
Abstract

In this paper the 5-modular decomposition matrix of the
principal block of the sporadic simple Conway group Co3 is
determined. The results are obtained by a combination of
character theoretic methods and explicit module construc-
tions and analyses, especially condensation techniques, with
the assistance of the computer algebra systems GAP, MOC,
and MeatAxe.
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1 Introduction and results

1.1 Introduction

In this paper we determine the 5-modular decomposition
matrix for the principal block of the sporadic simple Conway
group Co3. The decomposition matrices for the other 5-
block of positive defect and for all the 7-, 11- and 23-blocks
have been computed in [7]; those for the 2-blocks have been
found in [18] up to a few conjectural entries, which have
been verified in [16]; and those for the 3-blocks have been
computed in [8], although not published yet. Thus, this
paper completes the determination of all the decomposition
matrices for Co3.

This paper is part of the larger project to determine the de-
composition matrices, or equivalently the Brauer character
tables, of the almost simple groups contained in [2]. Up to
the sporadic simple McLaughlin group and its derivatives,
these have been published in [9]. The results in this paper,
see Section 1.2, as well as the other results mentioned above,
are intended to be included in a sequel to [9]. They are also
included, like all the Brauer character tables in [9] and the
many other known decomposition matrices not contained
there, in the character table library of the GAP system [17].
The work described here was begun by the author in [13],
but not successfully completed then, since at that time the
necessary computational devices were not yet available.

In recent years, a whole series of methods has been devel-
oped for the practical computation of decomposition num-
bers. Those which have been applied in this paper will be
commented on in Section 1.3. Their effectiveness is best
shown by their application to genuine research problems,
which is one of the aims of this paper. We would like to
remark that, additionally, these methods have been proven
very useful for many different other problems in computa-
tional representation theory. E. g., on the character theory
side, the notion of basic sets of characters, which was de-
veloped as a theoretical concept for the MOC system [6],
has become important in the modular representation theory
of finite groups of Lie type as well. Furthermore, one of
the most powerful techniques for the explicit construction
and analysis of modules, condensation, which originally was
invented in [19] as a workhorse for the determination of de-
composition numbers and was only applicable to permuta-
tion modules, can now be applied to a much broader range
of modules and is central for many other uses, e. g., for
the computation of submodule lattices, to establish explicit
versions of Morita contexts, the computation of endomor-

phism rings and the computation of projective resolutions
and Gabriel quivers.

1.2 Results

The sporadic simple Conway group Co3 has two 5-blocks of
positive defect and 11 irreducible ordinary characters of de-
fect 0. The non-principal block of positive defect has defect
1, for completeness we state that it contains 5 irreducible
ordinary characters and 4 irreducible Brauer characters; its
decomposition matrix is already given in [7, page 203]. The
principal block has defect 3, it contains 26 irreducible ordi-
nary characters and 18 irreducible Brauer characters, whose
degrees are

1, 23, 230, 253, 896, 896∗, 1771a, 1771b, 3520, 5290, 20608,
20608∗, 22309, 26335, 52624, 25255, 55705, 53383.

Its decomposition matrix is given in Table 1; the degrees
of the irreducible ordinary characters indexing the rows are
included in Table 6, their numbering coincides with the one
given in [2, 9] and also with that given in GAP. In particular,
we note that the decomposition matrix of the principal block
is of wedge shape, i. e. , after a suitable reordering of the
rows and columns it is lower unitriangular. The rest of the
present paper is devoted to outline the strategy and the
methods how this decomposition matrix can be determined.

1.3 Methods

The results of this paper are obtained by a combined, inter-
dependent use of character theoretic methods and explicit
module constructions and analyses. We emphasize that it is
the interdependent use of these methods which is successful.
The general strategy is to first pursue character theoretic
methods to obtain a certain approximation to the decompo-
sition matrix, which then provides hints which modules to
construct. Their analysis in turn leads to improvements to
the approximation of the decomposition matrix, and so on.

The character tables used have been taken from the charac-
ter table library of the GAP system [17], which also provides
many useful tools to deal with ordinary character tables, or
more generally with class functions with values in cyclotomic
fields, and subgroup fusions. The computations involving
Brauer characters, in particular decomposition into basic
sets, filtering out non-positive decompositions and finding
improved basic sets, have been performed using the MOC
system [6]. The results thus obtained are written down in
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Table 1: The decomposition matrix for the principal 5-block
of Co3

χ

1 1 . . . . . . . . . . . . . . . . .
2 . 1 . . . . . . . . . . . . . . . .
3 . . . 1 . . . . . . . . . . . . . .
4 . 1 1 . . . . . . . . . . . . . . .
6 . . . . 1 . . . . . . . . . . . . .
7 . . . . . 1 . . . . . . . . . . . .
8 . . . . . . 1 . . . . . . . . . . .
9 . 1 1 . . . . 1 . . . . . . . . . .

10 . . . . . . . . 1 . . . . . . . . .
11 . . . . . . . . 1 . . . . . . . . .
13 1 . . 1 . . . . . 1 . . . . . . . .
14 1 . . . 1 1 1 . 1 . . . . . . . . .
15 2 . . . 1 1 . 1 . 1 . . . . . . . .
18 . . . . . . . . . . 1 . . . . . . .
19 . . . . . . . . . . . 1 . . . . . .
21 . . . 1 . . . . 1 . . . 1 . . . . .
25 . . . 1 . . . . . 1 . . . 1 . . . .
27 2 . . . 1 1 1 1 . . . . . . 1 . . .
30 . . . . . . . . . . . . . . . 1 1 .
32 . 1 1 1 . . . . . . 1 1 . 1 . 1 . .
33 1 1 . 1 1 1 1 . 1 . 1 1 . . . 1 1 .
34 2 1 1 1 1 1 . 1 . 1 1 1 . 1 1 . . .
36 1 1 . 1 1 1 . . 1 1 1 1 . 1 1 . . 1
38 1 . . 1 1 1 . . 1 . 1 1 1 1 1 1 . 1
40 2 1 . 2 2 2 . . 2 . 2 2 1 . 1 1 1 .
42 2 1 . 1 2 2 1 . 2 . 2 2 . 1 1 1 1 .

terms of certain basic sets of projective and Brauer charac-
ters. The notion of basic sets is one of the central concepts
of MOC, for more details see [6].

Explicit module constructions are performed using the
MeatAxe system [14, 15]. For the structural analysis of ex-
plicitly given modules, we make use of the notions and tech-
niques developed in [11], which we also assume the reader
to be familiar with. One of the main techniques used for
the construction and analysis of modules is the condensa-
tion method, which in recent years has become one of the
most valuable tools in computational representation theory
and has been implemented by different authors for differ-
ent kinds of modules. We will use the implementations [15]
for permutation modules and [12] for tensor product mod-
ules, where the former is part of the MeatAxe and the latter
is available as the TensorCondense package of the MeatAxe.
We continue with a few comments on the condensation tech-
nique as it is applied here.

1.4 Fixed point condensation

As many interesting modules are too large to be constructed
directly, one tries to ‘condense’ these modules to smaller
ones which still reflect enough of the original structure but
can be handled on a computer. The following functorial de-
scription, following [5], shows which structural information
is retained and which is lost under condensation.

Let k be a field, A be a finite-dimensional k-algebra, e ∈ A
be an idempotent and mod–A be the category of finitely gen-
erated unital right A-modules. Then the condensation func-
tor with respect to e is given as Ce := ?⊗AAe : mod–A −→
mod–eAe . Under this functor, M ∈ mod–A is mapped to
M ⊗A Ae ∈ mod–eAe. The latter can be identified with the
subset Me ⊆M . Using this identification, a homomorphism
α ∈ HomA(M,N) is mapped to α|Me ∈ HomA(Me,Ne).
Furthermore, we have Ce ∼= HomA(eA, ?) as functors, hence

Ce is an exact functor. Now let e =
∑

S

∑nS
j=1

e
(j)
S ∈ A

be an orthogonal decomposition into primitive idempotents,
where S runs through the isomorphism types of simple A-

modules, for each summand we have e
(j)
S A/Rad(e

(j)
S A) ∼= S

and nS ∈ N0. By nS = 0 we indicate that this type of idem-

potent does not occur in the above decomposition. Then we
have dimk(Se) = nS · dimk(EndA(S)).

In the present paper, this is applied in the following spe-
cial case. Let G be a finite group and A := k[G] be its
group algebra over k. Let K ≤ G be a subgroup such that
|K| 6= 0 ∈ k; in the sequel K is called the condensation
subgroup. Then e = eK := 1

|K| ·
∑

g∈K g ∈ k[K] ⊆ k[G]

is the centrally primitive idempotent of k[K] belonging to
the trivial K-module. We have e · k[G] ∼= (1K)G, where
(1K)G is the permutation representation of G on the cosets
of K. Hence by the adjointness of tensor product and
homomorphism functors, see [3, Theorem 2.19.], we have
Me ∼= HomG((1K)G,M) ∼= HomK(1K ,MK) ∼= FixM (K) as
vector spaces, where M is a k[G]-module, MK denotes its re-
striction to k[K] and FixM (K) ⊆M consists of the elements
of M being fixed by K, which is the name-giving property.
As mod–k[K] is a semisimple category the dimension of the
condensed module of M can be computed as the ordinary
character theoretic scalar product of the trivial K-character
and the restriction to K of the Brauer character of M .

1.5 Condensation algebras

In applying the condensation technique we are faced with
the following problem. If A is generated as a k-algebra by
the subset A ⊆ A, we let C := 〈eae; a ∈ A〉k−algebra ≤ eAe.
The algebra C is called the condensation algebra, whereas
the algebra eAe is called the Hecke algebra; for historical
reasons the latter name has become standard. But now the
condensation subalgebra C does not necessarily equal eAe,
it may be a proper subalgebra of eAe. As only the action of
condensed elements eae on condensed modules can be com-
puted explicitly, we are faced with the task to analyse con-
densed modules with respect to their structure as C-modules
and then to draw conclusions about their eAe-module struc-
ture from this analysis.

For a k[G]-module M , the following theorem provides one
tool to ensure the existence of certain submodules of Me as
an ek[G]e-module. For the necessary notions and a proof,
see [10, Definition I.17.1.,Theorem I.17.3.].

1.6 Theorem. (Zassenhaus and others)

Let (K,R, k) be a modular system for G and let M be an
R-free R[G]-module of finite R-rank with ordinary character
χ, such that χ = χ′+χ′′ as ordinary characters. Then there
exists an R-pure R[G]-submodule N ≤ M with character
χ′.

2 Basic sets of characters

2.1 Subgroup fusions

In the sequel, we will deal with several subgroups of Co3.
We have to find a compatible set of subgroup fusions for
the character tables of these subgroups into the character
table of Co3. This is done using the character table library
in GAP, its functions dealing with subgroup fusions and a
consideration of character table automorphisms. The order-
ing of conjugacy classes of elements of the occuring groups
and of their irreducible ordinary and Brauer characters we
use here coincides with the one given in [2, 9], as far as the
tables are contained there, and also with that given in GAP.
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Table 2: PS1

χ Ψ1

1 1 . . . . . . . . . . . . . . . . .
2 . 1 . . . . . . . . . . . . . . . .
4 . 1 1 . . . . . . . . . . . . . . .
3 . . . 1 . . . . . . . . . . . . . .
6 . . . . 1 . . . . . . . . . . . . .
7 . . . . . 1 . . . . . . . . . . . .
8 . . . . . . 1 . . . . . . . . . . .
9 . 1 1 . . . . 1 . . . . . . . . . .

10 . . . . . . . . 1 . . . . . . . . .
13 1 . . 1 . . . . . 1 . . . . . . . .
18 . . . . . . . . 1 . 1 . . . . . . .
19 . . . . . . . . 1 . 1 1 . . . . . .
21 . 1 1 1 . . . . 1 . 1 1 1 . . . . .
25 . . . 1 . . . . . 1 . 1 . 1 . . . .
27 2 . . . 2 2 1 1 1 . . . . . 1 . . .
32 . 1 1 1 . . . . 2 . 2 2 . 1 . 1 . .
30 . . . . . . . . 2 . 1 . . . . 1 1 .
36 2 2 . 2 3 3 . . 5 1 3 5 . 2 1 . . 1

Table 3: Origin of PS1

origin
Ψ1

1 (Φ1a)35:(2×M11)

Ψ1
2 (5d)

31+4
+ :4S6

Ψ1
3 (10c)35:(2×M11)

Ψ1
4 Φ4025 ⊗ 23

Ψ1
5 (Φ16a)35:(2×M11)

Ψ1
6 (Φ16a∗)35:(2×M11)

Ψ1
7 31625b⊗ 23

Ψ1
8 (1750a)McL:2

Ψ1
9 (Φ8f )

31+4
+ :4S6

origin
Ψ1

10 (Φ230a)McL:2

Ψ1
11 (Φ6490)McL:2

Ψ1
12 (Φ16b∗)35:(2×M11)

Ψ1
13 (4500b)McL:2

Ψ1
14 9625⊗ 275

Ψ1
15 9625⊗ 253b

Ψ1
16 (10b)35:(2×M11)

Ψ1
17 (10d)35:(2×M11)

Ψ1
18 (4500a)McL:2

2.2 Finding PS1

We first obtain a lot of projective characters for Co3 by in-
ducing up the projective indecomposable characters of the
largest six maximal subgroups of Co3. These are listed in
[2], and their Brauer character tables are given in [9] or are
easily computed using MOC. Additionally, tensoring the de-
fect zero irreducible ordinary characters and the projective
indecomposable characters of the block of defect 1 of Co3

with all irreducible ordinary characters also yields projec-
tive characters. These are fed into the MOC system, which
finds the first basis PS1 of projective characters depicted
in Table 2. It can be checked, using either MOC or GAP,
that the irreducible ordinary characters indexing the rows
of Table 2 are a basic set BS∞ of Brauer characters; hence
it is enough to print only the corresponding rows of the de-
composition matrix. The origin of the projective characters
in PS1 is documented in Table 3, e. g., this means that Ψ1

1

is obtained by inducing up the projective indecomposable
character corresponding to the irreducible Brauer character
1a, i. e., the trivial character, from 35 : (2×M11) and sub-
sequently restricting the induced character to its principal
block component. Next, Ψ1

2 is obtained similarly from the
defect zero irreducible ordinary character 5d of 31+4

+ : 4S6,
and so on. Note that Φ4025 is the projective indecomposable
character corresponding to the irreducible Brauer character
4025 belonging to the block of defect 1 of Co3.

2.3 Wedge shape

It now already follows that the decomposition matrix is of
wedge shape, which was not a priori clear. This result is

achieved by the possibility to sieve easily using MOC through
a huge set of projective characters to filter out a suitable
basis of projective characters. Knowing wedge shape of the
decomposition matrix eases the arguments to follow con-
siderably, as the basis of projective characters can only be
changed in subsequent steps by possibly subtracting multi-
ples of columns ‘from the right’. In particular, it follows that
Ψ1

13, Ψ1
17, Ψ1

18 are projective indecomposable characters.

2.4 Refining projective characters

We now set out to improve the basis of projective char-
acters using the many more projective characters we have
constructed above, where it is the task of MOC to fil-
ter out the helpful ones. Looking at Ψ1

11 and Ψ1
12, we

note that Ψ1
11 contains the sum of a pair of complex

conjugate projective indecomposable characters. We try
to isolate them as follows. First we find that the pro-
jective character originating from (Φ55)HS equals PS1 ·
[0, 0, 1, 0, 0, 0, 0, 1, 0, 4, 1, 0,−2, 2, 5, 0,−1, 1]tr. Hence Ψ1

11 −
Ψ1

13 − Ψ1
17 is a projective character and still contains the

sum of the pair of complex conjugate projective characters
searched for, which leads to the projective characters de-
noted by Ψ2

11 and Ψ2
12 in Table 4. Further character the-

oretic analysis then shows that these indeed are projective
indecomposable characters.

2.5 Using defect groups

Let G be a finite group, k be a field, and B be a block
of k[G] with defect group D ≤ G. Let H ≤ G such that
H ∩Dg = {1} for all g ∈ G. Then by the theory of defect
groups, see [1, Section IV.13], it follows that any finitely
generated B-module becomes projective under restriction
to k[H].

This is applied as follows. Co3 is a subgroup of Co1, and
does not hit the 5A conjugacy class of Co1, as the subgroup
fusion programs of GAP show. Now the irreducible ordinary
character χ47 = 25900875 of Co1 belongs to a block of de-
fect 1, see [7, page 304ff.], whose defect group is generated
by an element in the rational 5A conjugacy class, as is eas-
ily seen using Brauer’s Second Main Theorem on Blocks,
see [4, Theorem IV.6.1], and a consideration of ordinary
character values. Hence 25900875Co3 is a projective char-
acter. Furthermore, we find the following ordinary scalar
products (χ18, 25900875Co3) = (20608, 25900875Co3) = 0
and (χ10, 25900875Co3) = (3520, 25900875Co3) = −1. From
this we conclude that Ψ2

9 := Ψ1
9 −Ψ2

11 −Ψ2
12 is a projective

character.

2.6 Finding PS2

Continuing this kind of analysis, we finally arrive at the basis
PS2 shown in Table 4. Here an underlined entry means that
it cannot be changed any more by further subtraction ‘from
the right’. An underlined irreducible ordinary character
means that its decomposition into irreducible Brauer charac-
ters is completely known, and an underlined column number
indicates that its entries form a projective indecomposable
character. So far, we have determined 13 irreducible Brauer
characters, they are ϕ1 = 1, ϕ2 = 23, ϕ3 = 230, ϕ4 = 253,
ϕ5 = 896, ϕ6 = 896∗, ϕ7 = 1771a, ϕ8 = 1771b, ϕ9 = 3520,
ϕ10 = 5290, ϕ11 = 20608, ϕ12 = 20608∗, ϕ14 = 26335.
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Table 4: PS2

χ Ψ2

1 1 . . . . . . . . . . . . . . . . .
2 . 1 . . . . . . . . . . . . . . . .
4 . 1 1 . . . . . . . . . . . . . . .
3 . . . 1 . . . . . . . . . . . . . .
6 . . . . 1 . . . . . . . . . . . . .
7 . . . . . 1 . . . . . . . . . . . .
8 . . . . . . 1 . . . . . . . . . . .
9 . 1 1 . . . . 1 . . . . . . . . . .

10 . . . . . . . . 1 . . . . . . . . .
13 1 . . 1 . . . . . 1 . . . . . . . .
18 . . . . . . . . . . 1 . . . . . . .
19 . . . . . . . . . . . 1 . . . . . .
21 . . . 1 . . . . 1 . . . 1 . . . . .
25 . . . 1 . . . . . 1 . . . 1 . . . .
27 2 . . . 2 2 1 1 1 . . . . . 1 . . .
32 . 1 1 1 . . . . . . 1 1 . 1 . 1 . .
30 . . . . . . . . 2 . . . . . . 1 1 .
36 2 1 . 2 3 3 . . 3 1 1 1 . 1 1 . . 1

3 Applying condensation

3.1 Matrix generators

We are now going to construct and analyse several matrix
and permutation representations of Co3 explicitly. We start
our constructions by accessing the defining integral repre-
sentation of 2.Co1 in its action as the full automorphism
group of the rank 24 Leech lattice. Explicit matrices for a
set of standard generators, see [21], are available via the li-
brary [20]. We then use the information on generators for
the maximal subgroups of Co1 also given there to obtain
matrix generators M24,Z ∈ GL24(Z) for Co3. These then
can be reduced modulo any prime to yield modular repre-
sentations.

3.2 Permutation characters

As we are also going to use several permutation representa-
tions of Co3, we collect the degrees and the decompositions
into irreducible ordinary characters of a few of them in Ta-
ble 5, where we give the ordinal numbers and multiplicities
of the occuring irreducible ordinary characters. The sub-
group U mentioned in Table 5 is defined in Section 3.8. It
is a standard task of the MeatAxe to construct these permu-
tation representations, except possibly the last one, whose
construction is described in Section 3.8.

E. g., the permutation representation P170775 on the cosets
of the subgroup 2 ·S6(2) of index 170775 is found as follows.
We reduce M24,Z modulo the prime 3, find its 3-modular
constituent M22,3 of degree 22, form the symmetric tensor
square M2+

22,3, and find the constituents M126,3 and M∗126,3

of M2+
22,3, where ‘∗’ means taking the contragradient dual.

These are now restricted to a maximal subgroup 2 · S6(2),
where again generators can be found in [20]. Exactly one
of the restrictions has a trivial socle constituent. Now the
vector permutation technique yields the desired permutation
representation.

3.3 The condensation subgroup

As a condensation subgroup we choose a subgroup K :=
SL2(7) < McL : 2 < Co3. It turns out, using GAP, that
the subgroup fusion from SL2(7) to Co3 is uniquely deter-
mined by this condition. Using the remarks in Section 1.4,
we then compute the dimensions of the condensed modules
of the irreducible ordinary representations of Co3, they are

Table 5: A few permutation characters of Co3

H [Co3 : H] χi in 1H ↑Co3
McL : 2 276 1, 5
McL 552 1, 2, 4, 5
HS 11178 1, 2, 5, 9, 15
U4(3) : 22 37950 1, 2 · 5, 13, 15, 20
M23 48600 1, 2, 4, 5, 9, 13, 15, 22
2 · S6(2) 170775 1, 5, 14, 15, 20, 27, 29
U3(5) : 3 1311552 1, 3, 4, 5, 2 · 9, 15, 16, 17, 2 · 20, 21, 22,

24, 25, 27, 28, 29, 31, 32, 2 · 34, 38, 39
U 1416800 1, 4, 5, 14, 15, 2 · 20, 21, 22, 27,

29, 30, 31, 32, 35, 38, 39, 40

Table 6: Dimensions of the condensed irreducible ordinary
characters of Co3 with respect to SL2(7)

i χi di
1 1 1
2 23 2
3 253 2
4 253 4
5 275 5
6 896 2
7 896 2
8 1771 7
9 2024 12

10 3520 12
11 3520 12
12 4025 17
13 5544 24
14 7084 24

i χi di
15 8855 35
16 9625 28
17 9625 28
18 20608 58
19 20608 58
20 23000 71
21 26082 78
22 31625 101
23 31625 99
24 31625 103
25 31878 102
26 40250 116
27 57960 179
28 63250 186

i χi di
29 73600 222
30 80960 248
31 91125 272
32 93312 278
33 129536 392
34 129536 394
35 177100 524
36 184437 550
37 221375 656
38 226688 668
39 246400 724
40 249480 742
41 253000 754
42 255024 762

given in Table 6. By expressing Brauer characters as Z-
linear combinations of the irreducible ordinary characters,
it is easy to find the dimensions of the condensed modules
of the irreducible modular representations known so far. We
condense sufficiently many elements of Co3 and end up with
condensed modules, whose structural analysis with respect
to the corresponding condensation algebra is indicated in
the sections to come. In all of the analysis of submodule
structures of condensed modules to follow, we make use of
the MeatAxe and the techniques and ideas described in [11]
without further notice.

3.4 Analysis of P170775

We are now going to analyse the condensed module M of
P170775 to find the decomposition of the irreducible ordi-
nary character χ27 = 57960 into irreducible Brauer charac-
ters. The condensed module has dimension 537 and, by the
MeatAxe, is found to have the following constituents with
multiplicities:

6 · 1a, 3 · 2a, 3 · 2b, 2 · 5a, 2 · 7a, 2 · 8a, 12a, 21a, 71a, 158a, 217a.

We successively use the smaller permutation representations
mentioned in Section 3.2, whose modular constituents are
already known, to establish a correspondence between as
many of the constituents found by the MeatAxe and the
condensed modules of the known irreducible modular repre-
sentations as possible. Furthermore, using the decomposi-
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tion of χ15 = 8855 into the basic set BS1 given in Section
2.2, we find that we already know all of its modular con-
stituents, it decomposes into irreducible Brauer characters
as 8855 = 2 · 1 + 896 + 896∗ + 1771b + 5290. Putting this
information together, we find that a 5-modular reduction of
8855 condenses to a module with constituents 2 · 1a, 2a, 2b,
8a, 21a. By the Zassenhaus Theorem 1.6, there is a sub-
module U35 of M of dimension 35 which is the condensed
module of a 5-modular reduction of 8855. Hence U35 con-
tains the uniquely determined 21a-local submodule of M .
It turns out that this local submodule already has dimen-
sion 35 and is uniserial of composition length 6. Hence it
equals U35, and all of its submodules are invariant even un-
der the possibly larger Hecke algebra. Analogously, we find
that the 12a-local submodule U24 of M has dimension 24
and is the condensed module of a 5-modular reduction of
χ14 = 7084, whose modular decomposition is also known,
namely 7084 = 1 + 896 + 896∗+ 1771a+ 3520. We find that
U24 is uniserial with constituents 1a, 2a, 2b, 7a, 12a, and
hence all of its submodules are invariant under the Hecke
algebra.

Applying this chain of reasoning once again, there is a sub-
module U179 of M of dimension 179 which is the condensed
module of a 5-modular reduction of 57960. It again turns out
to be a local submodule, this time the 158a-local one. Now
we let V1 := U179 ∩ U35 and V2 := U179 ∩ U24. These have
dimensions 11 and 10, respectively, and hence we conclude
that U179 contains constituents 1a, 2a, 2b, 7a, 8a, which are
extendible to the Hecke algebra. Furthermore, V := V1 +V2

is also invariant under the Hecke algebra and U179/V is unis-
erial with ascending composition series 1a, 158a. Hence it
remains to show that the nontrivial submodule of U179/V
is invariant under the Hecke algebra. But if it is not, then
there will be an irreducible module of dimension 159 for
the Hecke algebra which splits uniserially under restriction
to the condensation algebra. But the Zassenhaus Theorem
shows that there is a submodule U60 of M of dimension
60 which is the condensed module of a 5-modular reduc-
tion of an ordinary module with character 1 + 7084 + 8855,
and it turns out that M/U60 has 158a as one of its socle
constituents. If there now is an irreducible module of di-
mension 159 for the Hecke algebra, it hence will not split
uniserially with head constituent 158a under restriction to
the condensation algebra, a contradiction. Thus, we have
proved that ϕ15 = 52624 is an irreducible Brauer character
and that 57960 decomposes into irreducible Brauer charac-
ters as 57960 = 2 · 1 + 896 + 896∗ + 1771a+ 1771b+ 52624.

3.5 A second condensation subgroup

The next task is an analysis of the permutation representa-
tion P1311552, whose permutation character is given in Table
5. To make this feasible, we have to choose another, larger
condensation subgroup, so as to yield a condensed module
of a suitably small dimension. We let K′ := 35 : 11 <
35 : (2 × M11) < Co3. Again, this uniquely determines
the subgroup fusion of 35 : 11 into Co3. The dimensions
of condensed modules are then easily computed using GAP.
Without reproducing this data here, we only mention that
P1311552 condenses to a module of dimension 544. We note
that, while the first condensation subgroup was chosen not
to condense the up to then known irreducible Brauer char-
acters to zero, we now drop this requirement. In fact, it will
turn out that ϕ3 = 230 and ϕ10 = 5290 condense to zero;

Table 7: PS3

χ Ψ3

1 1 . . . . . . . . . . . . . . . . .
2 . 1 . . . . . . . . . . . . . . . .
4 . 1 1 . . . . . . . . . . . . . . .
3 . . . 1 . . . . . . . . . . . . . .
6 . . . . 1 . . . . . . . . . . . . .
7 . . . . . 1 . . . . . . . . . . . .
8 . . . . . . 1 . . . . . . . . . . .
9 . 1 1 . . . . 1 . . . . . . . . . .

10 . . . . . . . . 1 . . . . . . . . .
13 1 . . 1 . . . . . 1 . . . . . . . .
18 . . . . . . . . . . 1 . . . . . . .
19 . . . . . . . . . . . 1 . . . . . .
21 . . . 1 . . . . 1 . . . 1 . . . . .
25 . . . 1 . . . . . 1 . . . 1 . . . .
27 2 . . . 1 1 1 1 . . . . . . 1 . . .
32 . 1 1 1 . . . . . . 1 1 . 1 . 1 . .
30 . . . . . . . . 2 . . . . . . 1 1 .
36 1 1 . 1 1 1 . . 2 1 1 1 . 1 1 . . 1

but since we already know the corresponding projective in-
decomposable characters, the information we obtain using
condensation with 35 : 11 is sufficient for our analysis. Us-
ing similar techniques as in Section 3.4, we look at submod-
ules coming from the ordinary constituents χ21 = 26082,
χ32 = 93312, χ38 = 226688 of P1311552. Besides several im-
provements on different entries in the decomposition matrix,
this in particular allows us to determine the decomposition
of 93312 into irreducible Brauer characters, see Table 7, and
hence to show that we have an irreducible Brauer character
ϕ16 = 25255.

3.6 Finding PS3

All the results found by condensation analysis in Sec-
tions 3.4, 3.5 are now fed back into MOC, which finds
a new basis PS3, see Table 7. Furthermore, MOC finds
BS3 = {ϕ1, . . . , ϕ12, θ13, ϕ14, ϕ15, ϕ16, θ17, θ18} as a basic set
of Brauer characters, where θ13 = χ21 − ϕ4 = 26082 − 253,
θ17 = χ30 = 80960, and θ18 = χ36 − (ϕ2 + ϕ4 + ϕ10 +
ϕ11 + ϕ12 + ϕ14 + ϕ15) = 184437 − (23 + 253 + 5290 +
20608 + 20608∗ + 26335 + 52624). Note that at first Ψ3

16

is not yet known to be projective indecomposable. But
next we check the decomposability of tensor products of
characters found so far, and MOC filters out that the prin-
cipal block component of ϕ2 ⊗ ϕ16 = 23 ⊗ 25255 equals
[2, 2, 1, 2, 2, 2, 0, 0, 3, 0, 3, 3, 0, 0, 1,−1, 2, 0] · BS3. From this
we conclude that θ′17 := θ17 − ϕ16 = 80960 − 25255 is a
Brauer character, and hence Ψ3

16 indeed is a projective in-
decomposable character.

3.7 Applying TensorCondense

Next we turn to the determination of the irreducible Brauer
characters ϕ13 and ϕ18, using the TensorCondense package
of the MeatAxe. Using the results obtained in Section 3.6,
we find that θ13 at most might contain the constituent 3520,
and θ18 at most might contain the constituents 1, 896, 896∗,
2 · 3520. Furthermore, we find that ϕ3 ⊗ ϕ5 = 230 ⊗ 896
equals [0, 0, 0, 1, 0, 0, 0, 0,−1, 0, 0, 1, 1, 1, 1, 1, 0, 1] · BS3. The
explicit construction of the irreducible modular representa-
tions 230 and 896 from the representations available so far is
a standard application of the MeatAxe. Application of Ten-
sorCondense with respect to the first condensation subgroup
K = SL2(7) yields a module N of dimension 610, which by
application of the MeatAxe is found to have the constituents

1a, 2a, 2b, 2c, 12a, 58a, 64a, 77a, 79a, 155a, 158a.
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From this we conclude by a consideration of dimensions and
using the information collected in Section 3.4, that 58a, 77a,
and 158a are the condensed modules of the irreducible mod-
ular representations 20608∗, 25255, and 52624, respectively.
It turns out that the 58a-local submodule L58a of N is the
unique submodule having 58a in its head. Hence it follows
that L58a is invariant under the Hecke algebra. We further
observe that N/L58a has the constituents 77a, 155a, 158a.
This means that that ϕ18 condenses to 155a, hence we have
ϕ18 = θ18 − 1− 896− 896∗ − 3520 = 53383.

Furthermore, we conclude that 64a is a constituent of the
condensation of the irreducible modular representation ϕ13.
If 64a is not extendible to the Hecke algebra, then 12a+64a
will be the restriction of an irreducible module for the Hecke
algebra. Next we find that 64a is a socle constituent of N ,
but 12a is not. A consideration of the contragradient dual
module 230 ⊗ 896∗ then shows, similarly to the argument
given at the end of Section 3.4, that 64a is extendible to the
Hecke algebra. Hence we have ϕ13 = θ13 = 22309.

3.8 Analysis of P1416800

To find the last unknown irreducible Brauer character ϕ17

we construct a permutation representation P1416800 on the
cosets of a subgroup U of index 2 in a maximal subgroup
31+4

+ : 4S6. There are three of such subgroups in a fixed

31+4
+ : 4S6; having fixed the subgroup fusion from 31+4

+ :
4S6 to Co3, these can be distinguished as follows. One of
the candidate subgroups contains a normal subgroup 31+4

+ :
4 and for exactly one of the remaining two subgroups the
irreducible ordinary character χ30 = 80960 of Co3 occurs in
the corresponding permutation character, as is seen using
GAP. This is our choice of U := 31+4

+ : 2 ·A6.2.

To construct this permutation representation we proceed as
follows. We use the permutation representation P37950 to
find a generating set, as words in the given generators for
Co3, for the corresponding one-point stabilizer, which is iso-
morphic to U4(3) : 22. As 31+4

+ : 4S6 is the normalizer in
Co3 of a 3A element, we first find a generating set for the
normalizer in U4(3) : 22 of a 3A element, the latter group
being of isomorphism type 31+4

+ : 2S4 : 22. This subgroup
is used together with the vector permutation technique to
find the permutation representation of degree 708400 on the
cosets of 31+4

+ : 4S6, which in turn allows us to find a gen-

erating set for a subgroup isomorphic to 31+4
+ : 4S6. (We

thank the referee for pointing out that a generating set can
also be accessed from the library [20].) Then we finally find
a representation of Co3 such that its restriction to U has
a trivial socle constituent on which 31+4

+ : 4S6 acts linearly
but non-trivially. Applying the vector permutation tech-
nique again yields the desired permutation representation
P1416800.

Now P1416800 is condensed with respect to the first conden-
sation subgroup K = SL2(7), giving a module of dimension
4247. Note that we will be content with finding the con-
stituents of a quotient of this module, which indeed is feasi-
ble for modules of this size. But of course this module would
be too large for a closer structural analysis along the lines of
[11]. Now, P1416800 has an ordinary direct sum decomposi-

tion reflecting the decomposition 1U ↑3
1+4
+ :4S6∼= 1⊕ 1−. As

we are interested only in the ‘1−’-summand of P1416800, we
first identify the condensed module of the ‘1’-summand as a
submodule of the condensed module and by the MeatAxe

compute the corresponding quotient module, which only
has dimension 2119. The MeatAxe finds the constituents
of the latter module, and it turns out that its largest con-
stituent has dimension 171. From this it follows directly
that ϕ17 = θ′17 = 55705 holds and we are done.
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