEn)|Eλi,ni (A), hence (An)ni |Eλi,ni (A) = 0,

implying that An is nilpotent.

It remains to prove uniqueness: Let A = A′s+A′n be an additive Jordan decom-
position, then we have As − A′s = A′n − An, where As, An are as above. Then
both A′s and A′n commute with A, and hence with both As and An. Thus As
and A′s are simultaneously diagonalisable, implying that As−A′s is semisimple,
and it is immediate from the binomial formula that A′n −An is nilpotent. This
in turn implies As −A′s = A′n −An = 0.

b) Let A = As +An ∈ Kn×n be the additive Jordan decomposition of A. Since
A ∈ GLn we infer that As ∈ GLn as well, and we let Au := En + (As)−1An ∈
K
n×n. Since As and An commute we have AsAu = AuAs = As +An = A, and

we conclude that Au − En is nilpotent, i. e. Au ∈ GLn is unipotent.

It remains to prove uniqueness: Let A = A′sA
′
u be a Jordan decomposition,

then (A′s)
−1As = A′u(Au)−1, where both A′s and A′u commute with As and Au.

Hence (A′s)
−1As is semisimple, and A′u(Au)−1 − En = (A′u − En)((Au)−1 −

En) + (A′u − En) + ((Au)−1 − En) is nilpotent, i. e. A′u(Au)−1 is unipotent,
hence (A′s)

−1As = A′u(Au)−1 = En. ]

(6.5) Definition and Remark. a) Let E be an arbitrary K-vector space.
An element A ∈ EndK(E) is called locally finite, if E is the union of finite
dimensional A-invariant K-subspaces. E. g. if G is an algebraic group acting
morphically on V via ϕ, then ϕ∗g is locally finite on K[V ].

A locally finite element A ∈ EndK(E) is called (locally) semisimple if its
restriction to any finite dimensional A-invariant K-subspace is semisimple, it is
called (locally) nilpotent if its restriction to any finite dimensional A-invariant
K-subspace is nilpotent, and it is called (locally) unipotent if A−idE is locally
nilpotent.

b) For a locally finite element A ∈ EndK(E) we get an additive Jordan decom-
position A = As+An ∈ EndK(E) as follows: For x ∈ E let 〈x〉 ≤ F ≤ E be any
finite dimensional A-invariant K-subspace, and let xAs := x(A|F )s ∈ E as well
as xAn := x(A|F )n ∈ E. This indeed yields well-defined maps: If 〈x〉 ≤ F ′ ≤
E also is a finite dimensional A-invariant K-subspace, then ((A|F )s)F∩F ′ =
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(A|F∩F ′)s = ((A|F ′)s)F∩F ′ and ((A|F )n)F∩F ′ = (A|F∩F ′)n = ((A|F ′)n)F∩F ′ .
Hence we have AsAn = AnAs, where As is locally semisimple and An is locally
nilpotent, and As and An are uniquely determined by these properties.

Moreover, for a locally finite element A ∈ AutK(E) we have A|F ∈ AutK(F )
for all finite dimensional A-invariant K-subspaces F ≤ E, implying that As ∈
AutK(E). Hence we let Au := idE + (As)−1An ∈ EndK(E). Since Au|F =
(AF )u ∈ AutK(F ), for all finite dimensional A-invariant K-subspaces F ≤ E,
we infer Au ∈ AutK(E), and thus obtain a Jordan decomposition A = AsAu ∈
AutK(E). Hence we have AsAu = AuAs, where As is locally semisimple and Au
is locally unipotent, and As and Au are uniquely determined by these properties.

(6.6) Theorem: Jordan decomposition.
Let G be an algebraic group.
a) For g ∈ G there are uniquely determined elements gs, gu ∈ G, called the
semisimple and unipotent part of g, respectively, such that g = gsgu = gugs
as well as (ρ∗g)s = ρ∗gs and (ρ∗g)u = ρ∗gu .
b) For G = GLn the semisimple and unipotent parts coincide with (6.4).
c) If ϕ : G → H is a homomorphism of algebraic groups, then for all g ∈ G we
have ϕ(gs) = ϕ(g)s and ϕ(gu) = ϕ(g)u.

Proof. a) Let µ : K[G]⊗KK[G]→ K[G] : h⊗ h′ 7→ hh′. Since γ := ρ∗g : K[G]→
K[G] is a K-algebra homomorphism, we have µ(γ ⊗ γ) = γµ. We show that
µ(γs ⊗ γs) = γsµ: It suffices to consider finite dimensional γ-invariant K-
subspaces F,E ≤ K[G] such that µ(F ⊗F ) ≤ E, hence we have µ(γ|F ⊗ γ|F ) =
γ|Eµ. Since there is f ∈ K[T ] such that f(γ|F ⊗ γ|F ) = (γ|F ⊗ γ|F )s and
f(γ|E) = (γ|E)s, and since we have (γ|F ⊗γ|F )s = (γ|F )s⊗ (γ|F )s, we conclude
that µ((γ|F )s ⊗ (γ|F )s) = (γ|E)sµ.

Hence γs = (ρ∗g)s is a K-algebra homomorphism. Thus the K-algebra homomor-
phism K[G]→ K : h 7→ ((ρ∗g)s(h))(1G) defines gs ∈ G such that ((ρ∗g)s(h))(1G) =
h(gs), for all h ∈ K[G]. Similarly, γu = (ρ∗g)u is a K-algebra homomorphisms as
well, yielding gu ∈ G such that ((ρ∗g)u(h))(1G) = h(gu).

Letting G × G act on G via [z;x, y] 7→ x−1zy shows that K[G] is the union
of finite dimensional (λ∗xρ

∗
y)-invariant K-subspaces for all x, y ∈ G; see Exer-

cise (12.13). Since λ∗x commutes with ρ∗y, we deduce that λ∗x also commutes
with (ρ∗y)s and (ρ∗y)u. Hence we have (ρ∗gs(h))(x) = h(xgs) = (λ∗x−1(h))(gs) =
((ρ∗g)sλ

∗
x−1(h))(1G) = (λ∗x−1(ρ∗g)s(h))(1G) = ((ρ∗g)s(h))(x), for all h ∈ K[G] and

x ∈ G, implying ρ∗gs = (ρ∗g)s. Similarly we get ρ∗gu = (ρ∗g)u. Moreover, we have
ρ∗gsgu = ρ∗gsρ

∗
gu = (ρ∗g)s(ρ

∗
g)u = ρ∗g = (ρ∗g)u(ρ∗g)s = ρ∗guρ

∗
gs = ρ∗gugs , and since the

representation G→ K[G] : g 7→ ρ∗g is faithful we infer g = gsgu = gugs ∈ G.

b) We have K[GLn] = K[X ]detn , where X = {X11, . . . , Xnn}. Let B :=
{X11, . . . , X1n} ⊆ K[X ]detn and F := 〈B〉K ≤ K[X ]detn . Then for A = [aij ] ∈
GLn we have ρ∗A(X1i) =

∑n
j=1X1jaji, for i ∈ {1, . . . , n}. Hence F is ρ∗A-

invariant, and its matrix with respect to B is (ρ∗A|F )B = Atr. Hence we have



II Algebraic groups 28

(As)tr = (ρ∗As |F )B = ((ρ∗A)s|F )B = ((ρ∗A|F )s)B = ((ρ∗A|F )B)s = (Atr)s, where
left and right hand side are abstract and matrix semisimple part, respectively.
Similarly, we deduce (Au)tr = (Atr)u.

c) Since ϕ(G) ≤ H is closed, it is sufficient to consider the following two cases:

i) G ≤ H is closed and ϕ is the natural embedding. Hence by (5.6) we have G =
{h ∈ H; ρ∗h(I(G)) ⊆ I(G)}, thus (ρ∗ϕ(g))s(I(G)) ⊆ I(G) implies ϕ(g)s ∈ G, for
all g ∈ G. Now ρ∗ϕ(g) and (ρ∗ϕ(g))s induce maps on K[H]/I(G) ∼= K[G], indicated

by . Thus ρ∗gs = (ρ∗g)s = (ρ∗ϕ(g))s = (ρ∗ϕ(g))s = ρ∗ϕ(g)s
= ρ∗ϕ−1(ϕ(g)s)

, hence
gs = ϕ−1(ϕ(g)s), implying ϕ(gs) = ϕ(g)s. Similarly, we deduce ϕ(gu) = ϕ(g)u.

ii) ϕ is surjective, hence K[H] ⊆ K[G] and ϕ∗ is the natural embedding. For
g ∈ G we have (ρ∗gϕ

∗(h))(x) = (ϕ∗(h))(xg) = h(ϕ(x)ϕ(g)) = (ρ∗ϕ(g)(h))(ϕ(x)) =
(ϕ∗ρ∗ϕ(g)(h))(x), for all h ∈ K[H] and x ∈ G, hence ρ∗gϕ

∗ = ϕ∗ρ∗ϕ(g), implying
that ρ∗g(K[H]) ⊆ K[H] and ρ∗ϕ(g) = ρ∗g|K[H]. Thus we obtain ρ∗ϕ(g)s

= (ρ∗ϕ(g))s =
(ρ∗g|K[H])s = (ρ∗g)s|K[H] = ρ∗gs |K[H] = ρ∗ϕ(gs)

, implying ϕ(g)s = ϕ(gs). Similarly,
we deduce ϕ(g)u = ϕ(gu). ]

(6.7) Corollary. Let G be an algebraic group.
a) For g ∈ G the following are equivalent:
i) The element g ∈ G is semisimple (unipotent).
ii) There is an injective homomorphism of algebraic groups ϕ : G → GLn, for
some n ∈ N, such that ϕ(g) ∈ GLn is semisimple (unipotent).
iii) For any homomorphism of algebraic groups ϕ : G→ GLn, where n ∈ N, the
image ϕ(g) ∈ GLn is semisimple (unipotent).

b) The set Gu := {g ∈ G; g unipotent} ⊆ G is closed, called the unipotent
variety of G.

Proof. b) We have (GLn)u = {A ∈ Kn×n; (A − En)n = 0} ⊆ Kn×n closed.
Thus any injective homomorphism of algebraic groups ϕ : G→ GLn shows that
Gu = ϕ−1((GLn)u) ⊆ G is closed. ]

For the set Gs := {g ∈ G; g semisimple} a similar statement does in general not
hold, see Exercise (12.20). For examples see Exercises (12.18) and (12.19).

(6.8) Proposition. a) Let S ⊆ Kn×n be a set of pairwise commuting matrices.
Then S is trigonalisable, i. e. there is B ∈ GLn such that SB := B−1SB ⊆
K
n×n consists of upper triangular matrices.

If moreover S consists of semisimple matrices, then S is even diagonalisable,
i. e. there is B ∈ GLn such that SB ⊆ Kn×n consists of diagonal matrices.

b) Let G ≤ GLn be a (not necessarily closed) subgroup consisting of unipotent
matrices. Then G is trigonalisable, i. e. there is B ∈ GLn such that GB ≤
Un := {[aij ] ∈ GLn; aij = 0 for i > j, aii = 1}, see also Exercise (12.4).
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In particular, a unipotent algebraic group H, i. e. we have H = Hu, is isomor-
phic as an algebraic group to a closed subgroup of Un, for some n ∈ N.

Proof. a) For general S we proceed by induction on n, the case n = 1 being
trivial. Now we may assume that there is A ∈ S and λ ∈ K such that {0} <
Eλ(A) := Eλ,1(A) = ker(A − λEn) < K

n. Since Eλ(A) is S-invariant, by
induction there is 0 6= xn ∈ Eλ(A) such that 〈xn〉K < Kn is S-invariant. Again
by induction there are x1, . . . , xn−1 ∈ Kn such that {x1, . . . , xn} ⊆ Kn is a K-
basis and 〈xi, . . . , xn−1〉K ≤ Kn/〈xn〉K is S-invariant, for all i ∈ {1, . . . , n− 1}.
If S consists of semisimple matrices, then we again proceed by induction on n,
the case n = 1 being trivial. Now we may assume that there is A ∈ S such
that Kn ∼=

⊕r
i=1Eλi(A) for some r > 1, where λ1, . . . , λr ∈ K are the pairwise

distinct eigenvalues of A, and we are done by induction.

b) We first show that G acts irreducibly on Kn if and only if n = 1: Let
G act irreducibly, and let A := K〈G〉 ⊆ Kn×n be the (non-commutative) K-
subalgebra of Kn×n generated by G. Hence A acts faithfully on Kn, thus by
Schur’s Lemma and the double centraliser theorem we have A = K

n×n. Since
for all A,B ∈ G we have Tr((A − En)B) = Tr(AB) − Tr(B) = 0, we conclude
Tr((A− En)C) = 0 for all C ∈ Kn×n, implying Tr(Eij(A− En)Ekl) = 0 for all
i, j, k, l ∈ {1, . . . , n}, where Eij = [δikδjl]kl ∈ Kn×n is the [i, j]-th matrix unit.
Thus we have A = En, hence G = {En} and n = 1.

We now proceed by induction on n, the case n = 1 being trivial. Let {0} < W <
K
n be a G-invariant K-subspace. Then by induction there is 0 6= xn ∈ W such

that xnA = xn for all A ∈ G. Again by induction there are x1, . . . , xn−1 ∈ Kn
such that {x1, . . . , xn} ⊆ Kn is a K-basis and xiA−xi ∈ 〈xi+1, . . . , xn〉K, for all
i ∈ {1, . . . , n− 1} and all A ∈ G. ]

(6.9) Theorem. Let G be an abelian algebraic group. Then both sets Gs
and Gu are closed subgroups, and µ : Gs × Gu → G : [gs, gu] → gsgu is an
isomorphism of algebraic groups, inducing an isomorphism (Gs)◦×(Gu)◦ → G

◦.

Proof. We may assume that G ≤ GLn closed, for some n ∈ N. Since G is
abelian, Gs,Gu ≤ G are subgroups, and µ is a bijective homomorphism of
algebraic groups. The set Gu ⊆ G is closed, and we show that Gs ⊆ G also is
closed: For any family Λ := {λA ∈ K;A ∈ Gs} let WΛ :=

⋂
A∈Gs Eλ(A) ≤ Kn.

Hence we have Kn ∼=
⊕r

i=1WΛr , for some r ∈ N and certain families Λr, where
the WΛr are G-invariant. Thus we may assume that Gs ⊆ Tn := {[aij ] ∈
GLn; aij = 0 for i 6= j} and Gu ⊆ Un, thus G ⊆ Bn := {[aij ] ∈ GLn; aij =
0 for i > j}; see also Exercise (12.4). Hence Gs = G ∩ Tn ⊆ G is closed.
The morphism Bn → Tn : [aij ] 7→ diag[a11, . . . , ann] restricts to the morphism
G→ Gs : g 7→ gs, hence µ−1 : G→ Gs ×Gu : g 7→ [gs, g−1

s g] is a morphism. ]
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7 Actions on affine varieties

(7.1) Lemma. Let G be an algebraic group acting morphically on V , and let
x ∈ V . Then we have dim(xG) = dim(xG◦) and dim(CG(x)) = dim(CG◦(x)),
as well as dim(G) = dim(CG(x)) + dim(xG).

Proof. We have xG =
⋃
g∈G◦|G xG

◦g, implying xG =
⋃
g∈G◦|G xG

◦g, since
xG◦ ⊆ V is irreducible implying dim(xG) = dim(xG◦); see also Exercise
(12.22). Since CG◦(x) ≤ CG(x) is a closed subgroup of finite index, we have
dim(CG(x)) = dim(CG◦(x)).

Hence to show the last assertion, we may assume that G is connected. Letting
ϕ be the action morphism, the orbit map ϕx : G→ xG is a dominant morphism
between irreducible varieties. Hence there is ∅ 6= U ⊆ xG such that U ⊆ xG,
and such that dim(ϕ−1

x (y)) = dim(G)− dim(xG) for all y ∈ U . For any y ∈ U
we have ϕ−1

x (y) = {h ∈ G;xh = y} = CG(x)g ⊆ G, where g ∈ G is fixed such
that y = xg, implying dim(ϕ−1

x (y)) = dim(CG(x)). ]

(7.2) Proposition: Closed orbit lemma.
Let G be an algebraic group acting morphically on V .
a) Let O ⊆ V be a G-orbit. Then O ⊆ V is G-invariant, O ⊆ O is open, and if
O 6= O then dim(O \O) < dim(O).
b) For G-orbits O,O′ ⊆ V such that O′ ⊆ O we write O′ � O. Then the orbit
closure relation � is a partial order on the set of G-orbits in V . Moreover,
there are �-minimal orbits, all of which are closed.

Proof. a) Let ϕ be the action morphism. Since for all g ∈ G the morphism ϕg
is continuous, we from ϕg(O) ⊆ O get ϕg(O) ⊆ O, hence O is G-invariant.

Let O = ϕx(G), for some x ∈ V , let ∅ 6= U ⊆ O be open such that U ⊆ O,
and let h ∈ G such that xh ∈ U . Thus x ∈ Uh−1, implying that O = xG ⊆⋃
g∈G Ug ⊆ O, and hence O =

⋃
g∈G Ug, where Ug ⊆ O is open for all g ∈ G.

Let O 6= O =
⋃r
i=1Wi, where the Wi ⊆ O are the irreducible components; hence

O \ O =
⋃r
i=1(Wi \ O). Since O ⊆ O is open and dense, we have Wi ∩ O 6= ∅

for all i ∈ {1, . . . , r}, hence whenever Wi 6⊆ O we have dim(Wi \O) < dim(Wi).

b) To show that � is a partial order, we only have to check that O′ � O � O′

implies O = O′: Let O′ ⊆ O and O ⊆ O′. Hence O′ ⊆ O ⊆ O′, and both
O,O′ ⊆ O = O′ are open and dense, implying that O ∩O′ 6= ∅, thus O = O′. ]

For examples see Exercise (12.23). For the Kostant-Rosenlicht Theorem,
dealing with orbits of unipotent groups, see Exercise (12.24).

(7.3) Example: The unipotent variety of SLn.
Let G := SLn, for some n ∈ N. Then GLn acts morphically on the unipotent
variety Gu = (GLn)u ⊆ G ⊆ GLn, which hence is a union of GLn-conjugacy
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classes, and a union of G-conjugacy classes. Since G C GLn = Zn · G, where
Zn := K

∗ · En = Z(GLn) ≤ GLn, elements of G are G-conjugate if and only if
they are GLn-conjugate.

By the Jordan normal form theorem we conclude Gu =
⋃
g∈G(Un)g = im(κ),

where κ : Un × G → Gu : [u, g] 7→ ug is the conjugation map. Now Un :=
{[aij ] ∈ GLn; aij = 0 for i > j; aii = 1} ⊆ G ⊆ GLn ⊆ K

n×n is closed
such that I(Un) = 〈Xij , Xii − 1; i, j ∈ {1, . . . , n}, i > j〉 C K[X ], where X :=
{X11, . . . , Xnn}, hence K[Un] ∼= K[X ]/I(Un) ∼= K[Xij ; i, j ∈ {1, . . . , n}, j > i],
implying that Un ∼= K

n(n−1)
2 is irreducible. Since G is irreducible, Gu is irre-

ducible as well. We proceed to describe the orbit closure relation � on Gu:

Elements of Gu are conjugate if and only if their Jordan normal forms coincide.
The latter up to reordering are uniquely described by the sizes λ1, . . . , λl ∈ N,
for some l ∈ N, of the Jordan blocks Jλi(1) ∈ Kλi×λi with respect to the
eigenvalue 1 ∈ K occurring. We have

∑l
i=1 λi = n and we may assume that

λ1 ≥ · · · ≥ λl ≥ 1; then the conjugacy class associated to λ := [λ1, . . . , λl] is
denoted by Cλ ⊆ Gu. Thus the conjugacy classes in Gu are parametrised by
the partitions of n:

(7.4) Definition and Remark. a) Let n ∈ N0. A series λ := [λ1, λ2, . . .] ⊆ N0

such that λ1 ≥ λ2 ≥ · · · and
∑
i≥1 λi = n is called a partition of n, the λi

being called its parts; we write λ ` n, where we have λn+1 = 0 and usually
omit the zero parts. Let Pn be the set of partitions of n.

Associated to λ = [λ1, . . . , λn] ` n is the Young diagram or Ferrers dia-
gram Yλ := {[i, j] ∈ N2; i ∈ {1, . . . , n}, j ∈ {1, . . . , λi}}, allowing to identify
any partition with its Young diagram. Moreover, letting ai = ai(λ) := |{j ∈
{1, . . . , n};λj = i}| ∈ N0, for i ∈ {1, . . . , n}, we also write λ = [1a1 , . . . , nan ] ` n.

b) Let λ = [λ1, . . . , λn] ` n, and let λ′i := |{j ∈ {1, . . . , n};λj ≥ i}| ∈ N0

for i ∈ {1, . . . , n}. Hence we have λ′1 ≥ · · · ≥ λ′n ≥ 0 as well as
∑n
i=1 λ

′
i =∑n

j=1 |{i ∈ {1, . . . , n}; i ≤ λj}| =
∑n
j=1 λj = n. Thus λ′ = [λ′1, . . . , λ

′
n] ` n,

being called the associated conjugate partition.

Hence we have λ′i =
∑n
j=i aj(λ), for i ∈ {1, . . . , n}. Moreover, we have Yλ =

{[i, j] ∈ N2; i ∈ {1, . . . , n}, j ∈ {1, . . . , λi}} = {[i, j] ∈ N2; j ∈ {1, . . . , n}, i ∈
{k ∈ {1, . . . , n};λk ≥ j}} = {[i, j] ∈ N2; j ∈ {1, . . . , n}, i ∈ {1, . . . , λ′j}}, imply-
ing that Yλ′ = {[i, j] ∈ N2; [j, i] ∈ Yλ}, and thus (λ′)′ = λ.

c) Let λ = [λ1, . . . , λn] ` n and µ = [µ1, . . . , µn] ` n. Then µ is called to
dominate λ, if for all k ∈ {1, . . . , n} we have

∑k
i=1 λi ≤

∑k
i=1 µi; we write

λ E µ. The dominance relation E is a partial order on Pn; if µ 6= λ E µ we
write λCµ, and if moreover λ is maximal with this property we write λCmax µ;
see also Exercise (12.25).

d) We have λCmaxµ if and only if µ = [λ1, . . . , λr−1, λr+1, λr+1, . . . , λs−1, λs−
1, λs+1, . . . , λn], where 1 ≤ r < s ≤ n as well as λr−1 > λr and λs > λs+1, such
that either s = r + 1, or s > r + 1 and λr = λs, see Exercise (12.26):
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If λ Cmax µ, let r := min{i ∈ {1, . . . , n};λi 6= µi} and r < s := min{k ∈
{r + 1, . . . , n};

∑k
i=1 λi =

∑k
i=1 µi} ≤ n. Hence we have λr < µr, and µr ≤

µr−1 = λr−1 if r > 1, as well as λs > µs ≥ µs+1 ≥ λs+1. This yields λ C ν :=
[λ1, . . . , λr−1, λr + 1, λr+1, . . . , λs−1, λs − 1, λs+1, . . . , λn] E µ, hence ν = µ. It
remains to show λr = λs whenever s > r + 1: Assume to the contrary that
λr > λs, and let r < t := 1 + min{i ∈ {r, . . . , s − 1};λi 6= λi+1} ≤ s. If t = s
then λC [λ1, . . . , λr−1, λr+1, λr+1, . . . , λs−2, λs−1−1, λs, . . . , λn]Cν = µ, while
if t < s then λC[λ1, . . . , λt−1, λt+1, λt+1, . . . , λs−1, λs−1, λs+1, . . . , λn]Cν = µ,
a contradiction.

Let conversely µ be as asserted, and let ν = [ν1, . . . , νn] ` n such that λ Cmax

ν E µ. Hence for i 6∈ {r, . . . , s} we have νi = λi. Thus if s = r + 1 we conclude
νr = λr+1 and νr+1 = λr+1−1, thus ν = µ. If s > r+1 and hence λr = λs, then
there are r ≤ r′ < s′ ≤ s such that νi = λi for i 6∈ {r′, s′} as well as νr′ = λr′+1
and νs′ = λs′−1. Since λr′ = νr′−1 ≤ νr′−1−1 = λr′−1−1 < λr′−1, whenever
r′ > 1, and λs′ = νs′ + 1 ≥ νs′+1 + 1 = λs′+1 + 1 > λs′+1 this implies r′ = r
and s′ = s, hence ν = µ in this case as well. ]

e) Finally, λ E µ implies µ′ E λ′: Assume to the contrary that µ′ 6E λ′. Then
for some k ∈ {1, . . . , n} we have

∑j
i=1 µ

′
i ≤

∑j
i=1 λ

′
i for all j ∈ {1, . . . , k − 1},

and
∑k
i=1 µ

′
i >

∑k
i=1 λ

′
i. Hence we have µ′k > λ′k and

∑n
i=k+1 µ

′
i <

∑n
i=k+1 λ

′
i.

Considering Young diagrams shows
∑n
i=k+1 µ

′
i =

∑µ′k
j=1(µj − k) and similarly∑n

i=k+1 λ
′
i =

∑λ′k
j=1(λj − k). Since µj ≥ k for j ∈ {1, . . . , µ′k}, this implies∑λ′k

j=1(λj − k) >
∑µ′k
j=1(µj − k) ≥

∑λ′k
j=1(µj − k), thus λ 6E µ, a contradiction.

(7.5) Proposition. Let G := SLn, for some n ∈ N, and let λ ` n.
a) Let A ∈ Gu. Then we have A ∈ Cλ if and only if for all k ∈ {1, . . . , n} we
have

∑k
i=1 λ

′
i = n− rkK((A− En)k).

b) The set CEλ :=
⋃
µEλ Cµ ⊆ Gu is closed.

Proof. a) For a Jordan block Jm(1) ∈ Km×m, for some m ∈ N, we have
rkK((Jm(1) − Em)k) = m − k for all k ∈ {0, . . . ,m}. Thus for A ∈ Cλ, where
λ = [1a1 , . . . , nan ] ` n, we get

∑n
i=k+1(i − k)ai = rkK((A − En)k) for all k ∈

{0, . . . , n− 1}. Hence the rank vector [rkK((A−En)k); k ∈ {0, . . . , n− 1}] ∈ Qn
is determined by λ, and since the above conditions form a unitriangular system
of n linear equations for [a1, . . . , an] ∈ Qn, the latter conversely is determined by
the rank vector; we anyway have rkK((A−En)0) = n and rkK((A−En)n) = 0.
Finally we have

∑k
i=1 λ

′
i =

∑n
i=1 λ

′
i −

∑n
i=k+1 λ

′
i = n −

∑n
i=k+1(

∑n
j=i aj) =

n−
∑n
j=k+1(j − k)aj = n− rkK((A− En)k), for all k ∈ {1, . . . , n}.

b) Let A ∈ Cλ and B ∈ Cµ, where µ ` n. Then we have µ E λ if and only if
λ′Eµ′, which by the above holds if and only if rkK((A−En)k) ≥ rkK((B−En)k)
for all k ∈ {1, . . . , n}. Thus we have

CEλ = {B ∈ Gu; rkK((B − En)k) ≤ rkK((A− En)k) for all k ∈ {1, . . . , n}}.
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Given k ∈ {1, . . . , n} and m ∈ {0, . . . , n}, we have rkK((B − En)k) ≤ m, if
and only if all ((m+ 1)× (m+ 1))-minors of (B − En)k vanish. The latter are
polynomial conditions in the matrix entries of B, hence CEλ ⊆ G is closed. ]

(7.6) Theorem: The unipotent variety of SLn.
Let G := SLn, for some n ∈ N, and let Cλ, Cµ ⊆ Gu, where λ, µ ` n. Then we
have Cµ � Cλ if and only if µE λ.

Proof. We have already shown that Cµ � Cλ, i. e. Cµ ⊆ Cλ ⊆ G, implies
Cµ ⊆ CEλ, hence µEλ. We prove the converse: Let λ = [λ1, . . . , λl] ` n, where
λl > 0, and let Uλ ≤ Un the subgroup of all block unitriangular matrices

B =


Eλ1 B12 B13 · · · B1l

0 Eλ2 B23 · · · B2l

...
. . . . . . . . .

...
0 · · · 0 Eλl−1 Bl−1,l

0 · · · 0 0 Eλl

 ∈ Un,

where Bij ∈ Kλi×λj for i, j ∈ {1, . . . , l}. It is immediate that Uλ ⊆ Un is closed
and that Uλ ∼= K

N , for some N ∈ N0, hence Uλ is irreducible. Moreover, it is
immediate that rkK((B − En)k) ≤ n−

∑k
i=1 λi, for all k ∈ {1, . . . , n}. Let

Aλ :=


Eλ1 A12 0 · · · 0

0 Eλ2 A23 · · · 0
...

. . . . . . . . .
...

0 · · · 0 Eλl−1 Al−1,l

0 · · · 0 0 Eλl

 ∈ Uλ,

where Ai,i+1 :=
∑λi+1
j=1 Ejj ∈ Kλi×λi+1 for all i ∈ {1, . . . , l − 1}, and where

Ejj is the [j, j]-th matrix unit. It is again immediate that we have equality
rkK((Aλ − En)k) = n −

∑k
i=1 λi, for all k ∈ {1, . . . , n}. This implies that

Aλ ∈ Cλ′ . Moreover, we have rkK((B − En)k) ≤ rkK((Aλ − En)k), for all
k ∈ {1, . . . , n} and all B ∈ Uλ, implying that Uλ ⊆ CEλ′ .
We show that Uλ ⊆ Cλ′ ⊆ CEλ′ : Let still κ : Un ×G→ Gu be the conjugation
map, and let Vλ := im(κ|Uλ×G) ⊆ Gu. Hence Vλ is irreducible and G-invariant,
and thus Vλ is irreducible and G-invariant. Letting Vλ =

⋃
ν∈N Cν , for some

N ⊆ Pn, we get Vλ =
⋃
ν∈N Cν , and hence there is λ̂ ` n such that Vλ = Cλ̂.

Since CEλ′ ⊆ Gu is closed and G-invariant, we have Uλ ⊆ Vλ ⊆ Vλ = Cλ̂ ⊆
CEλ′ , implying λ̂Eλ′. Conversely we have Aλ ∈ Cλ′ ∩Uλ, implying Cλ′ ⊆ Vλ ⊆
Cλ̂, i. e. Cλ′ � Cλ̂, and thus λ′ E λ̂. Hence λ′ = λ̂ and Uλ ⊆ Cλ̂ = Cλ′ .

Now, to prove that µ E λ indeed implies Cµ � Cλ, we may assume that µ :=
[λ1, . . . , λr−1, λr − 1, λr+1, . . . , λs−1, λs + 1, λs+1, . . . , λn] Cmax λ, where 1 ≤
r < s ≤ n. Hence there are representatives diag[Jλr (1), Jλs(1), B] ∈ Cλ and
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diag[Jλr−1(1), Jλs+1(1), B] ∈ Cµ, where m := λr + λs ≤ n and B ∈ Un−m.
Let µ̃ := [λr − 1, λs + 1] ` m and λ̃ := [λr, λs] ` m. Hence we have µ̃ C λ̃
as well as diag[Jλr−1(1), Jλs+1(1)] ∈ Cµ̃ ⊆ (SLm)u and diag[Jλr (1), Jλs(1)] ∈
Cλ̃ ⊆ (SLm)u. It is immediate that SLm → G : A 7→ diag[A,Em−n] is a closed
embedding of algebraic groups, which extends to a closed embedding of affine
varieties SLm × {B} → G : [A,B] 7→ diag[A,B], where B ∈ Un−m is as above.
Thus it suffices to show that Cµ̃ � Cλ̃, i. e. Cµ̃ ⊆ Cλ̃, since then Cµ̃ × {B} ⊆
Cλ̃ × {B} = Cλ̃ × {B} ⊆ Cλ, implying Cµ ⊆ Cλ.

Hence we may assume that λ = [n − k, k] ` n and µ = [n − k − 1, k + 1] `
n, for some k ∈ {0, . . . , bn2 c − 1}. We have λ′ = [1n−2k, 2k] ` n and µ′ =
[1n−2k−2, 2k+1] ` n, which immediately implies Uµ′ ⊆ Uλ′ . Hence we get Aµ′ ∈
Cµ ∩ Uµ′ ⊆ Cµ ∩ Uλ′ ⊆ Cµ ∩ Cλ, where Aµ′ is as above, implying Cµ ⊆ Cλ. ]

(7.7) Corollary. For G := SLn, where n ∈ N, we have dim(Gu) = n(n− 1).

Proof. We have λE [n] for all λ ` n. Hence for J := Jn(1) ∈ Gu we conclude
that JG = C[n] ⊆ Gu is open and dense; the elements of C[n] are called regular
unipotent. The centraliser K-algebra CKn×n(J) := {A ∈ Kn×n;AJ = JA} ⊆
K
n×n is closed, and given as CKn×n(J) = K〈J〉 = K〈J − En〉 = {A = [aij ] ∈
K
n×n; aij = 0 for i > j, aij = a1,j−i+1 for i ≤ j}. Hence it is immediate that

dim(CKn×n(J)) = n. Since CG(J) = CKn×n(J) ∩ V(detn) ⊂ CKn×n(J) is a
hypersurface, we have dim(CG(J)) = n − 1; see also Exercise (12.27). This
yields dim(Gu) = dim(G)− dim(CG(J)) = (n2 − 1)− (n− 1) = n(n− 1). ]

8 Lie algebras

(8.1) Definition. a) LetG be an algebraic group with affine coordinate algebra
K[G]. SinceG =

∐
g∈G◦|GG

◦g is the disjoint union of its irreducible components,
we have a notion of regularity for all g ∈ G◦g ⊆ G. Since G acts transitively
on G by right multiplication ρ, we conclude that G is smooth. Hence we have
g := T1(G) = T1(G◦) and dimK(T1(G)) = dim(G).

b) We consider the Lie algebra DerK(K[G],K[G]) ≤ EndK(K[G]), with Lie prod-
uct [δ, δ′] = δδ′ − δ′δ: The G-action on G by left multiplication λ induces a
K-linear G-action λ∗ on K[G]. Thus we let

L(G) := {δ ∈ DerK(K[G],K[G]);λ∗xδ = δλ∗x for all x ∈ G}

be the Lie subalgebra of all left invariant derivations.

From λ∗xδ(fg) = λ∗x(δ(f)g + fδ(g)) = λ∗xδ(f) · λ∗x(g) + λ∗x(f) · λ∗xδ(g) = δλ∗x(f) ·
λ∗x(g)+λ∗x(f)·δλ∗x(g) = δ(λ∗x(f)·λ∗x(g)) = δλ∗x(fg), for δ ∈ L(G) and f, g ∈ K[G],
we conclude that the condition of being left invariant can be checked on K-
algebra generators of K[G].
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(8.2) Theorem. Let G be an algebraic group.
a) Then the map L(G) → DerK(K[G],K1) : δ 7→ δ•(1) is an isomorphism of
K-vector spaces, where δ•(1) : f 7→ δ(f)(1), for f ∈ K[G].

Its inverse is given by DerK(K[G],K1) → L(G) : γ 7→ γ̂, where the right con-
volution γ̂ is defined by γ̂(f) : G→ K : x 7→ γλ∗x−1(f), for f ∈ K[G].

b) By transport of structure T1(G) ∼= DerK(K[G],K1) =: g becomes a non-
commutative associative algebra, by letting γ·γ′ := (γ⊗γ′)µ∗ ∈ DerK(K[G],K1),
for all γ, γ′ ∈ DerK(K[G],K1), where µ∗ : K[G] → K[G] ⊗K K[G] is the comor-
phism associated to the multiplication µ : G×G→ G.

Thus g becomes a Lie algebra, called the Lie algebra of the algebraic group G.

c) If H is an algebraic group with Lie algebra h, and ϕ : G→ H is a homomor-
phism of algebraic groups, then the differential d1(ϕ) : g→ h is a homomorphism
of non-commutative associative algebras, and thus of Lie algebras.

Proof. a) For γ ∈ DerK(K[G],K1) and f ∈ K[G] we show that γ̂(f) ∈ K[G], im-

plying that γ̂ ∈ HomK(K[G],K[G]): For x ∈ G we have λx−1 : G×{x−1}
id⊗εx−1−→

G×G λ→ G, implying λ∗x−1 : K[G] λ
∗

→ K[G]⊗K K[G]
id⊗ε∗

x−1−→ K[G]⊗K K ∼= K[G],
and thus γλ∗x−1 = (γ ⊗ ε∗x−1)λ∗, implying that x 7→ γλ∗x−1(f) is polynomial.

We have γ̂(fg)(x) = γλ∗x−1(fg) = γ(λ∗x−1(f)λ∗x−1(g)) = γλ∗x−1(f) · λ∗x−1(g)(1) +
λ∗x−1(f)(1) ·γλ∗x−1(g) = (γ̂(f)g+fγ̂(g))(x), for all f, g ∈ K[G] and x ∈ G, hence
γ̂ ∈ DerK(K[G],K[G]). For all f ∈ K[G] and x, y ∈ G we have (λ∗yγ̂(f))(x) =
γ̂(f)(y−1x) = γλ∗x−1y(f) = γλ∗x−1(λ∗y(f)) = (γ̂λ∗y(f))(x), thus γ̂ ∈ L(G).

For all δ ∈ L(G) and f ∈ K[G] and x ∈ G we have ̂δ•(1)(f)(x) = δ•(1)λ∗x−1(f) =

(δλ∗x−1(f))(1) = (λ∗x−1δ(f))(1) = δ(f)(x), thus ̂δ•(1) = δ. Conversely, for all
γ ∈ DerK(K[G],K1) and f ∈ K[G] we have γ̂•(1)(f) = γ̂(f)(1) = γλ∗1(f) = γ(f).

b) We show how multiplication, i. e. concatenation of maps, in L(G) transports
to DerK(K[G],K1): For f ∈ K[G] let µ∗(f) =

∑r
i=1 gi ⊗ hi ∈ K[G] ⊗K K[G],

for some r ∈ N and suitable fi, gi ∈ K[G]. Hence we deduce (γ · γ′)(f) =
(γ ⊗ γ′)(

∑r
i=1 gi ⊗ hi) =

∑r
i=1 γ(gi)γ′(hi).

For all x ∈ G we have λ∗x−1(f)(y) = f(xy) = µ∗(f)([x, y]) =
∑r
i=1 gi(x)hi(y),

for all y ∈ G, and hence λ∗x−1(f) =
∑r
i=1 gi(x)hi. Thus γ̂(f)(x) = γλ∗x−1(f) =∑r

i=1 gi(x)γ(hi), and hence γ̂(f) =
∑r
i=1 gi · γ(hi). This yields (γ̂γ̂′)•(1)(f) =

γ̂γ̂′(f)(1) = γ̂(
∑r
i=1 gi · γ′(hi))(1) =

∑r
i=1 γ(gi)γ′(hi) = (γ · γ′)(f).

c) Let γ ∈ DerK(K[G],K1) and δ := d1(ϕ)(γ) = γϕ∗ ∈ DerK(K[H],K1). We
first show that γ̂ϕ∗ = ϕ∗δ̂: For all h ∈ K[H] and x ∈ G we have γ̂ϕ∗(h)(x) =
γλ∗x−1ϕ∗(h) and ϕ∗δ̂(h)(x) = δ̂(h)(ϕ(x)) = δλ∗ϕ(x)−1(h) = γϕ∗λ∗ϕ(x)−1(h), where
indeed for all y ∈ G we have (λ∗x−1ϕ∗(h))(y) = ϕ∗(h)(xy) = h(ϕ(xy)) =
h(ϕ(x)ϕ(y)) = λ∗ϕ(x)−1(h)(ϕ(y)) = ϕ∗λ∗ϕ(x)−1(h)(y).

Let γ′ ∈ DerK(K[G],K1) and δ′ := d1(ϕ)(γ′) ∈ DerK(K[H],K1). Then for all
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h ∈ K[H] we have (δ · δ′)(h) = (δ̂δ̂′(h))(1) = δδ̂′(h) = γϕ∗δ̂′(h) = γγ̂′ϕ∗(h) =
(γ̂γ̂′ϕ∗(h))(1) = (γ · γ′)ϕ∗(h). ]

Given a closed subgroup H ≤ G, the embedding h ≤ g of their Lie algebras can
be described using the right convolution, see Exercise (12.29).

(8.3) Example: The additive and the multiplicative group.
a) Let G := Ga = K be the additive group, hence K[Ga] ∼= K[X]. Thus we
have dimK(T0(Ga)) = 1, hence T0(Ga) is a commutative Lie algebra. From
∂λ∗−x(X) = ∂(X + x) = 1 = λ∗−x∂(X), for all x ∈ G, we deduce that ∂ is left
invariant, hence L(Ga) = 〈∂〉K.
b) Let G := Gm = KX be the multiplicative group, hence K[Gm] ∼= K[X]X .
Thus we have dimK(T1(Gm)) = 1, hence T1(Gm) is a commutative Lie alge-
bra. We have L(Gm) ∼= T1(Gm) ∼= DerK(K[X]X ,K1) ∼= DerK(K[X],K1) ∼=
DerK(K[X]〈X−1〉,K1) ∼= HomK(〈X − 1〉/〈X − 1〉2,K1). Letting γ := γ(X)∂ ∈
DerK(K[X],K1), where γ(X) = γ(X − 1) := 1, for the right convolution γ̂ asso-
ciated to γ we have γ̂(X)(x) = γλ∗x−1(X) = γ(xX) = x, for all x ∈ G, and thus
γ̂(X) = X. Hence we have γ̂(X)∂ = X∂ ∈ L(Gm) and thus L(Gm) = 〈X∂〉K.

(8.4) Example: General and special linear groups.
a) Let G := GLn be the general linear group, hence K[GLn] ∼= K[X ]detn , where
X = {X11, . . . , Xnn} and detn =

∑
σ∈Sn(sgn(σ) ·

∏n
i=1Xi,iσ ) ∈ K[X ] is the

n-th determinant polynomial. Thus dimK(TEn(GLn)) = n2, and TEn(GLn) ∼=
DerK(K[X ]detn ,KEn) ∼= DerK(K[X ],KEn) ∼= TEn(Kn×n) ∼= K

n×n, where δ =∑n
i=1

∑n
j=1 δ(Xij)∂ij ∈ DerK(K[X ],KEn) is mapped to [δ(Xij)]ij ∈ Kn×n.

For all i, j ∈ {1, . . . , n} we have µ∗(Xij) =
∑n
k=1Xik ⊗ Xkj ∈ K[GLn] ⊗K

K[GLn], hence for δ, δ′ ∈ DerK(K[X ],KEn) we get (δ ·δ′)(Xij) =
∑n
k=1 δ(Xik)⊗

δ′(Xkj), which hence transported to Kn×n yields the usual matrix product.
Hence we have TEn(GLn) ∼= gln := K

n×n as Lie algebras, where the latter is
endowed with the usual Lie product.

b) Let ϕdet : GLn → Gm : A 7→ det(A) be the determinant homomorphism.
Considering GLn ⊆ Kn×n and Gm ⊆ K as principal open subsets, we extend
to the morphism ϕdet : Kn×n → K : A 7→ det(A), and identify TEn(GLn) ∼=
TEn(Kn×n) ∼= K

n×n and T1(Gm) ∼= T1(K) ∼= K. Hence for the differential
we get dEn(ϕdet) : Kn×n → K : [tij ] 7→

∑n
i=1

∑n
j=1 tij · ∂ij(detn)(En). From

∂ij(detn) = (−1)i+j · detn−1({Xkl; k 6= i, l 6= j}) we get ∂ij(detn)(En) = δij ,
implying that dEn(ϕdet) : [tij ] 7→

∑n
i=1 tii = Tr([tij ]) is the usual matrix trace.

c) Let G := SLn ≤ GLn ⊆ Kn×n be the special linear group, hence we have
K[SLn] ∼= K[X ]/〈detn−1〉 ∼= K[X ]detn/〈detn−1〉detn . Thus dimK(TEn(SLn)) =
n2 − 1, and TEn(SLn) = V(∂En(detn−1)) = {[tij ] ∈ Kn×n;

∑n
i=1

∑n
j=1 tij ·

∂ij(detn−1)(En) = 0} = {[tij ] ∈ Kn×n; Tr([tij ]) = 0} ≤ TEn(Kn×n), hence
TEn(SLn) ∼= sln := {A ∈ gln; Tr(A) = 0} is the Lie subalgebra of gln = K

n×n

consisting of the matrices of trace zero.
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For Lie algebras of the examples in Exercise (12.4) see Exercise (12.30). For a
differential of a homomorphism of algebraic groups see Exercise (12.32).

(8.5) Example: Classical groups.
Let J = [bij ] ∈ Kn×n be the matrix of a non-degenerate K-bilinear form on Kn,
and let G = {A ∈ Kn×n;AJAtr = J} ≤ GLn ⊆ Kn×n be the associated classical
group. Letting X = {X11, . . . , Xnn} and frs := (

∑n
i=1

∑n
j=1XribijXsj)− brs ∈

K[X ], where r, s ∈ {1, . . . , n}, we have G = V(frs; r, s ∈ {1, . . . , n}) ⊆ Kn×n.

For k, l ∈ {1, . . . , n} we have ∂kl(frs) = δkr ·
∑n
j=1 bljXsj + δks ·

∑n
i=1Xribil ∈

K[X ], implying ∂kl(frs)(En) = δkrbls + δksbrl. Thus for the total differen-
tials we get ∂En(frs) =

∑n
k=1

∑n
l=1 ∂kl(frs)(En) · Xkl =

∑n
k=1

∑n
l=1(δkrbls +

δksbrl) · Xkl =
∑n
l=1 blsXrl +

∑n
l=1 brlXsl, for all r, s ∈ {1, . . . , n}, implying

[∂En(frs)]rs = [Xij ] · J + J · [Xij ]tr ∈ K[X ]n×n. Hence we have TEn(G) ∼=⋂
r,s∈{1,...,n} ker(∂En(frs)) = {A ∈ gln;AJ + JAtr = 0} =: gJ , where the Lie

algebra structure is inherited from gln.

a) For the symplectic group S2m ≤ GL2m we have J =
[

0 Jm
−Jm 0

]
∈

K
2m×2m. Indexing rows and columns by I := {−m, . . . ,−1, 1, . . . ,m}, we have

J = [δi,−j · j|j| ]ij . Thus for A = [aij ] ∈ K2m×2m we have AJ = [
∑
k∈I aikbkj ]ij =

[ai,−j · j|j| ]ij and JAtr = [
∑
k∈I bikajk]ij = [aj,−i · −i|i| ]ij . Hence A ∈ sp2m :=

{A ∈ gl2m;AJ + JAtr = 0} if and only if ai,−j · j|j| = aj,−i · i|i| , or equivalently

a−i,−j = aji · −i|i| ·
j
|j| , for all i, j ∈ I.

Hence there is no condition for ai,−i, and we obtain
(

2m
2

)
= m(2m−1) K-linearly

independent equations. Thus we have dim(S2m) = dimK(sp2m) = (2m)2 −
m(2m − 1) = m(2m + 1) = n(n+1)

2 , where n = 2m. Moreover, we have S2m ≤
SL2m and thus sp2m ≤ sl2m: Indeed, from a−i,−i = aii · −i|i| ·

i
|i| = −aii, for all

i ∈ I, we for A ∈ sp2m get Tr(A) = 0.

b) For the orthogonal group On ≤ GLn, where char(K) 6= 2, we have J =
Jn = [δi,n+1−j ]ij ∈ K

n×n. Thus for A = [aij ] ∈ K
n×n we have AJ =

[
∑n
k=1 aikbkj ]ij = [ai,n+1−j ]ij and JAtr = [

∑n
k=1 bikajk]ij = [aj,n+1−i]ij . Hence

A ∈ on := {A ∈ gln;AJn + JnA
tr = 0} if and only if ai,n+1−j + aj,n+1−i = 0,

for all i, j ∈ {1, . . . , n}. Hence there is the equation 2ai,n+1−i = 0, implying
ai,n+1−i = 0, and we obtain

(
n
2

)
+n = n(n+1)

2 K-linearly independent equations.
Thus we have dim(On) = dimK(son) = n2 − n(n+1)

2 = n(n−1)
2 .

For the special orthogonal group SOn = ker((ϕdet)|On) ≤ On ≤ GLn we from
[On : SOn] = 2 deduce O◦n = SO

◦
n ≤ SOn ≤ On, hence TEn(SOn) = TEn(On),

and we let on =: son ≤ sln: Indeed, from aii + an+1−i,n+1−i = 0, for all
i ∈ {1, . . . , n}, we for A ∈ son get Tr(A) = 0; see also Exercise (12.31).

(8.6) Example: Orthogonal groups in characteristic 2.
a) Let char(K) = 2 and let O2m ≤ S2m ≤ GL2m be the even-dimensional
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orthogonal group. Indexing rows and columns by I := {−m, . . . ,−1, 1, . . . ,m},
the underlying quadratic form is given by q(x) =

∑m
i=1 xix−i, for all x ∈ K2m.

Hence we have q(x) = xQxtr, where Q =
[

0 Jm
0 0

]
∈ K2m×2m. For A =[

A11 A12

A21 A22

]
∈ K2m×2m, where A11, A12, A21, A22 ∈ Km×m, we have q(xA) =

xAQAtrxtr, where AQAtr =
[
A11JmA

tr
12 A11JmA

tr
22

A21JmA
tr
12 A21JmA

tr
22

]
∈ K2m×2m. Thus we

have A ∈ O2m, i. e. q(xA) = q(x) for all x ∈ K2m, if and only if A11JmA
tr
22 +

A12JmA
tr
21 = Jm ∈ Km×m and both A11JmA

tr
12 ∈ Km×m and A21JmA

tr
22 ∈

K
m×m are symmetric matrices with zero diagonal. Since the K-bilinear form

associated to q is given by J = J2m =
[

0 Jm
Jm 0

]
∈ K2m×2m, we have

A ∈ S2m if and only if
[
A12JmA

tr
11 +A11JmA

tr
12 A12JmA

tr
21 +A11JmA

tr
22

A22JmA
tr
11 +A21JmA

tr
12 A22JmA

tr
21 +A21JmA

tr
22

]
=

AJ2mA
tr = J2m =

[
0 Jm
Jm 0

]
∈ K2m×2m, which hence holds if and only

if A11JmA
tr
22 + A12JmA

tr
21 = Jm ∈ Km×m and both A11JmA

tr
12 ∈ Km×m and

A21JmA
tr
22 ∈ Km×m are symmetric matrices.

Thus comparing the equations collected for membership in O2m ≤ S2m and
S2m, we deduce that the additional equations are [A11JmA

tr
12]rr = 0 for all

r ∈ {−m, . . . ,−1}, and [A21JmA
tr
22]rr = 0 for all r ∈ {1, . . . ,m}. These in turn

are given as
∑m
s=1 ar,−sars = 0 for all r ∈ I. Letting X = {Xkl; k, l ∈ I} and

frr :=
∑m
s=1Xr,−sXrs ∈ K[X ], we for k, l ∈ I have ∂kl(frr) = δkr · Xk,−l ∈

K[X ], implying ∂kl(frr)(E2m) = δkrδk,−l. For the total differentials we get
∂E2m(frr) =

∑
k∈I

∑
l∈I ∂kl(frr)(E2m) ·Xkl = Xr,−r, for all r ∈ I.

Hence we get TE2m(O2m) ∼= o2m := {A = [aij ] ∈ sp2m; ai,−i = 0 for all i ∈ I}.
Comparing with the equations collected for S2m where we had no condition for
ai,−i, we deduce that there are

(
2m
2

)
+ 2m = m(2m+ 1) K-linearly independent

equations, and thus we have dim(O2m) = dimK(o2m) = (2m)2 −m(2m + 1) =
m(2m − 1) = n(n−1)

2 , where n = 2m. Again, for the special orthogonal group
SO2m ≤ O2m we from [O2m : SO2m] = 2 get TE2m(SO2m) = TE2m(O2m), and
we let o2m := so2m ≤ sp2m.

b) Let char(K) = 2 and let On ≤ GLn be the odd-dimensional orthogo-
nal group, where n = 2m + 1 ≥ 3. Indexing rows and columns by I :=
{−m, . . . ,−1, 1, . . . ,m, 0}, the underlying quadratic form is given by q(x) =
x2

0 +
∑m
i=1 xix−i, for all x ∈ Kn, and the K-bilinear form associated to q is given

by J =
[
J2m 0

0 0

]
∈ Kn×n. Let ϕ : On → S2m : A =

[
A′ atr

0 1

]
7→ A′ be

the bijective homomorphism of algebraic groups from (4.5), where the vector
a ∈ K2m is given by a2

i = q(eiA), for all i ∈ I ′ := {−m, . . . ,−1, 1, . . . ,m}.
Thus for A = [aij ] ∈ Kn×n we have A ∈ On if and only if A′ ∈ S2m and
a2
i = q([ai,−m, . . . , ai,m]) =

∑m
j=1 aijai,−j for all i ∈ I ′, as well as a00 = 1 and

a0j = 0 for all j ∈ I ′.
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Letting X ′ := {Xij ∈ X ; i, j ∈ I ′}, in addition to the polynomials in K[X ′] ⊆
K[X ] describing membership of A′ in S2m we get the polynomials fi0 := X2

i0 +∑m
j=1XijXi,−j ∈ K[X ] for all i ∈ I ′, as well as f00 := X00+1 ∈ K[X ] and f0j :=

X0j ∈ K[X ] for all j ∈ I ′. For the total differentials we get ∂En(f0j) = X0j and
∂En(fi0) = ∂i0(X2

i0)(En) ·Xi0 +
∑
j∈I′ Xi,−j(En) ·Xij = Xi,−i for all i, j ∈ I ′.

Thus TEn(On) ∼= o2m+1 := {A =
[
A′ ∗
0 0

]
∈ gl2m+1;A′ ∈ o2m}; indeed a

comparison of dimensions shows dim(O2m+1) = dimK(o2m+1) = dimK(o2m) +
2m = m(2m+ 1) = n(n−1)

2 = dim(S2m).

The comorphism ϕ∗ : K[S2m] → K[On] is induced by the natural embedding
K[X ′] ⊆ K[X ]. Hence on the associated Zariski tangential spaces we have

dEn(ϕ) : o2m+1 → sp2m : A =
[
A′ ∗
0 0

]
7→ A′, implying dEn(ϕ)(o2m+1) =

o2m < sp2m, thus dEn(ϕ) is not an isomorphism of K-vector spaces.

9 The Lang-Steinberg Theorem

(9.1) Lemma. Let G be an algebraic group with Lie algebra g.
a) Identifying T1(G × G) := T[1,1](G × G) ∼= T1(G) ⊕ T1(G) ∼= g ⊕ g, for the
differential of the multiplication map we have d1(µ) : g⊕ g→ g : [t, t′] 7→ t+ t′.
b) For the differential of the inversion map we have d1(ι) = −idg : g→ g.

Proof. a) The identification T1(G×G) ∼= T1(G)⊕T1(G) is given by restricting
γ ∈ DerK(K[G] ⊗K K[G],K1) to K[G] ⊗K {1} and {1} ⊗K K[G], respectively,
and conversely for δ, δ′ ∈ DerK(K[G],K1) we have (δ • δ′)(g ⊗ h) = δ(g)h(1) +
g(1)δ′(h), for all g, h ∈ K[G]; see also Exercise (12.33).

For f ∈ K[G] let µ∗(f) =
∑r
i=1 gi⊗hi, for some r ∈ N and gi, hi ∈ K[G]. Hence

f(x) = f(1 · x) = f(x · 1) =
∑r
i=1 gi(1)hi(x) =

∑r
i=1 gi(x)hi(1), for all x ∈ G,

and thus f =
∑r
i=1 gi(1)hi =

∑r
i=1 gihi(1). Hence for δ, δ′ ∈ DerK(K[G],K1)

we have (δ • δ′)µ∗(f) =
∑r
i=1 δ(gi)hi(1) + gi(1)δ′(hi) = δ(f) + δ′(f).

b) We have µ(idG × ι) = ν1 : G → G × G → G : x 7→ 1. The identification
T1(G×G) ∼= g⊕ g yields d1(idG × ι) = d1(idG)⊕ d1(ι). Since ν∗1 : K 7→ K[G] is
the natural map, this implies 0 = d1(ν1) = d1(µ(idG × ι)) = d1(µ)d1(idG × ι) =
d1(µ)(d1(idG)⊕ d1(ι)) = d1(idG) + d1(ι), hence d1(ι) = −d1(idG) = −idg. ]

(9.2) Theorem. Let G be an algebraic group with Lie algebra g.
a) For x ∈ G let κx : G→ G : y 7→ x−1yx and Ad(x) := d1(κx−1) : g→ g. Then
Ad: G→ AutLie(g) ⊆ GL(g) ∼= GLdim(G) is a rational representation, called the
adjoint representation; we have Z(G) ≤ ker(Ad).
b) We have d1(Ad): g→ EndK(g) : x 7→ ad(x), where ad(x) : g→ g : y 7→ [x, y]
is the left adjoint action.



II Algebraic groups 40

Proof. a) Since κx is an isomorphism of algebraic groups, Ad(x) ∈ GL(g) is a
Lie algebra automorphism. For x, y ∈ G we have Ad(xy) = d1(κy−1x−1) =
d1(κx−1κy−1) = d1(κx−1)d1(κy−1) = Ad(x)Ad(y), implying that Ad: G →
GL(g) is a group homomorphism. We show that Ad is a morphism:

Let G ≤ GLn closed, hence we have g ≤ gln. Letting H := {Â =
[
A 0
∗ ∗

]
∈

GL(gln);A ∈ GL(g)} ≤ GL(gln) closed, we have the morphism of algebraic
groups π : H→ GL(g) : Â→ A. For x ∈ G we have an extension κx−1 : GLn →

GLn, inducing Âd: G → H ≤ GL(gln) : x 7→
[

Ad(x) 0
∗ ∗

]
, hence Ad = πÂd.

Thus extending Âd to GLn it suffices to consider Ad: GLn → GL(gln) ∼= GLn2 :

Letting X := {X11, . . . , Xnn} we for i, j ∈ {1, . . . , n} have κ∗x−1(Xij)(y) =
Xij(xyx−1) = [xyx−1]ij =

∑n
k=1

∑n
l=1 xikyklx

′
lj =

∑n
k=1

∑n
l=1 xikXkl(y)x′lj =

(x · [Xkl] · x−1)ij(y), for all y = [yij ] ∈ GLn, where x = [xij ] ∈ GLn and
x−1 = [x′ij ] ∈ GLn. Hence κ∗x−1([Xij ]) = x·[Xij ]·x−1 ∈ K[X ]n×n. Hence for δ ∈
DerK(K[X ],KEn) we have Ad(x)(δ)(Xij) = δκ∗x−1(Xij) = δ(x · [Xkl] · x−1)ij =
(x · [δ(Xkl)] · x−1)ij . By the identification TEn(GLn) ∼= TEn(Kn×n) ∼= gln,
where δ is mapped to [δ(Xij)]ij ∈ gln, we get Ad(x) : gln → gln : A 7→ xAx−1.
Hence with respect to the K-basis {Eij;kl ∈ Kn

2×n2
; i, j, k, l ∈ {1, . . . , n}} ⊆

EndK(gln), where Ers ·Eij;kl = δirδjsEkl ∈ gln, the matrix of Ad(x) is given as
[xkix′jl]ij;kl = xtr⊗x−1 ∈ Kn2×n2

, the latter being a matrix Kronecker product.

b) We have dEn(Ad) = dEn2 (π)dEn(Âd), where dEn(Âd) : g → TEn2 (H) ≤
TEn2 (GL(gln)) ∼= EndK(gln) ∼= K

n2×n2
, as well as dEn2 (π) : TEn2 (H) ∼= {Â =[

A 0
∗ ∗

]
∈ EndK(gln);A ∈ EndK(g)} → EndK(g) : Â 7→ A. Thus it suffices to

consider Ad: GLn → GL(gln) and its differential dEn(Ad): gln → EndK(gln):

Let σ : gln → EndK(gln) : x 7→ σ(x), where σ(x) : gln → gln : A 7→ xA. Hence
[σ(x)(Eij)]kl = [xEij ]kl = δjlxki, for i, j, k, l ∈ {1, . . . , n}, and for fij;kl :=
δjlXki ∈ K[X ] we get ∂rs(fij;kl)(En) = δjlδkrδis, for r, s ∈ {1, . . . , n}. Thus on
TEn(gln) ∼= gln and TEn(EndK(gln)) ∼= EndK(gln) we have dEn(σ)(Ers) : Eij 7→∑n
k=1

∑n
l=1 ∂rs(fij;kl)(En) · Ekl = δisErj = ErsEij , hence dEn(σ)(x) is left

multiplication with x ∈ gln.

Similarly, τ : gln → EndK(gln) : x 7→ τ(x), where τ(x) : gln → gln : A 7→ Ax
yields [Eijx]kl = δikxjl, and for gij;kl := δikXjl ∈ K[X ] we get ∂rs(gij;kl)(En) =
δikδjrδls. Thus we have dEn(τx)(Ers) : Eij 7→

∑n
k=1

∑n
l=1 ∂rs(gij;kl)(En) ·Ekl =

δjrEis = EijErs, hence dEn(τ)(x) is right multiplication with x ∈ gln.

Now we have Ad = µ(σ× τ)(idG × ι) : G→ G×G→ GL(g)×GL(g)→ GL(g).
This yields dEn(Ad) = dEn2 (µ)(dEn(σ) ⊕ (−dEn(τ)) = dEn(σ) − dEn(τ), and
thus for x ∈ gln we get dEn(Ad)(x) : gln → gln : y 7→ xy − yx = [x, y]. ]

Further differentiation formulae are given in Exercises (12.34) and (12.35).
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(9.3) Definition and Remark. a) Let G be an algebraic group. A homo-
morphism of algebraic groups Φ: G → G, such that d1(Φ): T1(G) → T1(G) is
nilpotent, is called a Frobenius endomorphism on G.

If H ≤ G is a closed subgroup which is Φ-invariant, i. e. we have Φ(V ) ⊆ V ,
then the restriction of Φ|H is a Frobenius endomorphism on H.

b) Let char(K) = p > 0 and q := pf for some f ∈ N. Then Φq : Kn →
K
n : [x1, . . . , xn] 7→ [xq1, . . . , x

q
n] is called the associated geometric Frobenius

morphism on Kn. Hence the set of fixed points (Kn)Φq := {x ∈ Kn; Φq(x) =
x} = F

n
q coincides with the finite set of Fq-rational points of Kn.

From Φ∗q : K[X ] → K[X ] : Xi 7→ Xq
i we for x ∈ Kn and δ ∈ DerK(K[X ],Kx)

as well as i ∈ {1, . . . , n} get dx(Φq)(δ)(Xi) = δΦ∗q(Xi) = δ(Xq
i ) = δ(Xi) ·

(qXq−1
i )(x) = 0, implying dx(Φq) = 0.

Considering GLn = (Kn×n)detn ⊆ Kn×n as a principal open subset, the geomet-
ric Frobenius morphism on Kn×n restricts to the standard Frobenius endomor-
phism Φq : GLn → GLn : [aij ] 7→ [aqij ] on GLn, where we still have d1(Φq) = 0.
Moreover, Φ̃q : GLn → GLn : A 7→ Φq(A−tr) = Φq(A)−tr is a homomorphism of
algebraic groups and we have Φ̃2

q = Φq2 , hence d1(Φ̃q)2 = 0; the morphism Φ̃ is
called the non-standard Frobenius endomorphism on GLn.

c) Given a Frobenius endomorphism Φ on G, let GΦ := {g ∈ G; Φ(g) = g} ≤ G
be the subgroup of fixed points of Φ on G. Iterating yields a chain of closed
subgroups G ≥ Φ(G) ≥ Φ2(G) ≥ . . ., which hence eventually becomes stable.
Thus there is n ∈ N such that H := Φn(G) = Φn+1(G), implying that Φ|H : H→
H is surjective. Since we have GΦ ≤ H, as far as fixed points are concerned we
might restrict ourselves to surjective Frobenius endomorphisms. Moreover if
G ≤ GLn is a Φq-invariant closed subgroup, and we have Φq|G = Φd, for some
d ∈ N, then we have GΦ ≤ GΦd = G

Φq ≤ GLΦq
n , hence GΦ is finite.

For the standard Frobenius endomorphism Φq on GLn we get the general
linear group GLn(Fq) = GL

Φq
n , and since it is immediate that SLn ≤ GLn

as well as S2m ≤ GLn and On ≤ GLn are Φq-invariant, we get the special
linear group SLn(Fq) = SL

Φq
n , the symplectic group Sp2m(Fq) = S

Φq
2m, for

char(K) 6= 2 the general orthogonal groups GO2m+1(Fq) = O
Φq
2m+1 and

GO+
2m(Fq) = O

Φq
2m as well as the special orthogonal groups SO2m+1(Fq) =

GO2m+1(Fq)∩SL2m+1(Fq) = SO
Φq
2m+1 and SO+

2m(Fq) = GO+
2m(Fq)∩SL2m(Fq) =

SO
Φq
2m, and for char(K) = 2 the general orthogonal group GO+

2m(Fq) = O
Φq
2m;

since in the latter case SO2m = O
◦
2m is Φq-invariant we also get the special

orthogonal group SO+
2m(Fq) = SO

Φq
2m.

For the non-standard Frobenius endomorphism Φ̃q on GLn we get the general

unitary group GUn(Fq2) = GL
Φ̃q
n , and since it is immediate that SLn ≤ GLn

and is Φ̃q-invariant, we get the special unitary group SUn(Fq2) := GUn(Fq2)∩
SLn(Fq2) = SL

Φ̃q
n . By a non-standard Frobenius endomorphism on SO2m we
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get the non-split special orthogonal group SO−2m(Fq), see Exercise (12.36).

(9.4) Theorem: Lang (1965), Steinberg (1968).
Let G be a connected algebraic group, and let Φ: G → G be a Frobenius
homomorphism. Then the Lang map L : G→ G : x 7→ x−1Φ(x) is surjective.

Proof. We consider the Φ-conjugation action G×G→ G : [z, x] 7→ x−1zΦ(x).
For z ∈ G we have the orbit map Lz : G→ G : x 7→ x−1zΦ(x) = x−1zΦ(x)z−1z,
where in particular we have L1 = L:

We have Lz = ρzµ(ι × (κz−1Φ)), where κz : G → G : x 7→ z−1xz, implying
d1(Lz) = d1(ρz)(d1(κz−1Φ) − idT1(G)). Letting d ∈ N such that d1(Φ)d = 0,
we have (κz−1Φ)d = κẑ−1Φd, where ẑ := z · Φ(z) · Φ2(z) · · · · · Φd−1(z) ∈ G.
Hence d1(κz−1Φ)d = d1(κẑ−1)d1(Φ)d = 0, implying that d1(κz−1Φ) is nilpotent
as well, and thus d1(κz−1Φ)−idT1(G) : T1(G)→ T1(G) is a K-isomorphism. Since
d1(ρz) : T1(G)→ Tz(G) is a K-isomorphism, this implies that d1(Lz) : T1(G)→
Tz(G) is a K-isomorphism as well. For y ∈ G we have Lz(x) = x−1zΦ(x) =
y−1(xy−1)−1zΦ(xy−1)Φ(y) = y−1Lz(xy−1)Φ(y), for all x ∈ G, thus Lz =
ρΦ(y)λyLzρy−1 . Hence we have dy(Lz) = dz(ρΦ(y)λy)d1(Lz)dy(ρy−1), implying
that dy(Lz) : Ty(G)→ TLz(y)(G) is a K-isomorphism, for any y ∈ G.

Let Vz := Lz(G) ⊆ G, hence Vz is irreducible. Since the regular points of Vz form
a nonempty open subset, and Lz(G) contains a nonempty open subset of Vz,
these sets intersect non-trivially, and hence there is y ∈ G such that Lz(y) ∈ Vz
is regular. Since TLz(y)(G) = im(dy(Lz)) ≤ TLz(y)(Vz) ≤ TLz(y)(G) we deduce
dim(Vz) = dimK(TLz(y)(Vz)) = TLz(y)(G) = dim(G), and thus Vz = G, see also
Exercise (11.32). Being a G-orbit, Lz(G) ⊆ Lz(G) = Vz = G is open. Hence
any two such G-orbits intersect non-trivially, thus Lz(G) = G for all z ∈ G. ]

(9.5) Corollary. Let G be a connected algebraic group with Frobenius homo-
morphism Φ: G→ G. Then GΦ is finite.

Proof. Given x, y ∈ G we have L(x) = L(y) if and only if yx−1 = Φ(yx−1),
which holds if and only if GΦx = G

Φy. Hence the fibres of L are the right
cosets of GΦ in G. Since L is dominant there is z ∈ G such that dim(L−1(z)) =
dim(G)− dim(G) = 0, hence L−1(z) is finite. ]

A different proof, for a Φq-invariant connected closed subgroup G ≤ GLn whose
Frobenius endomorphism Φ fulfils Φd = Φq|G for some d ∈ N, showing that L
is a finite dominant morphism, is given in Exercise (12.38). For not necessarily
connected algebraic groups see Exercise (12.37).

(9.6) Proposition. Let G be an algebraic group with Frobenius endomorphism
Φ. Let Ω be a G-set, and let ϕ : Ω → Ω be Φ-equivariant, i. e. we have
ϕ(ωg) = ϕ(ω)Φ(g), for all ω ∈ Ω and g ∈ G.
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a) If G is connected and Ω is a transitive G-set, then the set of fixed points
Ωϕ := {ω ∈ Ω;ϕ(ω) = ω} is non-empty.
b) If moreover the stabiliser StabG(ω) ≤ G is a connected closed subgroup, for
some and hence all ω ∈ Ω, then Ωϕ is a transitive GΦ-set.

Proof. a) For any ω ∈ Ω we have ϕ(ω) = ωg for some g ∈ G. Letting h ∈ G
such that g = h−1Φ(h), we get ϕ(ωh−1) = ϕ(ω)Φ(h−1) = ϕ(ω)g−1h−1 = ωh−1,
hence ωh−1 ∈ Ωϕ.
b) Let ω ∈ Ωϕ be fixed such that H := StabG(ω) ≤ G is closed and connected.
Then for g ∈ GΦ we have ϕ(ωg) = ϕ(ω)Φ(g) = ωg, hence ωg ∈ Ωϕ. More-
over, for h ∈ H we have ωΦ(h) = ϕ(ω)Φ(h) = ϕ(ωh) = ϕ(ω) = ω, hence H
is Φ-invariant, and thus Φ|H is a Frobenius endomorphism. For ω′ ∈ Ωϕ arbi-
trary let now g ∈ G such that ωg = ω′. Then we have ωg = ω′ = ϕ(ω′) =
ϕ(ωg) = ϕ(ω)Φ(g) = ωΦ(g), hence gΦ(g−1) ∈ H. Thus there is h ∈ H such that
gΦ(g−1) = h−1Φ(h), implying hg = Φ(hg) ∈ GΦ and ω′ = ωhg. ]

A generalisation to the case of unconnected stabilisers is given in Exercise
(12.40). An application to conjugacy classes in GΦ is given in Exercises (12.39)
and (12.41).

10 Generation and connectedness

(10.1) Proposition. Let G be an algebraic group, let Vλ irreducible affine
varieties together with morphisms ϕλ : Vλ → G such that 1G ∈ Wλ := ϕλ(Vλ),
for all λ ∈ Λ, where Λ is an index set. Then H := 〈Wλ;λ ∈ Λ〉 ≤ G is closed
and irreducible. Moreover, there is [λ1, . . . , λr] ⊆ Λ, for some r ∈ N0, and signs
εi ∈ {±1}, for i ∈ {1, . . . , r}, such that H = W ε1

λ1
· · · · ·W εr

λr
.

Proof. We may assume that for any λ ∈ Λ there is λ′ ∈ Λ such that ϕλ′ = ιGϕλ.
For any r ∈ N0 and α := [α1, . . . , αr] ⊆ Λ let ϕα :

∏r
i=1 Vαi → G : [x1, . . . , xr] 7→

x1 · · · · · xr. Letting Wα := Wα1 · · · · ·Wαr = im(ϕα) we conclude that Wα ⊆ G
is closed and irreducible. For β := [β1, . . . , βs] ⊆ Λ, where s ∈ N0, let αβ :=
[α1, . . . , αr, β1, . . . , βs] ⊆ Λ be the concatenation of α and β. Then we have
WαWβ = Wαβ ⊆ G, and moreover even WαWβ ⊆ Wαβ : For h ∈ Wβ the
map Wα → Wαβ : g 7→ gh is continuous, hence we have Wαh = Wαh ⊆ Wαβ ,
and thus WαWβ ⊆ Wαβ . Similarly, from gWβ ⊆ Wαβ for g ∈ Wα we obtain
gWβ ⊆Wαβ , and thus WαWβ ⊆Wαβ .

Choose α ⊆ Λ such that dim(Wα) ∈ N0 is maximal. For any β ⊆ Λ we since
1G ∈ Wβ have Wα = Wα · 1G ⊆ WαWβ ⊆ Wαβ , hence by the maximality of
dim(Wα) we conclude Wα = WαWβ = Wαβ , and Wβ = 1G ·Wβ ⊆ WαWβ =
Wα. In particular, we have WαWα = Wα and Wα

−1 ⊆ Wα, implying that
Wα ≤ G is a closed subgroup, such that Wβ ⊆Wα for all β ⊆ Λ. Finally, there
is ∅ 6= U ⊆ Wα open, and hence dense, such that U ⊆ Wα = im(ϕα). By (5.2)
we have UU = Wα, implying H = Wαα = WαWα = Wα. ]
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(10.2) Theorem. a) The symplectic group S2m is connected, and S2m ≤ SL2m.
b) The special orthogonal group SOn for char(K) 6= 2 is connected.
c) The special orthogonal group SO2m for char(K) = 2 is connected.

Proof. a) Indexing rows and column by I := {−m, . . . ,−1, 1, . . . ,m}, for i, j ∈
I such that j 6= {±i} and t ∈ K let xij(t) := En+t(Eij− i

|i| ·
j
|j| ·E−j,−i) ∈ SL2m

and xi,−i(t) := En + tEi,−i ∈ SL2m be symplectic transvections. Hence for
the unipotent root subgroups Uij := {xij(t); t ∈ K} ≤ SL2m the map Ga ∼=
K → Uij : t 7→ xij(t) is an isomorphism of algebraic groups. It is immediate
that Uij ≤ S2m, and by [12, p.186] we have 〈Uij ; i, j ∈ I, i 6= j〉 = S2m.

b) Since SO1 = {1} and SO2
∼= Gm, see Exercise (12.7), we may assume

n ≥ 3. Hence letting Ωn := [On,On] E On, by [15, Thm.11.45, 11.51] we have
Ωn = [SOn,SOn] = SOn.

Let n = 2m. Indexing rows and columns by I := {−m, . . . ,−1, 1, . . . ,m}, for
i, j ∈ I such that j 6= {±i} and t ∈ K let xij(t) := En + t(Eij −E−j,−i) ∈ SL2m

and Uij := {xij(t); t ∈ K} ≤ SL2m. It is immediate that Uij ≤ SO2m, and by
[12, p.185] we have 〈Uij ; i, j ∈ I, j 6= {±i}〉 = Ω2m.

Let n = 2m+ 1. Indexing rows and columns by I := {−m, . . . ,−1, 0, 1, . . . ,m},
for i, j ∈ I\{0} such that j 6= {±i} and t ∈ K let xij(t) := En+t(Eij−E−j,−i) ∈
SL2m+1 and xi0(t) := En + t(Ei0 − E0,−i) − t2

2 · Ei,−i ∈ SL2m+1, as well as
Uij := {xij(t); t ∈ K} ≤ SL2m+1. It is immediate that Uij ≤ SO2m+1, and by
[12, p.187] we have 〈Uij ; i, j ∈ I, i 6= 0, j 6= {±i}〉 = Ω2m+1.

c) Since Gm ∼= T := {diag[t, t−1]; t ∈ K \ {0}} C O2 ≤ SL2 is connected such
that [O2 : T] = 2, see Exercise (12.7), we deduce that T ≤ O2 is the only
closed subgroup of index 2, and thus SO2 = T ∼= Gm. Hence we may assume
2m ≥ 4, and letting Ω2m := [O2m,O2m] E O2m by [15, Thm.11.45, 11.51] we
have Ω2m = [SO2m,SO2m] = SO2m.

Indexing rows and columns by I := {−m, . . . ,−1, 1, . . . ,m}, for i, j ∈ I such
that j 6= {±i} and t ∈ K let xij(t) := En + t(Eij + E−j,−i) ∈ SL2m and
Uij := {xij(t); t ∈ K} ≤ SL2m; these are the same generators as for the case
n = 2m in (b), and a subset of the generators of S2m in (a). It is immediate
that Uij ≤ O2m, and by [12, p.185] we have 〈Uij ; i, j ∈ I, j 6= {±i}〉 = Ω2m. ]
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III Exercises and references

11 Exercises to Part I

(11.1) Exercise: Polynomial functions.
Let K be a field and X := {X1, . . . , Xn}. For any x = [x1, . . . , xn] ∈ Kn let
ε∗x : K[X ] → K : f 7→ f(x) be the associated evaluation map, and for any
f ∈ K[X ] let f• : Kn → K : x 7→ f(x) be the polynomial function afforded
by f .
a) Show that in general f is not necessarily uniquely determined by f•.
b) Show that if K is infinite then f indeed is uniquely determined by f•.
c) Show that an algebraically closed field is infinite.

(11.2) Exercise: Unions of algebraic sets.
LetK be an algebraically closed field, let X := {X1, . . . , Xn}, and let I, I ′EK[X ].
Show that V(I) ∪ V(I ′) = V(I · I ′) = V(I ∩ I ′).

Proof. See [9, La.1.1.5]. ]

(11.3) Exercise: Hilbert’s Nullstellensatz.
Let K be an algebraically closed field, let X := {X1, . . . , Xn}, let I CK[X ], and
let f ∈ I(V(I)). Assuming the weak form of Hilbert’s Nullstellensatz, show that
f ∈
√
I.

Hint (Rabinowitch, 1929). Consider J := 〈I, 1− fY 〉EK[X ][Y ], where Y
is an indeterminate over K[X ], and show that V(J) = ∅.

Proof. See [4, Thm.5.4]. ]

(11.4) Exercise: Topological spaces.
Let V be a topological space. Show the following:
a) A subset U ⊆ V is irreducible if and only if its closure U ⊆ V is.
b) If V is irreducible, then any open subset ∅ 6= U ⊆ V is dense and irreducible.
c) If V is irreducible and ϕ : V → W is a continuous map, where W is a
topological space, then ϕ(V ) ⊆W is irreducible.
d) V is Hausdorff if and only if the diagonal {[v, v] ∈ V × V ; v ∈ V } ⊆ V × V
is closed, where V × V is endowed with the product topology.
e) If V is Noetherian, then V is Hausdorff if and only if V discrete.
f) If V 6= ∅ is Noetherian, then it is a finite union V = V1 ∪ · · · ∪ Vr, where the
Vi ⊆ V are closed and irreducible. If moreover Vi 6⊆ Vj for all i 6= j, then the
Vi ⊆ V are precisely the maximal irreducible closed subsets, being called the
irreducible components of V .
g) If V 6= ∅ is Noetherian and U ⊆ V is open and dense, then U has a non-empty
intersection with any irreducible component of V .
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Proof. See [11, Exc.1.2.2, La.1.2.3] or [6, Exc.I.1.6, I.1.7]. ]

(11.5) Exercise: Regular maps.
Let K be an algebraically closed field, let V ⊆ Kn and W ⊆ Km be algebraic,
and let ϕ : V → W be regular. Show that ϕ is continuous with respect to the
Zariski topologies on V and W .

Proof. See [6, La.I.3.1]. ]

(11.6) Exercise: Affine varieties.
Let K be an algebraically closed field and let V ⊆ K

n be algebraic. Show
that both the set V and its Zariski topology can be recovered from the affine
coordinate algebra K[V ]:
a) Show that V induces a bijection between {I EK[V ]} and {U ⊆ V closed}.
b) Show that this restricts to a bijection between {I CK[V ] maximal} and V .

Proof. See [11, Prop.1.3.3]. ]

(11.7) Exercise: Morphisms of affine varieties.
Let K be an algebraically closed field, let V,W be affine varieties, let ϕ : V →W
be a morphism and let ϕ∗ : K[W ]→ K[V ] be the associated comorphism.
a) Show that ϕ∗ is injective if and only if ϕ is dominant, i. e. ϕ(V ) ⊆ W is
dense.
b) Show that ϕ∗ is surjective if and only if ϕ is a closed embedding, i. e.
ϕ(V ) ⊆W is closed and ϕ : V → ϕ(V ) is an isomorphism of affine varieties.

Proof. See [11, La.1.9.1] or [9, Prop.2.2.1]. ]

(11.8) Exercise: Morphisms.
Let K be an algebraically closed field.
a) Let ϕ : K2 → K

2 : [x, y] 7→ [xy, y]. Show that ϕ(K2) ⊆ K2 is neither open nor
closed.
b) Let ψ : K → K

2 : x 7→ [x2, x3]. Show that ψ(K) ⊆ K2 is closed, and that
ψ : K→ ψ(K) is bijective, but not an isomorphism of affine varieties.
c) Give an example of a continuous map between affine varieties which is not a
morphism.

Proof. a) b) See [10, Exc.I.4.5] or [7, Ex.I.4.N, I.4.O] or [6, Exc.I.3.2].
c) See [10, Exc.I.1.6]. ]
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(11.9) Exercise: Products of affine varieties.
Let K be an algebraically closed field and let V ⊆ Kn and W ⊆ Km be algebraic.
a) Show that V ×W ⊆ Kn ×Km is algebraic.
b) Let K[X ] and K[Y] be the affine coordinate algebras of Kn and Km, respec-
tively. Show that the affine coordinate algebra of Kn × Km can be identified
with K[X

.
∪ Y], and that the natural map K[X ] ⊗K K[Y] → K[X

.
∪ Y] induces

an isomorphism K[V ]⊗K [W ]→ K[V ×W ] of K-algebras.
c) Show that V ×W is irreducible if and only if both V and W are irreducible.
d) Show that the Zariski topology on V ×W is finer than the product topology
induced by the Zariski topologies on V and W , and give an example where the
former is strictly finer.

Proof. a) b) c) See [9, Sect.1.3.7, Prop.1.3.8]. d) See [11, Exc.1.5.5]. ]

(11.10) Exercise: Principal open subsets.
Let V be an affine variety over K.
a) For 0 6= f, g ∈ K[V ] show that Vfg = Vf ∩ Vg and Vfr = Vf , for all r ∈ N.
Moreover, show that Vf ⊆ Vg if and only if

√
〈f〉 ⊆

√
〈g〉EK[V ].

b) Show that {Vf ⊆ V ; 0 6= f ∈ K[V ]} is a basis of the Zariski topology.

Proof. See [11, Sect.1.3.5, La.1.3.6]. ]

(11.11) Exercise: Open subsets of affine varieties.
Let K be an algebraically closed field and U := K

2\{[0, 0]}. Show that U cannot
be endowed with the structure of an affine variety, such that the inclusion maps
U ⊆ K2 and (K2)f ⊆ U , for all f ∈ K[X1, X2] \ I([0, 0]), are morphisms.

Proof. See [7, Ch.I.4, p.35]. ]

(11.12) Exercise: Localisation.
Let R be a ring and let U ⊆ R be multiplicatively closed such that 1 ∈ U .
a) Show that the localisation RU is a ring, that ν : R → RU : r 7→ r

1 is a
ring homomorphism, and RU has the following universal property: If ϕ : R →
S is a ring homomorphism such that ϕ(U) ⊆ S∗, then there is unique ring
homomorphism ϕ̂ : RU → S such that ϕ̂ν = ϕ.
b) Show that for J E RU we have (ν−1(J))U = J , and conclude that the map
ι : {JERU} → {IER} : J 7→ ν−1(J) is an inclusion-preserving and intersection-
preserving injection, mapping prime ideals to prime ideals.
c) Show that for an ideal I E R we have I ⊆ ν−1(IU ) = {f ∈ R; fu ∈
I for some u ∈ U} E R, conclude that if U ∩ I = ∅ then we have IU 6= RU ,
and that a prime ideal P CR is in im(ι) if and only if U ∩ P = ∅.
d) Let U ⊆ S be multiplicatively closed. Show that RS ∼= (RU )SU .

Proof. See [1, Ch.2.1] or [4, Thm.4.1, 4.3]. ]



III Exercises and references 48

(11.13) Exercise: Integral ring extensions.
Let R ⊆ S be a ring extension.
a) Show that an element s ∈ S is integral over R, if and only if there is an R-
subalgebra of S containing s, which is a finitely generated R-module. Conclude
that R ⊆ S is a finite ring extension, i. e. S is a finitely generated R-algebra
and integral over R, if and only if S is a finitely generated R-module.
b) Show that the integral closure R := {s ∈ S; s integral over R} ⊆ S of R
in S is a subring of S, and that R = R holds. Show that a factorial domain R
is integrally closed, i. e. we have R = R ⊆ S := Q(R).
c) Let R ⊆ S be an integral ring extension, and let S be a domain. Show that
R is a field if and only S is a field.
d) Let R ⊆ S be an integral ring extension, and let J C S and I := J ∩RCR.
Show that dim(I) = dim(J) ∈ N0

.
∪ {∞} and ht(I) = ht(J) ∈ N0

.
∪ {∞}.

Proof. a) b) See [3, Ch.9].
c) See [4, La.9.1] or [1, La.4.16]. d) See [5, Cor.6.10]. ]

(11.14) Exercise: Infinite dimension (Nagata, 1962).
Let K be a field and R := K[Xi; i ∈ N], let d0 := 0, and for i ∈ N let di ∈ N such
that di < di+1, and Pi := 〈Xdi−1+1, . . . , Xdi〉CR, and let U := R\

⋃
i≥1 Pi ⊆ R.

a) Show that R is not Noetherian.
b) Show that the localisation RU is Noetherian.
c) Show that dim(RU ) = sup{di − di−1; i ∈ N} ∈ N

.
∪ {∞}.

Proof. See [1, Exc.9.6]. ]

(11.15) Exercise: Dimension and height.
Give an example of a finitely generated K-algebra, where K is a field, which is
not a domain, possessing an ideal I CR such that dim(I) + ht(I) 6= dim(R).

(11.16) Exercise: Catenary rings.
A finite dimensional Noetherian ring R is called catenary, if for any prime
ideals P ⊆ Q C R all maximal chains P = P0 ⊂ · · · ⊂ Pr = Q of prime ideals
have length r = ht(Q)− ht(P ).

Let K be a field, and let R be a finitely generated K-algebra which is a domain.
Show that R is catenary.

(11.17) Exercise: Dimension of varieties.
Let V be an affine variety over K
a) Show that dim(V ) = 0 if and only if V is a finite set. Which are the
irreducible varieties amongst them?
b) Let V be irreducible. Show that dim(V ) is the maximum of the lengths
d ∈ N0 of chains ∅ 6= V0 ⊂ · · · ⊂ Vd = V of closed irreducible subsets.
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c) Let V be irreducible such that K[V ] is a factorial domain. Show that any
closed subset W ⊂ V having equidimension dim(W ) = dim(V ) − 1 is of the
form W = V(f) for some f ∈ K[V ].
d) Let V,W be irreducible. Show that dim(V ×W ) = dim(V ) · dim(W ).

Proof. a) See [10, Exc.I.3.1]. b) See [10, Exc.I.3.4].
c) See [10, Exc.I.3.6]. d) See [10, Prop.I.3.1]. ]

(11.18) Exercise: Finite morphisms.
Let V,W be affine varieties and let ϕ : V →W be a finite morphism. Show that
there is c ∈ N such that |ϕ−1(y)| ≤ c, for all y ∈W .

Proof. See [9, La.2.2.3]. ]

(11.19) Exercise: Finite morphisms.
Let K be an algebraically closed field, and let ϕ : K2 → K

2 : [x, y] 7→ [xy, y], see
Exercise (11.8).
a) Determine the dimensions of the irreducible components of the fibres of ϕ.
b) Is ϕ a dominant morphism? Is ϕ a finite morphism?

(11.20) Exercise: Constructible sets.
Let V be a topological space. A subset U ∩ W ⊆ V , where U ⊆ V is open
and W ⊆ V is closed, is called locally closed. A finite union of locally closed
subsets is called constructible.
a) Show that the set of constructible subsets is the smallest set of subsets
containing all open subsets and being closed under taking finite unions and
complements.
b) Let V be Noetherian, and let W ⊆ V be constructible. Show that there is
U ⊆W open and dense such that U ⊆W .

Proof. a) See [6, Exc.II.3.18] or [10, Exc.I.4.3]. b) See [9, Exc.2.7.7]. ]

(11.21) Exercise: Chevalley’s Theorem (1955).
Let V,W be affine varieties and let ϕ : V → W be a morphism. Show that ϕ
maps constructible subsets to constructible subsets, see Exercise (11.20).

Hint. It suffices to consider ϕ(V ), reduce to the case V,W irreducible, and
proceed by induction on dim(W ).

Proof. See [6, Exc.II.3.19] or [10, Thm.I.4.4]. ]
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(11.22) Exercise: Open morphisms.
Let V,W be irreducible affine varieties and let ϕ : V →W be a dominant mor-
phism, such that for all Z ⊆W closed and irreducible the preimage ϕ−1(Z) ⊆ V
is equidimensional of dimension dim(Z) + dim(V ) − dim(W ). Show that ϕ is
an open map, i. e. maps open sets to open sets.

Hint. Use Chevalley’s Theorem.

Proof. See [10, Thm.I.4.5]. ]

(11.23) Exercise: Upper semicontinuity of dimension.
Let V,W be irreducible affine varieties and let ϕ : V → W be a dominant
morphism. For any x ∈ V let εϕ(x) ∈ N0 be the maximum of the dimensions of
the irreducible components of ϕ−1(ϕ(x)) ⊆ V containing x. Show that for any
n ∈ N0 the set {x ∈ V ; εϕ(x) ≥ n} ⊆ V is closed.

Proof. See [10, Prop.I.4.4]. ]

(11.24) Exercise: Diagonalisable matrices.
Let K be an algebraically closed field, and let n ∈ N. Show that the set of
diagonalisable matrices is dense in Kn×n.

Hint. Let Dn := {[aij ] ∈ Kn×n; aij = 0 for i 6= j} be the set of diagonal
matrices, and consider fibres of ϕ : Dn ×GLn → K

n×n : [x, g] 7→ xg := g−1xg.

Proof. See [9, Exc.2.7.9]. ]

(11.25) Exercise: Derivations.
Let A be an R-algebra, let U ⊆ A be multiplicatively closed such that 1 ∈ U ,
and let νU : A→ AU be the natural map. Let M be an A-module such that the
elements of U act invertibly on M . Show that ν∗U : DerR(AU ,M)→ DerR(A,M)
is an isomorphism of abelian groups.

Proof. See [4, Exc.25.3]. ]

(11.26) Exercise: Partial derivatives.
Let X := {X1, . . . , Xn} be indeterminates over the perfect field K.
a) Let char(K) = 0. Show that f ∈ K[X ] is constant if and only if ∂i(f) = 0
for all i ∈ {1, . . . , n}.
b) Let char(K) = p > 0, and let f ∈ K[X ] such that ∂i(f) = 0 for all i ∈
{1, . . . , n}. Show that there is g ∈ K[X ] such that f = gp.
c) Let f ∈ K[X ] be irreducible. Show that ∂i(f) 6= 0 for some i ∈ {1, . . . , n}.

Proof. See [9, Exc.1.8.14]. ]
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(11.27) Exercise: Tangent spaces.
Let V and W be affine varieties over K, and let x ∈ V and y ∈ W . Show that
T[x,y](V ×W ) ∼= Tx(V )⊕K Ty(W ) as K-vector spaces.

Proof. See [10, Prop.I.5.1]. ]

(11.28) Exercise: Linear spaces.
Let K be an algebraically closed field, let V ≤ Kn and W ≤ Km be K-subspaces,
and let ϕ : V →W be a K-linear map.
a) Show that V is an irreducible affine variety such that dim(V ) = dimK(V ).
Show that for any x ∈ V there is a natural identification of Tx(V ) with V .
b) Show that ϕ is a morphism of affine varieties. Show that for any x ∈ V using
the above identifications the differential dx(ϕ) can be identified with ϕ.

Proof. See [10, Ch.I.5.4]. ]

(11.29) Exercise: Zariski tangent spaces.
Let V ⊆ Kn be closed, let 0 6= f ∈ K[V ] and let x ∈ Vf . Using the closed
embedding Vf → K

n+1 : y 7→ [y, f(y)−1] give a definition of a Zariski tangent
space Tx(Vf ), and show that it can be naturally identified with Tx(V ).

(11.30) Exercise: Regular points.
Let V be an irreducible affine variety over K.
a) Show that for any x ∈ V we have dimK(Tx(V )) ≥ dim(V ).
b) Show that the set of regular points is an open subset of V .

Hint for (a). Consider the local ring Ox associated to x, and by using the
Nakayama Lemma show that any subset S ⊆ Px generates the maximal ideal
Px as an Ox-module if and only if it generates Px/P2

x as a K-vector space.

Hint for (b). Use the Jacobian matrix.

Proof. a) See [10, Ch.I.5.3]. b) See [10, Thm.I.5.2]. ]

(11.31) Exercise: Singular points.
Let char(K) 6= 2. Show that the following hypersurfaces V(fi) ⊆ K2 and V(gj) ⊆
K

3 are irreducible, and determine their singular points. For the case K := C

draw pictures of the R-rational points V(fi) ∩ R2 and V(gj) ∩ R3.

a)
i) f1 = Y 4 +X4 −X2 ii) f2 = Y 6 −XY +X6

iii) f3 = Y 4 + Y 2 +X4 −X3 iv) f4 = Y 4 −XY 2 −X2Y +X4

b) i) g1 = Z2 −XY 2 ii) g2 = Z2 − Y 2 −X2 iii) g3 = Y 3 +XY +X3

Proof. a) See [6, Exc.I.5.1]. b) See [6, Exc.I.5.2]. ]
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(11.32) Exercise: Dominance criterion.
Let V,W be irreducible affine varieties, and let ϕ : V →W be a morphism such
that for all x ∈ V the differential dx(ϕ) : Tx(V )→ Tϕ(x)(W ) is a K-isomorphism.
Show that ϕ is dominant.

12 Exercises to Part II

(12.1) Exercise: Algebraic groups.
a) Show that the direct product G × G′ of algebraic groups G and G′ again is
an algebraic group.
b) Let G be an algebraic group, let H ⊆ G be a closed subgroup, and let
ϕ : H→ G be the inclusion map. Show that H again is an algebraic group, such
that ϕ is a homomorphism of algebraic groups.

Proof. See [11, Exc.2.1.2]. ]

(12.2) Exercise: Automorphisms of algebraic groups.
Let K be an algebraically closed field.
a) Show that the maps Ga → Ga : x 7→ ax, for a ∈ K \ {0}, are the only
automorphisms of Ga as an algebraic group.
b) Show that id: Gm → Gm : x 7→ x and ι : Gm → Gm : x 7→ x−1 are the only
automorphisms of Gm as an algebraic group.
c) Show that Ga and Gm are not isomorphic.

Proof. See [10, Exc.II.7.1, II.7.4]. ]

(12.3) Exercise: Determinant polynomials.
Let K be a field and let detn ∈ K[X11, X12, . . . , Xnn] be the n-th determinant
polynomial, for some n ∈ N.
a) Show that detn ∈ K[X11, X12, . . . , Xnn] is irreducible.
b) Show that detn−a ∈ K[X11, X12, . . . , Xnn] is irreducible, for any a ∈ K.

(12.4) Exercise: Examples of algebraic groups.
a) Show that the following are algebraic groups, where n ∈ N:
i) The scalar group Zn := {α · En ∈ GLn; 0 6= α ∈ K},
ii) the torus Tn := {[aij ] ∈ GLn; aij = 0 for i 6= j},
iii) the unipotent group Un := {[aij ] ∈ GLn; aij = 0 for i > j, aii = 1},
iv) the Borel group Bn := {[aij ] ∈ GLn; aij = 0 for i > j},
v) the monomial group Nn := {A ∈ GLn monomial}.
b) Show that any finite group is an algebraic group.

Proof. See [11, Exc.2.1.3] or [10, Exc.II.7.7]. ]
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(12.5) Exercise: Projective special linear groups.
Let K be an algebraically closed field, let A := K[X11, X12, X21, X22]/〈det2−1〉
be the affine coordinate algebra of SL2, let B := K〈XijXkl; i, j, k, l ∈ {1, 2}〉 ⊆
A, and let PSL2 be the affine variety having B as its coordinate algebra.
a) If char(K) 6= 2, show that B = {f ∈ A; f(x) = f(−x) for all x ∈ SL2}.
b) For char(K) arbitrary, show that PSL2 is endowed with the structure of an
algebraic group, such that there is a surjective homomorphism ϕ : SL2 → PSL2

of algebraic groups with ker(ϕ) = {±E2}.
c) If char(K) = 2, show that ϕ is an isomorphism of groups, but not an isomor-
phism of algebraic groups.

Proof. See [11, Exc.2.1.4.(3)]. ]

(12.6) Exercise: Symplectic groups.
a) Show that S2 = SL2 ≤ GL2.
b) Let m ∈ N. Show that S2m has a closed subgroup isomorphic to GLm.

Proof. See [14, Prop.3.1]. ]

(12.7) Exercise: Orthogonal groups.
Let K be an algebraically closed field.

a) Let char(K) 6= 2. Show that SO2 =
{[

a 0
0 a−1

]
∈ K2×2; 0 6= a ∈ K

}
.

b) For char(K) arbitrary, give a similar description of O2.
c) Let char(K) 6= 2 and let ω ∈ K such that ω3 = −2. Show that

ϕ :
[

1 t
0 1

]
7→

 1 ωt t2

0 1 −ωt
0 0 1

 and
[

1 0
t 1

]
7→

 1 0 0
ωt 1 0
t2 −ωt 1

 ,
for all t ∈ K, defines a surjective homomorphism of algebraic groups ϕ : SL2 →
SO3, and determine ker(ϕ)C SL2.

Hint for (c). Consider the natural action of SL2 on the homogeneous poly-
nomials of degree 2 in two variables.

Proof. See [9, 1.3.15, 1.3.16. Exc.1.8.19]. ]

(12.8) Exercise: Connectedness.
Determine the identity component and the dimension of the algebraic groups in
Exercises (12.4) and (12.5).

(12.9) Exercise: Closed subgroups.
Show that a closed subset of an algebraic group G, which contains 1G and is
closed under taking products, is a subgroup.
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Proof. See [10, Exc.II.7.5]. ]

(12.10) Exercise: Abelian subgroups.
Let G be an algebraic group, and let H ≤ G be an abelian subgroup. Show that
H ≤ G is an abelian subgroup.

Proof. See [9, Exc.3.6.2]. ]

(12.11) Exercise: Finite normal subgroups.
Let G be a connected algebraic group.
a) Show that a finite normal subgroup of G is central.
b) Let ϕ : G → G be a surjective homomorphism of algebraic groups. Show
that ker(ϕ)EG is finite.

Proof. a) See [11, Exc.2.2.2.(3)]. b) See [11, Exc.4.3.6.(6)b)]. ]

(12.12) Exercise: Normalisers.
Let G be an algebraic group, and let H ≤ G be closed. Show that the nor-
maliser NG(H) := {g ∈ G;Hg = H} ≤ G is a closed subgroup.

Proof. See [10, Cor.II.8.2]. ]

(12.13) Exercise: Translation of functions.
Let G be an algebraic group over K, and let ρ and λ be its regular right and
left translation actions, respectively.
a) Show that K[G] is the union of finite dimensional K-subspaces which are
ρ∗g-invariant for all g ∈ G.
b) Let F ≤ K[G] such that dimK(F ) < ∞. Show that there is F ≤ E ≤ K[G]
such that dimK(E) <∞, which is ρ∗g-invariant and λ∗h-invariant for all g, h ∈ G.
c) Let H ≤ G be a closed subgroup, and let I(H) C K[G] be the associated
vanishing ideal. Show that H = {g ∈ G; ρ∗g(I(H)) ⊆ I(H)} and H = {g ∈
G;λ∗g(I(H)) ⊆ I(H)}.

Proof. a) See [10, Exc.II.8.3]. a) See [10, Exc.II.8.4].
c) See [11, La.2.3.6] or [10, La.II.8.5]. ]

(12.14) Exercise: linearisation.
Let G be an algebraic group, and let λ be its regular left translation action.
Show that for all g ∈ G and the associated semisimple and unipotent parts
gs ∈ G and gu ∈ G, respectively, we have (λ∗g)s = λ∗gs and (λ∗g)s = λ∗gs .

Proof. See [11, Exc.2.4.10.(1)]. ]
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(12.15) Exercise: Linearisation of actions.
Let G be an algebraic group over K acting morphically on V . Show that there is
a closed embedding ψ : V → K

n and an algebraic representation ϕ : G→ GLn,
for some n ∈ N, such that ψ(xg) = ψ(x)ϕ(g), for all x ∈ V and g ∈ G.

Proof. See [11, Exc.2.3.7]. ]

(12.16) Exercise: Additive Jordan decomposition.
Let A ∈ Kn×n and let As, An ∈ Kn×n be its semisimple and its nilpotent part,
respectively. Show that there are f, g ∈ K[T ] such that f(0) = 0 = g(0) and
such that As = f(A) and An = g(A).

Proof. See [11, Prop.2.4.4(ii)] or [10, La.VI.15.1.A]. ]

(12.17) Exercise: Jordan decomposition.
Let K be an algebraically closed field.
a) Let char(K) = p > 0. Show that A ∈ GLn is unipotent if and only if
Ap

k

= En, for some k ∈ N0.
b) Let char(K) = 0. Show that any semisimple element of GLn has finite order.
c) Let K := Fq be the algebraic closure of the finite field Fq. Give a description
of the Jordan decomposition in GLn in terms of element orders.

Proof. a) See [10, Ch.VI.15.1]. b) See [10, Exc.VI.15.5]. c) See [9, Ch.3.5]. ]

(12.18) Exercise: Semisimple and unipotent elements.
Determine the subsetsGs andGu of the additive groupGa and the multiplicative
group Gm.

(12.19) Exercise: Special linear group SL2.
a) Show that any element of SL2(K) is conjugate to precisely one of the following
elements, where 0 6= x ∈ K:

±
[
x 0
0 x−1

]
or

[
1 1
0 1

]
.

b) Determine the Jordan decomposition of the elements of SL2(K). Is SL2(K)s
a subgroup? Is SL2(K)u a subgroup?
c) Determine the centralisers of the elements of SL2(K). Which are connected?

Proof. See [9, Exc.2.7.12]. ]

(12.20) Exercise: Semisimple elements.
Give examples showing that the set Gs of semisimple elements of an algebraic
group G is neither necessarily closed nor necessarily open.
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(12.21) Exercise: One-dimensional groups.
Let G be a connected algebraic group such that dim(G) = 1.
a) Show that G is commutative.
b) Show that if G is not unipotent then G ∼= Gm as algebraic groups.

Hint for (a). For g ∈ G consider the morphism ϕg : G→ G : x 7→ gx = x−1gx.

Proof. See [11, La.2.6.2]. ]

(12.22) Exercise: Orbits.
Let G be an algebraic group acting morphically on V and let x ∈ V . Show that
x(G◦) ⊆ xG is open and closed.

Proof. See [9, Exc.2.7.10]. ]

(12.23) Exercise: Orbit closure relation.
a) Determine the orbits of the natural action of GLn(K) on Kn, where n ∈ N.
How are they related with respect to the partial order �?
b) How are the conjugacy classes of SL2(K) related with respect to the partial
order �?

Proof. a) See [10, Exc.II.8.1]. ]

(12.24) Exercise: Kostant-Rosenlicht Theorem.
Let G be an algebraic group acting morphically on V and let x ∈ V .
a) Let W := xG ⊆ V . Show that K[W ]G = K · 1K[W ].
b) Let G be unipotent. Show that xG ⊆ V is closed.

Hint for (b). For U := xG ⊆ xG =: W consider I(W \ U)EK[W ], and use
local finiteness and trigonalisability.

Proof. b) See [8, Prop.I.4.10] or [11, Exc.4.3.6.(3)]. ]

(12.25) Exercise: Hasse diagrams.
Let n ∈ N0. The Hasse diagram of the dominance partial order E on Pn
is defined as the directed graph on the vertex set Pn, having a directed edge
λ→ µ if and only if λCmax µ.
a) Draw the Hasse diagrams for n ≤ 8. For which n ∈ N0 is E a total order?
b) Show that the lexicographical order on Pn is a total order refining the
dominance partial order.

(12.26) Exercise: Dominance partial order.
Let λ = [λ1, . . . , λn] ` n. Show that for µ ` n we have λ Cmax µ if and
only if µ = [λ1, . . . , λr−1, λr + 1, λr+1, . . . , λs−1, λs − 1, λs+1, . . . , λn], for some
1 ≤ r < s ≤ n such that λr−1 > λr and λs > λs+1, and such that either
s = r + 1 or s > r + 1 and λr = λs.
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Proof. See [13, Thm.1.4.10]. ]

(12.27) Exercise: Centralisers of unipotent elements.
Let G := SLn for some n ∈ N, and let λ = [λ1, . . . , λl] ` n, where λl > 0. For
B ∈ Cλ show that dim(CG(B)) = n− 1 + 2 ·

∑l
i=1(i− 1)λi.

Proof. See [9, Prop.2.6.1]. ]

(12.28) Exercise: Restricted Lie algebras.
Let K be an algebraically closed field such that char(K) = p > 0, let A be a
Lie K-algebra, and for all x ∈ A let ad(x) : A→ A : y 7→ [y, x] be the associated
adjoint action. Then A is called a restricted Lie algebra, if there is a p-power
operation [p] : A → A : x 7→ x[p] having the following properties: We have
ad(x[p]) = ad(x)p and (λx)[p] = λpx[p] as well as (x + y)[p] = x[p] + y[p] +∑p−1
i=1

1
i · αi(x, y), for all x, y ∈ A and λ ∈ K, where αi(x, y) ∈ A is defined by

the K-linear expansion ad(λx+ y)p−1(x) =
∑p−1
i=1 λ

iαi(x, y).

a) If A is a restricted Lie algebra, determine (x + y)[p] ∈ A for commuting
elements x, y ∈ A. Show that any non-commutative K-algebra A becomes a
restricted Lie algebra with respect to [p] : A→ A : x 7→ xp.
b) Given any K-algebra A, show that DerK(A,A) becomes a restricted Lie alge-
bra with respect to [p] : A → A : δ 7→ δp. Show that the Lie algebra associated
to an algebraic group is restricted. Determine the p-power operation on the Lie
algebras associated to the groups Ga and Gm.
c) Given a homomorphism ϕ : G→ H of algebraic groups, show that d1(ϕ) : g→
h, where g and h are the associated Lie algebras, is a homomorphism of restricted
Lie algebras, i. e. we have d1(ϕ)(x[p]) = d1(ϕ)(x)[p] for all x ∈ g.

Proof. See [8, Ch.I.3.1] or [11, Ch.3.3] or [10, Exc.III.9.3]. ]

(12.29) Exercise: Right convolution.
Let G ≤ GLn be a closed subgroup with Lie algebra g ≤ gln.
a) Let H ≤ G be a closed subgroup having vanishing ideal I(H)CK[G]. Show
that L(H) = {δ ∈ L(G); δ(I(H)) ⊆ I(H)}.
b) Let K[X ]detn denote the affine coordinate algebra of GLn, let I(G)CK[X ]detn

be the vanishing ideal of G, and let J := I(G) ∩ K[X ] C K[X ]. Show that
G = {x ∈ GLn; ρ∗x(J) ⊆ J} and g = {x ∈ gln; x̂(J) ⊆ J}.

Proof. a) See [10, La.III.9.4] or [8, Prop.I.3.8].
b) See [10, Exc.III.9.1] or [8, Cor.I.3.8]. ]

(12.30) Exercise: Lie algebras of algebraic groups.
Determine the Lie algebras associated to the algebraic groups in Exercise (12.4).

Proof. See [11, Exc.3.3.10.(2)]. ]
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(12.31) Exercise: Skew-symmetric matrices.
Let K be an algebraically closed field such that char(K) 6= 2, and let S := {A ∈
gln;A = −Atr} be the set of all skew-symmetric matrices. Show that S is a
Lie algebra, which is isomorphic to the Lie algebra on.

Proof. See [11, Exc.3.3.10.(4)]. ]

(12.32) Exercise: Differential of homomorphisms.
Determine the differential dE2(ϕ) of the homomorphism ϕ : SL2 → PSL2 of
algebraic groups in Exercise (12.5). Is dE2(ϕ) an isomorphism?

Proof. See [11, Exc.3.3.10.(3)]. ]

(12.33) Exercise: Differential of multiplication.
Let G be an algebraic group with multiplication map µ : G × G → G, and let
x, y ∈ G. Identifying T[x,y](G×G) with Tx(G)⊕Ty(G), determine the differential
d[x,y](µ) : Tx(G)⊕ Ty(G)→ Txy(G).

(12.34) Exercise: Differential of the commutator map.
Let G be an algebraic group with Lie algebra g.
a) For x ∈ G let γx : G→ G : y 7→ y−1x−1yx be the commutator map. Show
that d1(γx) = −Ad(x)− idg : g→ g.
b) For y ∈ G let κy : G → G : x 7→ x−1yx be the associated orbit map of the
conjugation action. Derive a formula for the differential d1(κy) : g→ Ty(G).

Proof. See [10, Prop.III.10.1.(c)] or [8, I.3.16]. ]

(12.35) Exercise: Differential of right translation.
Let G be an algebraic group with Lie algebra g, let E ≤ K[G] be a K-subspace
such that n := dimK(E) <∞, which is ρ∗g-invariant for all g ∈ G, and let ρ : G→
GL(E) be the rational representation induced by right multiplication. Identi-
fying T1(GL(E)) ∼= gln with EndK(E), show that d1(ρ) : g→ EndK(E) : γ 7→ γ̂,
where γ̂ is the right convolution associated to γ.

Proof. See [10, III.10.2] or [8, Prop.I.3.11]. ]

(12.36) Exercise: Non-split orthogonal groups.
Let K be an algebraically closed field such that char(K) = p > 0, let q := pf

for some f ∈ N, and let Φq be the standard Frobenius endomorphism on GL2m.
Moreover, let

T :=

 Em−1 0 0
0 J2 0
0 0 Em−1

 ∈ K(2m)×(2m).
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Show that T ∈ O2m ≤ GL2m, and that Φ′q : SO2m → SO2m : A 7→ Φq(T−1AT )
is a Frobenius endomorphism on SO2m.

The fixed point set SO−2m(Fq) = SO
Φ′q
2m is called the associated non-split special

orthogonal group.

Hint. Distinguish the cases p = 2 and p > 2.

Proof. See [9, Ex.4.1.10.(d)]. ]

(12.37) Exercise: Lang map.
Let G be a not necessarily connected algebraic group with Frobenius endomor-
phism Φ, and let z ∈ G. Describe the image of Lz : G→ G : x 7→ x−1zΦ(x).

Proof. See [8, Thm.V.16.3]. ]

(12.38) Exercise: Lang-Steinberg Theorem.
Let K be an algebraically closed field such that char(K) = p > 0, let q := pf for
some f ∈ N, let G ≤ GLn be a Φq-invariant connected closed subgroup, let Φ
be a Frobenius endomorphism on G such that Φd = Φq|G for some d ∈ N, and
let L : G→ G : x 7→ x−1Φ(x) be the Lang map.
a) From G

Φ := {g ∈ G; Φ(g) = g} being finite deduce that L is dominant.
b) Show that K[G] is a finitely generated L∗(K[G])-module, i. e. L is finite.
c) Deduce that L is surjective.

Proof. See [9, Thm.4.1.12]. ]

(12.39) Exercise: Conjugacy classes.
a) Let G be a connected algebraic group with Frobenius endomorphism Φ, let
C ⊆ G be a Φ-invariant conjugacy class of G, and let g ∈ C such that CG(g) is
connected. Show that CΦ ⊆ GΦ is non-empty conjugacy class of GΦ.
b) Let K be an algebraically closed field such that char(K) = p > 0, let q := pf

for some f ∈ N, let Φq be the standard Frobenius endomorphism on GLn, and
let A ∈ GLn(Fq). Show that CGLn(A) is connected. In the light of (a), which
well-known fact from linear algebra is recovered?

Hint for (b). Consider {C ∈ Kn×n;AC = CA}.

Proof. a) See [11, Exc.3.3.17.(1)]. b) See [9, Ex.4.3.6]. ]

(12.40) Exercise: Component groups.
Let G be a connected algebraic group with Frobenius endomorphism Φ. Let Ω
be a transitive G-set, and let ϕ : Ω→ Ω be Φ-equivariant. Moreover, let ω ∈ Ω
and let H := StabG(ω) ≤ G be closed.
a) Show that Φ induces a group homomorphism on the finite component
group C(ω) := H/H◦.
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b) Show that the Φ-conjugacy classes of C(ω), i. e. the orbits of the Φ-
conjugation action C(ω) × C(ω) → C(ω) : [g, h] 7→ h−1gΦ(h), are in natural
bijection with the GΦ-orbits in Ωϕ.

Proof. See [9, 4.3.4, Thm.4.3.5]. ]

(12.41) Exercise: Conjugacy classes of SL2.
Let K be an algebraically closed field such that char(K) = p > 0, let q := pf for
some f ∈ N, let Φq be the standard Frobenius endomorphism on SL2.

Determine the Φ-invariant conjugacy classes of SL2, see also Exercise (12.19).
How do their Fq-rational points split into conjugacy classes of SL2(Fq), and
into GL2(Fq)-orbits? Determine the associated component groups and their
Φ-conjugacy classes, see Exercise (12.40).
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