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Association schemes are a central notion in algebraic combinatorics. They pro-
vide a unified approach to various questions from design theory, coding theory,
algebraic graph theory, discrete geometry, group theory and representation the-
ory. This is facilitated by viewing ideas from the theory of groups and their
representations from a combinatorial perspective, thus leading to a more gen-
eral picture. The aims of this lecture are to introduce association schemes and
the related basic structural notions and to present newer developments, in par-
ticular as far as their representation theory is concerned.
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0 Introduction

The theory of association schemes has its origin in the design of statistical ex-
periments [4], in the construction of so-called balanced incomplete block
designs [1, Ch.1.2]; In [8], association schemes were first recognised and fully
used as the basic underlying structure of coding theory and design theory [1],
giving birth to algebraic combinatorics as a mathematical discipline [3]. Be-
sides that, association schemes appear e. g. in the theory of distance-regular
graphs [5], in group theory related to coherent configurations [14, 15, 16]
and to Schur rings [21], in representation theory related to centraliser alge-
bras [19], and are interesting mathematical objects themselves deserving serious
study, in particular as far as their representation theory is concerned [17].

1 Association schemes

(1.1) Association schemes. Let X 6= ∅ be a finite set and n := |X | ∈ N. For

d ∈ N0 let X2 := X × X =
∐d
i=0Ri be a disjoint union of relations Ri 6= ∅,

where R0 := {[x, x];x ∈ X} is the identity relation, having the following
pairing and regularity properties:

i) For all i ∈ {0, . . . , d} there is i∗ ∈ {0, . . . , d} such that for the transposed
relation we have Rtr

i := {[y, x] ∈ X2; [x, y] ∈ Ri} = Ri∗ . In particular we have
i∗∗ = i and 0∗ = 0; let I := {i ∈ {0, . . . , d}; i∗ = i}.
ii) For all i, j, k ∈ {0, . . . , d} there is an intersection number pkij ∈ N0 such

that for all [x, z] ∈ Rk we have |{y ∈ X ; [x, y] ∈ Ri, [y, z] ∈ Rj}| = pkij , indepen-
dent of the particular choice of [x, z] ∈ Rk.

Then X := [X, {R0, . . . , Rd}] is called a (non-commutative) association
scheme or homogeneous coherent configuration [16] on X , of order n,
and of class d or rank d + 1. Elements x, y ∈ X such that [x, y] ∈ Ri, for
i ∈ {0, . . . , d}, are called i-th associates. Let the valency of Ri be defined as
ni := p0

ii∗ ; if ni ≤ 1 for all i ∈ {0, . . . , d} then X is called thin.

If pkij = pkji for all i, j, k ∈ {0, . . . , d}, then X is called commutative. If
I = {0, . . . , d} then X is called symmetric or of Bose-Mesner type; in this
case by (1.2) we have pkij = pk

∗

j∗i∗ = pkji, thus X is commutative.

E. g. for |X | ≥ 2, letting R0 := {[x, x];x ∈ X} and R1 := X2 \ R0, we get
the trivial scheme [X, {R0, R1}], which is the unique association scheme on
X of class 1. It is symmetric, and we have n0 = 1 and n1 = n − 1, as well as

P0 := [pki0]i,k = I2 and P1 := [pki1]i,k =

[
. 1

n− 1 n− 2

]
.

(1.2) Proposition. Let X be an association scheme and i, j, k ∈ {0, . . . , d}.
a) We have ni = |{y ∈ X ; [x, y] ∈ Ri}| ∈ N, for any x ∈ X . In particular we

have n0 = 1 and
∑d
i=0 ni = n, as well as ni = ni∗ .
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b) We have pk0j = δjk and pki0 = δik and p0
ij = niδij∗ , as well as pkij = pk

∗

j∗i∗ .

Moreover, we have
∑d

j=0 p
k
ij = ni and

∑d
i=0 p

k
ij = nj, as well as the triangle

formula nkp
k
ij = njp

j
i∗k = nip

i
kj∗ .

c) For l, s, t ∈ {0, . . . , d} we have the quadrangle formula
∑d
k=0 p

k
ijp

t
sk =

∑d
l=0 p

l
sip

t
lj , and if pkij 6= 0 we have the inequality pkst ≤

∑d
l=0 min{pisl, pjl∗t}.

Proof. a) For any [x, z] ∈ R0, that is for any x = z ∈ X , we have ni =
p0
ii∗ = |{y ∈ X ; [x, y] ∈ Ri, [y, z] ∈ Ri∗}| = |{y ∈ X ; [x, y], [z, y] ∈ Ri}| = |{y ∈
X ; [x, y] ∈ Ri}|, thus since Ri 6= ∅ we conclude ni 6= 0. Moreover, we have n0 =

|{y ∈ X ; [x, y] ∈ R0}| = |{x}| = 1, and from X =
∐d
i=0{y ∈ X ; [x, y] ∈ Ri}, for

any x ∈ X , we get
∑d
i=0 ni =

∑d
i=0 |{y ∈ X ; [x, y] ∈ Ri}| = |X | = n. Finally,

from Ri =
∐
x∈X{y ∈ X ; [x, y] ∈ Ri} we get nni = |Ri| = |Ri∗ | = nni∗ .

b) For any [x, z] ∈ Rk we have pk0j = |{y ∈ X ; [x, y] ∈ R0, [y, z] ∈ Rj}| = |{y ∈
X ; y = x, [x, z] ∈ Rj}|, hence pk0j = |{x}| = 1 if j = k, and pk0j = |∅| = 0 if

j 6= k. Similarly we have pki0 = |{y ∈ X ; [x, y] ∈ Ri, [y, z] ∈ R0}| = |{y ∈ X ; y =
z, [x, z] ∈ Ri}|, hence pki0 = |{z}| = 1 if i = k, and pki0 = |∅| = 0 if i 6= k.

For any [x, z] ∈ R0, that is for any x = z ∈ X , we have p0
ij = |{y ∈ X ; [x, y] ∈

Ri, [y, x] ∈ Rj}| = |{y ∈ X ; [x, y] ∈ Ri ∩ Rj∗}|, hence p0
ij = 0 if i 6= j∗. For

any [x, z] ∈ Rk, that is [z, x] ∈ Rk∗ , we have pkij = |{y ∈ X ; [x, y] ∈ Ri, [y, z] ∈
Rj}| = |{y ∈ X ; [y, x] ∈ Ri∗ , [z, y] ∈ Rj∗}| = pk

∗

j∗i∗ .

For any [x, z] ∈ Rk we have
∑d

j=0 p
k
ij =

∑d
j=0 |{y ∈ X ; [x, y] ∈ Ri, [y, z] ∈

Rj}| = |{y ∈ X ; [x, y] ∈ Ri}| = ni and
∑d
i=0 p

k
ij =

∑d
i=0 |{y ∈ X ; [x, y] ∈

Ri, [y, z] ∈ Rj}| = |{y ∈ X ; [y, z] ∈ Rj}| = nj.

For any x ∈ X we have nkp
k
ij = |{[y, z] ∈ X2; [x, y] ∈ Ri, [y, z] ∈ Rj , [x, z] ∈

Rk}|, thus we get nnkp
k
ij = |{[x, y, z] ∈ X3; [x, y] ∈ Ri, [y, z] ∈ Rj , [x, z] ∈

Rk}| = |{[x, y, z] ∈ X3; [y, x] ∈ Ri∗ , [x, z] ∈ Rk, [y, z] ∈ Rj}| = nnjp
j
i∗k and

nnkp
k
ij = |{[x, y, z] ∈ X3; [x, z] ∈ Rk, [z, y] ∈ Rj∗ , [x, y] ∈ Ri}| = nnip

i
kj∗ .

c) For [w, z] ∈ Rt we get
∑d
k=0 p

k
ijp

t
sk =

∑d
k=0 |{[x, y] ∈ X2; [w, x] ∈ Rs, [x, z] ∈

Rk, [x, y] ∈ Ri, [y, z] ∈ Rj}| = |{[x, y] ∈ X2; [w, x] ∈ Rs, [x, y] ∈ Ri, [y, z] ∈
Rj}| =

∑d
l=0 |{[x, y] ∈ X2; [w, y] ∈ Rl, [y, z] ∈ Rj , [w, x] ∈ Rs, [x, y] ∈ Ri}| =∑d

l=0 p
l
sip

t
lj .

For any [x, y, z] ∈ X3 such that [x, y] ∈ Ri, [y, z] ∈ Rj , and [x, z] ∈ Rk,
which by assumption exists, we have pkst = |{w ∈ X ; [x,w] ∈ Rs, [w, z] ∈
Rt}| =

∑d
l=0 |{w ∈ X ; [x,w] ∈ Rs, [w, z] ∈ Rt, [w, y] ∈ Rl}|, hence from {w ∈

X ; [x,w] ∈ Rs, [w, z] ∈ Rt, [w, y] ∈ Rl} ⊆ {w ∈ X ; [x,w] ∈ Rs, [w, y] ∈ Rl} and
{w ∈ X ; [x,w] ∈ Rs, [w, z] ∈ Rt, [w, y] ∈ Rl} ⊆ {w ∈ X ; [w, z] ∈ Rt, [w, y] ∈ Rl}
we deduce pkst ≤

∑d
l=0 min{pisl, pjl∗t}. ♯
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(1.3) Schurian schemes. Let X 6= ∅ be a finite set and n := |X | ∈ N, and let
G ≤ Sn be a transitive permutation group on X . Then G acts diagonally on
X2, yielding the disjoint union X2 =

∐d
i=0 Oi of G-orbits, called the associated

orbitals, where d + 1 ∈ N is called the rank of the permutation action. The
Schurian scheme X := [X, {O0, . . . ,Od}] is an association scheme of class d:

Since xG0 = X for any x0 ∈ X , the diagonal O0 := {[x, x] ∈ X2;x ∈
X} = {[xg0, xg0] ∈ X2; g ∈ G} indeed is an orbital. For any orbital O =
{[xg, yg] ∈ X2; g ∈ G}, where x, y ∈ X , we have the paired orbital O∗ =
{[y, x] ∈ X2; [x, y] ∈ O}. For i, j, k ∈ {0, . . . , d} let [x, z], [x′, z′] ∈ Ok. Hence
there is g ∈ G such that [x′, z′] = [xg, zg], thus we have {y ∈ X ; [x, y] ∈
Oi, [y, z] ∈ Oj}g = {y′ ∈ X ; [x, y′g

−1

] ∈ Oi, [y
′g−1

, z] ∈ Oj} = {y′ ∈ X ; [xg, y′] ∈
Oi, [y

′, zg] ∈ Oj} = {y′ ∈ X ; [x′, y′] ∈ Oi, [y
′, z′] ∈ Oj}, hence |{y ∈ X ; [x, y] ∈

Oi, [y, z] ∈ Oj}| = |{y′ ∈ X ; [x′, y′] ∈ Oi, [y
′, z′] ∈ Oj}|, implying regularity. ♯

The association scheme X is symmetric if and only if for all x, y ∈ X there
is an orbital O such that [x, y], [y, x] ∈ O, that is there is g ∈ G such that
[y, x] = [xg, yg], that is xg = y and yg = x, that is G is generously transitive.

For any x0 ∈ X let H := StabG(x0) ≤ G; hence H\G → X : Hg 7→ xg0 is an
isomorphism of G-sets, and we have n = |X | = [G : H ]. Let X =

∐r
i=0Xi be the

disjoint union of H-orbits, for some r ∈ N0, called the associated H-suborbits.
Letting xi ∈ Xi and gi ∈ G such that xi = xgi0 as well as Hi := StabH(xi) =
H ∩Hgi ≤ H , for all i ∈ {1, . . . , r}, and for completeness g0 := 1 and H0 := H ,
we get an isomorphism of H-sets Hi\H → Xi : Hih 7→ xhi .

Since xG0 = X , for any orbital O there is x ∈ X such that [x0, x] ∈ O. For
x, y ∈ X we have [x0, x], [x0, y] ∈ O if and only if x and y are in one and the
same H-suborbit: If y = xh, for some h ∈ H , then [x0, y] = [x0, x

h] = [x0, x]
h;

if conversely [x0, x], [x0, y] ∈ O then there is g ∈ G such that [x0, y]
g = [x0, x],

implying that g ∈ StabG(x0) = H and y = xg. Hence there is a bijection
between the H-suborbits and the orbitals, implying that r = d, and we may
assume that Xi = {x ∈ X ; [x0, x] ∈ Oi}, for all i ∈ {0, . . . , d}.
The valencies coincide with the subgroup indices ni = |{x ∈ X ; [x0, x] ∈ Oi}| =

|Xi| = [H : Hi], and pkij = |{x ∈ Xi; [x, x
gk
0 ] ∈ Oj}| = |{x ∈ Xi; [x0, x

g−1
k ] ∈

Oj∗}| = |Xi ∩ Xgk
j∗ |, for all i, j, k ∈ {0, . . . , d}; to straightforwardly determine

the matrix Pj = [pkij ]ik we better use pkij =
nj
nk

· pji∗k =
nj
nk

· |Xi∗ ∩Xgj
k∗ |.

E. g. X := G becomes a G-set by right multiplication action; hence we have
n = |G|. The orbitals are given by Og := {[x, xg] ∈ X2;x ∈ X}, thus we have
ng = 1, for all g ∈ G. Hence the regular Schurian scheme [X, {Og; g ∈ G}] is
thin; it is symmetric if and only if exp(G) := lcm{|g| ∈ N; g ∈ G} ≤ 2.

(1.4) Example: Johnson schemes. Let V 6= ∅ be a finite set and v := |V | ∈
N, and let k ∈ N0 such that k ≤ v

2 . LetX be the set of all k-element subsets of V ,
hence n := |X | =

(
v
k

)
. For i ∈ {0, . . . , k} let Ri := {[x, y] ∈ X2; |x∩ y| = k − i}.

Hence we have X2 =
∐k
i=0 Ri , where R0 = {[x, x] ∈ X2;x ∈ X} and Rtr

i = Ri
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Table 1: Petersen graph.

{1,2}

{4,5}

{3,5}{3,4}

{2,4}{1,5}

{1,3}{2,3}

{1,4}{2,5}

for all i ∈ {0, . . . , k}. Regularity is fulfilled as well, by specifying an appropriate
group action, hence the Johnson scheme J (v, k) := [X, {R0, . . . , Rk}] is a
symmetric Schurian association scheme of class k:

The symmetric group Sv acts k-transitively on V , that is Sv acts transitively
on X . For all x, y ∈ X and π ∈ Sv we have |x∩ y| = |xπ ∩ yπ|, hence the Ri are
unions of orbitals. Conversely, let x, y, x′, y′ ∈ X such that |x ∩ y| = |x′ ∩ y′|.
Then we have |x \ (x ∩ y)| = |x′ \ (x′ ∩ y′)| and |y \ (x ∩ y)| = |y′ \ (x′ ∩ y′)|,
and let π ∈ Sv such that (x ∩ y)π = x′ ∩ y′ and x \ (x ∩ y)π = x′ \ (x′ ∩ y′) and
y \ (x ∩ y)π = y′ \ (x′ ∩ y′). Then we have xπ = x′ and yπ = y′, implying that
the Ri are precisely the orbitals. ♯

For x ∈ X we have H := StabSv (x) ∼= Sv−k × Sk, and for i ∈ {0, . . . , k} and
y ∈ X such that [x, y] ∈ Ri, that is |x ∩ y| = k − i, we have StabH(y) ∼=
(Sv−k−i × Si) × (Sk−i × Si), hence ni = [H : StabH(y)] =

(
v−k
i

)(
k
i

)
; thus from

n =
∑k

i=0 ni we recover the identity
(
v
k

)
=

∑k
i=0

(
v−k
i

)(
k
i

)
.

E. g. the relation R1 of J (4, 2) can be depicted as the regular octahedron,
R2 becoming the space diagonals, hence n0 = 1, n1 = 4 and n2 = 1, and

P0 := [pki0]i,k = I3, P1 := [pki1]i,k =




. 1 .
4 2 4
. 1 .



, P2 := [pki2]i,k =




. . 1
. 1 .
1 . .



.

E. g. the relation R2 of J (5, 2) can be depicted as the Petersen graph, Table
1. Hence we have n0 = 1, n1 = 6 and n2 = 3, as well as P0 := [pki0]i,k = I3 and

P1 := [pki1]i,k =




. 1 .
6 3 4
. 2 2


 and P2 := [pki2]i,k =




. . 1

. 2 2
3 1 .


.

(1.5) Example: Hamming schemes. Let F be a finite set and q := |F | ≥ 2,
and for n ∈ N let X := Fn, hence |X | = qn. For x = [x1, . . . , xn] ∈ Fn and
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y = [y1, . . . , yn] ∈ Fn let d(x, y) := |{i ∈ {1, . . . , n};xi 6= yi}| ∈ N0 be the
associated Hamming distance. This defines a metric on Fn: The Hamming
distance is positive definite, that is we have d(x, y) = 0 if and only if x = y,
symmetric, that is we have d(x, y) = d(y, x), and the triangle inequality
holds: From {i ∈ {1, . . . , n};xi 6= zi} = {i ∈ {1, . . . , n}; yi = xi 6= zi}

.∪ {i ∈
{1, . . . , n}; yi 6= xi 6= zi} ⊆ {i ∈ {1, . . . , n}; yi 6= zi} ∪ {i ∈ {1, . . . , n};xi 6= yi}
we get d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ Fn.

For i ∈ {0, . . . , n} let Ri := {[x, y] ∈ X2; d(x, y) = i}. Hence we have X2 =∐n
i=0 Ri , where R0 = {[x, x] ∈ X2;x ∈ X} and Rtr

i = Ri for all i ∈ {0, . . . , n}.
Regularity is fulfilled as well, by specifying an appropriate group action, hence
the Hamming scheme H(q, n) := [X, {R0, . . . , Rn}] is a symmetric Schurian
association scheme of class n:

We consider the wreath product Sq ≀Sn := Sn⋉Snq , the semidirect product of
Sn with the direct product Snq := Sq×· · ·×Sq with n factors, where Sn acts on Snq
by permuting the direct factors. The group Sq acts naturally on F := {1, . . . , q},
and the natural action of Sn on {1, . . . , n} induces an action on X , yielding a
transitive action of Sq ≀ Sn, given by [x1, . . . , xn] 7→ [xσ1

1τ−1 , . . . , x
σn

nτ
−1 ], for all

x ∈ X and π := [τ ;σ1, . . . , σn] ∈ Sq ≀ Sn.
For all x, y ∈ X and π ∈ Sq ≀Sn we have d(x, y) = d(xπ , yπ), thus Sq ≀Sn induces
isometries of X with respect to the Hamming distance, and the Ri are unions of
orbitals; actually, Sq ≀Sn is the group of all such isometries of X . Conversely, let
x, y, x′, y′ ∈ X such that d(x, y) = d(x′, y′). Then let J := {i ∈ {1, . . . , n};xi 6=
yi} and J ′ := {i ∈ {1, . . . , n};x′i 6= y′i}, and let τ ∈ Sn such that J τ = J ′.
Moreover, for i ∈ J ′ let σi ∈ Sq such that xσi

iτ
−1 = x′i and yσi

iτ
−1 = y′i, while for

i 6∈ J ′ let σi ∈ Sq such that xσi
iτ

−1 = x′i. Then for π := [τ ;σ1, . . . , σn] ∈ Sq ≀ Sn
we have xπ = x′ and yπ = y′, implying that the Ri are precisely the orbitals. ♯

For x ∈ X we have H := StabSq≀Sn(x) ∼= Sq−1 ≀ Sn, and for i ∈ {0, . . . , n} and
y ∈ X such that [x, y] ∈ Ri, that is d(x, y) = i, we have StabH(y) ∼= (Sq−2 ≀Si)×
(Sq−1 ≀Sn−i), hence ni = [H : StabH(y)] = (q−1)!n·n!

(q−2)!i·i!·(q−1)!n−i·(n−i)! = (q−1)i·
(
n
i

)
;

thus from |X | =
∑k
i=0 ni we recover the identity qn =

∑n
i=0(q − 1)i ·

(
n
i

)
.

E. g. the relation R1 of H(2, 2) can be depicted as the regular quadrangle, the
lower left hand vertex being located in the origin; then R2 is depicted as the
diagonals. Hence we have n0 = 1, n1 = 2 and n2 = 1, as well as P0 := [pki0]i,k =

I3 and P1 := [pki1]i,k =




. 1 .
2 . 2
. 1 .


 and P2 := [pki2]i,k =




. . 1

. 1 .
1 . .


.

E. g. the relation R1 of H(2, 3) can be depicted as the regular cube, the lower
left front vertex being located in the origin; then R2 and R3 are depicted as the
face and space diagonals, respectively. Hence we have n0 = 1, n1 = 3, n2 = 3
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and n3 = 1, as well as P0 := [pki0]i,k = I4 and P1 := [pki1]i,k =




. 1 . .
3 . 2 .
. 2 . 3
. . 1 .




and P2 := [pki2]i,k =




. . 1 .

. 2 . 3
3 . 2 .
. 1 . .


 and P3 := [pki3]i,k =




. . . 1

. . 1 .

. 1 . .
1 . . .


.

2 Adjacency algebras

(2.1) Adjacency matrices. Let X be an association scheme. For all i ∈
{0, . . . , d} let the i-th adjacency matrix Ai := [aixy]x,y∈X ∈ {0, 1}n×n ⊆
Zn×n be defined as aixy := 1 if and only if [x, y] ∈ Ri. Then the defining

properties of X yield the following: We have A0 = In and
∑d

i=0Ai = Jn, where
Jn := [1]x,y∈X ∈ Zn×n is the all-1 matrix. For all i ∈ {0, . . . , d} we have
Atr
i = Ai∗ , and thus X is a symmetric association scheme if and only if all the

Ai are symmetric matrices.

By the definition of matrix products, we for all i, j, k ∈ {0, . . . , d} have AiAj =∑d
k=0 p

k
ijAk ∈ Zn×n. Thus A := 〈A0, . . . , Ad〉Z ⊆ Zn×n is a Z-algebra, called the

adjacency algebra or Bose-Mesner algebra associated with X . The algebra
A is Z-free such that rkZ(A) = d+ 1, and {A0, . . . , Ad} is a Z-basis, called the
Schur basis. Moreover, X is commutative if and only if A is commutative.

E. g. for the regular Schurian scheme associated to a finite groupG we have A ∼=
ZG, the associated group algebra. For the Hamming scheme H(2, 2), letting

X := {[0, 0], [0, 1], [1, 0], [1, 1]}, we get A0 = I4 and A1 =




. 1 1 .
1 . . 1
1 . . 1
. 1 1 .




and A2 =




. . . 1

. . 1 .

. 1 . .
1 . . .


. For the Johnson scheme J (4, 2), letting X :=

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}, we finally get A0 = I6 and A1 =


. 1 1 1 1 .
1 . 1 1 . 1
1 1 . . 1 1
1 1 . . 1 1
1 . 1 1 . 1
. 1 1 1 1 .




and A2 =




. . . . . 1

. . . . 1 .

. . . 1 . .

. . 1 . . .

. 1 . . . .
1 . . . . .




.

(2.2) Representations. Let R be a commutative ring. Then AR := A⊗ZR ⊆
Rn×n is an R-free R-algebra such that rkR(AR) = d + 1, and {A0, . . . , Ad} ⊆
A ⊆ AR is an R-basis, where we identify A ∈ Zn×n with A⊗ 1R ∈ Rn×n for all
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A ∈ A. We have AZ
∼= A, and AR is commutative if and only if A is.

Let V be an AR-lattice, that is an R-free AR-module, of degree r := rkR(V ) ∈
N0, and let the homomorphism of R-algebras δ : AR → EndR(V ) ∼= Rr×r be the
associated representation. Then the R-linear map ϕδ : AR → R : A 7→ tr(δ(A))
is called the character of AR afforded by V , where ϕδ is independent of the
particular choice of the R-algebra isomorphism to Rr×r, that is the particular
choice of an R-basis of V , and ϕδ(A0) = r.

Let F be a field. Then up to isomorphism there are only finitely many irreducible
AF -modules S0, . . . , St, for some t ∈ N0; for i ∈ {0, . . . , t} let di := dimF (Si) ∈
N be the associated degree. Let Irr(AF ) := {ϕ0, . . . , ϕt} be the characters
afforded by the irreducible AF -modules; hence we have di = ϕi(A0) ∈ F , and if
AF is split, that is F is a splitting field of AF , then by Wedderburn’s The-
orem Irr(AF ) is F -linearly independent. The matrix Φ(AF ) := [ϕi(Aj)]ij ∈
F (t+1)×(d+1) is called the F -character table of AF ; we may identify Irr(AF )
with the rows of Φ(AF ).

If V is an AF -module then by the Jordan-Hölder Theorem the multiplicity
[V : Si] ∈ N0 of Si in an AF -module composition series of V is independent of the
particular choice of the composition series, and we have ϕV =

∑t
i=0[V : Si] ·ϕi.

If V is a faithful AF -module, that is δV is injective, we have [V : Si] > 0 for all
i ∈ {0, . . . , t}: Letting e ∈ A be an Si-primitive idempotent, we since δV (e) 6= 0
have [V : Si] · dimF (EndAF (Si)) = dimF (HomAF (eAF , V )) = dimF (V e) 6= 0.

E. g. Vnat := Rn is an AR-lattice, called the natural or standard module, the
associated representation being δnat = idA, which is faithful. For its character
we have ν(Ai) = tr(Ai) = nδ0i, hence ν(AiAj) =

∑d
k=0 p

k
ijtr(Ak) = np0

ij =
nniδij∗ , for all i, j ∈ {0, . . . , d}. If F is a field, the integer mi := [Vnat : Si] ∈ N

is called the multiplicity associated with ϕi, for all i ∈ {0, . . . , t}.
E. g. V := R becomes an AR-lattice, called the trivial or index module,
by letting ϕ0 : AR → EndR(R) ∼= R : Ai 7→ ni, for all i ∈ {0, . . . , d}: By

(1.2) we have ϕ0(AiAj) = ϕ0(
∑d

k=0 p
k
ijAk) =

∑d
k=0 nkp

k
ij =

∑d
k=0 nip

i
kj∗ =

ni ·
∑d

k=0 p
i
kj∗ = ninj , for all i, j ∈ {0, . . . , d}. If F is a field then S0 := F is an

irreducible AF -module.

(2.3) Intersection matrices. Let X be an association scheme, and let R be
a commutative ring. Then AR is an AR-lattice with R-basis {A0, . . . , Ad}, and
for the associated (right) regular representation δρ : AR 7→ EndR(AR) ∼=
R(d+1)×(d+1) : Aj 7→ (AR → AR : A 7→ AAj) the multiplication rule yields
δρ : Aj 7→ Pj , for all j ∈ {0, . . . , d}, where the j-th intersection matrix or

collapsed adjacency matrix is defined as Pj := [pkij ]ik ∈ N
(d+1)×(d+1)
0 ⊆

Z(d+1)×(d+1) ⊆ R(d+1)×(d+1).

From A0A = A 6= 0 for all 0 6= A ∈ AR we conclude that δρ is faithful.
Hence letting P := 〈P0, . . . , Pd〉Z ⊆ Z(d+1)×(d+1) be the intersection algebra
associated with X , and PR := P ⊗Z R ⊆ R(d+1)×(d+1), we get an isomorphism
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of R-algebras δρ : AR → PR : Aj → Pj , for all j ∈ {0, . . . , d}. For its character

we have ρ(Aj) =
∑d
i=0 p

i
ij for all j ∈ {0, . . . , d}.

E. g. for the Hamming scheme H(2, 2) we have δρ : Aj 7→ Pj , for all j ∈ {0, 1, 2},
where Aj is as given in (2.1) and Pj is as given in (1.5). For the Johnson scheme
J (4, 2) we have δρ : Aj 7→ Pj , for all j ∈ {0, 1, 2}, where Aj is as given in (2.1)
and Pj is as given in (1.4).

(2.4) Theorem. Let F be a field such that p := char(F ) ≥ 0, let X be an
association scheme, and let J := {j ∈ {0, . . . , d}; p | nnj}.
a) For the Jacobson radical of AF we have rad(AF ) ⊆ 〈Aj ; j ∈ J 〉F . In

particular, if p 6 | n ·∏d
i=0 ni then AF is semisimple, that is the regular module

AF is completely reducible, that is the direct sum of irreducible submodules.
b) We have 〈Jn〉FEAF , and 〈Jn〉F ⊆ rad(AF ) if and only if p | n. In particular,
if p | n then AF is not semisimple.

Proof. We have rad(AF ) :=
⋂{U < AF maximal} =

⋂t
i=0 annAF (Si) ⊳ AF ,

where annAF (Si) := {A ∈ AF ;SiA = {0}}⊳AF is the annihilator of Si. Then
rad(AF ) ⊳ AF is the largest nilpotent ideal, that is we have rad(AF )k = {0}
for some k ∈ N, and AF is semisimple if and only if rad(AF ) = {0}.
a) Let A :=

∑d
k=0 αkAk ∈ rad(AF ). Considering an AF -module composition

series of the natural module Fn, we from AAj ∈ rad(AF ) ⊆ annAF (Si), for all

i ∈ {0, . . . , t} and j ∈ {0, . . . , d}, get that 0 = ν(AAj) =
∑d

k=0 αknnkδkj∗ =
αj∗nnj∗ . Hence for any j ∈ {0, . . . , d} such that αj 6= 0 we have p | nnj ,
implying that A ∈ 〈Aj ; j ∈ J 〉F . The assumption p 6 | n · ∏d

i=0 ni is equivalent
to J = ∅, which implies rad(AF ) = {0}.
b) We have AiJn = niJn and JnAi = ni∗Jn = niJn, for all i ∈ {0, . . . , d}, hence
〈Jn〉F EAF . Moreover, we have J2

n = nJn, hence 〈Jn〉F is nilpotent if and only
if p | n. Hence, if p | n then {0} 6= 〈Jn〉F ⊆ rad(AF ). ♯

(2.5) Corollary: Maschke’s Theorem. If X is thin, then AF is semisimple
if and only if p 6 | n.

(2.6) Corollary. Let p 6 | n. Then AF
∼= 〈Jn〉F ⊕ A′

F as F -algebras, where
〈Jn〉F affords the trivial character; and the multiplicity of the trivial module as
a constituent of the natural AF -module is m0 = 1.

Proof. The first assertion follows from 〈Jn〉F ∩ rad(AF ) = {0}. As for the
second assertion, we from J2

n = nJn and 0 6= Jn 6= nIn get the minimum
polynomial µJn = T (T − n) ∈ F [T ]. Hence we have eigenspace decomposition
Fn = En(Jn) ⊕ E0(Jn) with respect to the eigenvalues n and 0, respectively,
where dimF (im(Jn)) = 1 yields dimF (E0(Jn)) = n−1, thus dimF (En(Jn)) = 1.
Since Jn ∈ Z(AF ) we conclude that E0(Jn) and En(Jn) are AF -submodules.

Since ϕ0(Jn) =
∑d

j=0 ϕ0(Aj) =
∑d

j=0 nj = n, and Jn acts on E0(Jn) by the
zero map, E0(Jn) does not have the trivial module as a constituent. ♯
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(2.7) Example: Johnson scheme J (7, 2). We have n =
(
7
2

)
= 21 as well

as n0 = 1 and n1 =
(
5
1

)(
2
1

)
= 10 and n2 =

(
5
2

)(
2
2

)
= 10. Thus AF , where F is

a field, is semisimple if char(F ) 6∈ {2, 3, 5, 7}, it is not semisimple if char(F ) ∈
{3, 7}, while (2.4) does not assert anything if char(F ) ∈ {2, 5}; actually AF is
semisimple if char(F ) = 2 and it is not semisimple if char(F ) = 5:

We have P0 = I3, P1 =




. 1 .

10 5 4
. 4 6



, P2 =




. . 1
. 4 6

10 6 3



, hence P1P2 =

P2P1, thus J (7, 2) is commutative. For the associated minimum polynomials
we get µA1 = µP1 = (T−10)(T−3)(T+2) ∈ Z[T ] and µA2 = µP2 = (T−10)(T+
4)(T − 1) ∈ Z[T ]. Hence P1 and P2 have simultaneous Jordan normal forms
over any field F , all irreducible representations of AF have degree 1, implying
that AF is split.

If char(F ) 6∈ {2, 3, 5, 7}, then both P1 and P2 have three pairwise distinct
eigenvalues in F , thus are diagonalisable, where simultaneous eigenvectors are


1 1 1
−10 −3 1

10 −2 1


, the eigenvalues being ordered as above. Thus AF

∼= S0⊕S1⊕

S2, and the character table Φ(AF ) is given as:

mi di A0 A1 A2

ϕ0 1 1 1 10 10
ϕ1 6 1 1 3 −4
ϕ2 14 1 1 −2 1

The multiplicities are computed as follows: If char(F ) = 0 then the multiplicities
can be just read off from the decomposition ν = ϕ0 +6ϕ1 +14ϕ2. Hence for the
associated characteristic polynomials we have χA1 = (T−10)(T−3)6(T +2)14 ∈
Z[T ] and χA2 = (T −10)(T +4)6(T −1)14 ∈ Z[T ]. This yields the characteristic
polynomials ofA1 and A2 over any field F , and thus the associated multiplicities.
For the remaining cases we have:

i) If char(F ) = 7, then µP1 = (T−3)2(T−5) ∈ F [T ] and µP2 = (T−3)2(T−1) ∈

F [T ]. Vectors inducing simultaneous Jordan normal forms are




2 1 .
1 1 1
3 5 1



.

Thus AF
∼=

[
S0

S0

]
⊕S1, and Φ(AF ) is given as:

mi di A0 A1 A2

ϕ0 7 1 1 3 3
ϕ1 14 1 1 5 1

ii) If char(F ) = 3, then µP1 = (T−1)2T ∈ F [T ] and µP2 = (T−1)(T−2) ∈ F [T ].

Vectors inducing simultaneous Jordan normal forms are




. 1 .
1 1 1
2 . 1



. Thus

AF
∼=

[
S0

S0

]
⊕ S1, and Φ(AF ) is given as:

mi di A0 A1 A2

ϕ0 15 1 1 1 1
ϕ1 6 1 1 0 2
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iii) If char(F ) = 5, then µP1 = T (T − 3)2 ∈ F [T ] and µP2 = T (T − 1)2 ∈ F [T ].

Vectors inducing simultaneous Jordan normal forms are




1 1 1
. 1 .
. 3 1



. Thus

AF
∼= S0 ⊕

[
S1

S1

]
, and Φ(AF ) is given as:

mi di A0 A1 A2

ϕ0 1 1 1 0 0
ϕ1 20 1 1 3 1

iv) If char(F ) = 2, then µP1 = T (T − 1) ∈ F [T ] and µP2 = T (T − 1) ∈ F [T ].

Simultaneous eigenvectors are




1 1 1
. 1 .
. . 1


. Thus AF

∼= S0 ⊕ S1 ⊕ S2, and

Φ(AF ) is given as:

mi di A0 A1 A2

ϕ0 1 1 1 0 0
ϕ1 6 1 1 1 0
ϕ2 14 1 1 0 1

3 Symmetric algebras

In this section we place ourselves in a more general setting.

(3.1) Symmetric algebras. a) Let R be a commutative ring, let A be an
R-free R-algebra such that n := rkR(A), let λ be a symmetrising form, and let
{A1, . . . , An} ⊆ A and {A∗

1, . . . , A
∗
n} ⊆ A be mutually dual R-bases of A.

Comparing the right and left regular representations of A, for A ∈ A let AiA =∑n
k=1 p

k
i (A)Ak and AA∗

i =
∑n

k=1
∗pik(A)A∗

k, where pki (A), ∗pik(A) ∈ R. Then
we have ∗pik(A) = λ(AA∗

i ·Ak) = λ(AkA ·A∗
i ) = pik(A), for all i, k ∈ {1, . . . , n}.

Hence for the associated representing matrices with respect to the given R-basis
of A and the associated dual basis, respectively, we have P (A) := [pki (A)]ik =
[∗pik(A)]ki =: ∗P (A) ∈ Rn×n.

Let V and V ′ be A-modules with associated representations δ and δ′, respec-
tively. For M ∈ HomR(V, V ′) let M+ :=

∑n
i=1 δ(A

∗
i )Mδ′(Ai) ∈ HomR(V, V ′).

Then δ(A)M+ =
∑n
i=1 δ(AA

∗
i )Mδ′(Ai) =

∑n
i=1

∑n
k=1

∗pik(A)δ(A∗
k)Mδ′(Ai) =∑n

i=1

∑n
k=1 p

i
k(A)δ(A∗

k)Mδ′(Ai) =
∑n
k=1 δ(A

∗
k)Mδ′(AkA) = M+δ′(A) for A ∈

A implies M+ ∈ HomA(V, V ′).

Moreover, M+ is independent of the particular choice of an R-basis of A: Let
{A′

1, . . . , A
′
n} ⊆ A be an R-basis of A, and let {A′∗

1 , . . . , A
′∗
n } ⊆ A be the

associated dual basis. For the base change matrices B = [bij ]ij := {A′
i}id{Aj} ∈

Rn×n and B∗ = [b∗ij ]ij := {A′∗
i }id{A∗

j} ∈ Rn×n we have BB∗tr = In, that is∑n
i=1 bijb

∗
ik = δjk, for all j, k ∈ {1, . . . , n}. This implies

∑n
i=1 δ(A

′∗
i )Mδ′(A′

i) =∑n
i=1

∑n
j=1

∑n
k=1 b

∗
ijbikδ(A

∗
j )Mδ′(Ak) =

∑n
j=1 δ(A

∗
j )Mδ′(Aj) = M+.

b) Let now R := F be a field such that A is split, and let S and S′ be
irreducible A-modules with associated representations δ and δ′, respectively,
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such that either δ 6∼= δ′ or δ = δ′. Letting Eqr := [δqkδrl]kl ∈ F d×d be a
matrix unit, for q ∈ {1, . . . , d} and r ∈ {1, . . . , d′} where d := dimF (S)
and d′ := dimF (S′), we have E+

qr :=
∑n

i=1 δ(A
∗
i )Eqrδ

′(Ai) ∈ HomA(S, S′).
Hence by Schur’s Lemma there are cS,qr ∈ F such that E+

qr = δS,S′cS,qr ·
diag[1, . . . , 1] ∈ F d×d

′

. In terms of coordinate functions, where p ∈ {1, . . . , d}
and s ∈ {1, . . . , d′}, we infer

∑n
i=1 δ(A

∗
i )pqδ

′(Ai)rs = δS,S′δpscS,qr ∈ F . Inter-
changing the roles of {A1, . . . , An} and {A∗

1, . . . , A
∗
n} yields c∗S,ps ∈ F such that∑n

i=1 δ(A
∗
i )pqδ(Ai)rs = δqrc

∗
S,ps ∈ F . Thus from δpscS,qr = δqrc

∗
S,ps we infer

that there is a Schur element cS ∈ F such that cS,qr = δqrcS , and we have
the Frobenius-Schur relations

∑n
i=1 δ(A

∗
i )pqδ

′(Ai)rs = δS,S′δpsδqrcS ∈ F .

This yields the orthogonality relations for irreducible characters: Let ϕ
and ϕ′ be the characters afforded by S and S′, respectively. Then we have∑n
i=1 ϕ(A∗

i )ϕ
′(Ai) =

∑n
i=1

∑d
j=1

∑d′

k=1 δ(A
∗
i )jjδ

′(Ai)kk = δϕ,ϕ′cϕ · ∑d
j=1 1 =

δϕ,ϕ′cϕdϕ, where cϕ := cS and dϕ := d = ϕ(1A) ∈ F is the associated degree.

c) By the Gaschütz-Higman-Ikeda Theorem [6, Thm.IX.62.11], S is projective
if and only if there is M ∈ EndF (S) such that M+ = idS ∈ EndA(S). Hence
this is the case if and only if cS 6= 0 ∈ F . In that case, S lies in a block
AS

∼= EndF (S) ∼= F d×d of its own, and we have the λ-orthogonal decomposition
A ∼= AS ⊕A′ as F -algebras.

Let S be an irreducible A-module such that cϕ = cS 6= 0 ∈ F , and for
i, j ∈ {1, . . . , d} let eϕ,ij := 1

cϕ
· ∑n

k=1 δ(A
∗
k)jiAk ∈ A. Hence for the natural

representation ρA′ : A → EndF (A′) we have ρA′(eϕ,ij) ∈ HomA(S,A′) = {0},
implying that eϕ,ij ∈ AS . The Frobenius-Schur relations yield δ(eϕ,ij) =
1
cϕ

· ∑n
k=1 δ(A

∗
k)jiδ(Ak) = Eij ∈ F d×d. Since δ : AS → EndF (S) is faith-

ful, we conclude that {eϕ,ij; i, j ∈ {1, . . . , d}} ⊆ AS is an F -basis, and that
eϕ,11, . . . , eϕ,dd ∈ AS are mutually orthogonal primitive idempotents, that
is we have eϕ,iieϕ,jj = δijeϕ,ii for all i, j ∈ {1, . . . , d}. Thus we have ǫϕ :=∑d
i=1 eϕ,ii = 1

cϕ
· ∑n

k=1 ϕ(A∗
k)Ak = 1AS ∈ AS , hence ǫϕ ∈ A is the centrally

primitive idempotent associated with AS .

Since for the commutator subspace [AS ,AS ] := 〈AB−BA;A,B ∈ AS〉F we
have [AS ,AS ] = ker(tr), where tr : AS

∼= F d×d → F is the usual matrix trace,
we infer that 〈tr〉F coincides with the F -vector space of all trace forms on
AS , that is the F -linear forms having [AS ,AS ] in their kernel. Since λ restricts
to a symmetrising form on AS , there is 0 6= c ∈ F such that λ|AS = c · tr,
and hence the dual basis associated with {Eij ; i, j ∈ {1, . . . , d}} ⊆ AS is given
as { 1

c
Eji; i, j ∈ {1, . . . , d}} ⊆ AS . The Frobenius-Schur relations yield 1

c
=∑d

i=1

∑d
j=1

1
c
(Eji)kk(Eij)kk = cϕ, for any k ∈ {1, . . . , d}.

Since A is semisimple if and only if all irreducible A-modules are projective, we
conclude that A is semisimple if and only if cS 6= 0 ∈ F for all irreducible
A-modules S. In that case, we have the λ-orthogonal decomposition A =⊕

ϕ∈Irr(A) F
dϕ×dϕ , and {ǫϕ ∈ A;ϕ ∈ Irr(A)} are mutually orthogonal centrally

primitive idempotents such that
∑

ϕ∈Irr(A) ǫϕ = 1, and λ =
∑

ϕ∈Irr(A)
1
cϕ
ϕ.
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We place ourselves into an even more general setting, until further notice.

(3.2) Decomposition theory. Let R be the ring of integers in an algebraic
number field K, let ℘⊳R be a prime ideal, and let R℘ ⊆ K be the localisation
of R with respect to ℘; hence R℘ is a discrete valuation ring in K. Moreover,
let : R℘ → R℘/℘R℘ ∼= R/℘ =: F be the natural map onto the finite residue
class field F . Let A be an R-free R-algebra with R-basis {A1, . . . , An} ⊆ A
where n := rkR(A) ∈ N, such that AK := A⊗R K is split.

a) Let V be an AK-module, with representation δ, and let {b1, . . . , bd} ⊆ V
be a K-basis where d := dimK(V ) ∈ N. Then V is realisable over R℘: The

subset Ṽ := 〈bjAi; j ∈ {1, . . . , d}, i ∈ {1, . . . , n}〉R℘ ⊆ V is an AR℘-submodule,

and since R℘ is a principal ideal domain we conclude that Ṽ is an R℘-free AR℘-
module, and since it contains a K-basis of V it hence is a full AR℘-lattice in

V , that is we have ṼK := Ṽ ⊗R℘ K ∼= V .

Letting AF := A ⊗R F , we thus obtain the AF -module Ṽ := Ṽ ⊗R℘ F by ℘-
modular reduction. Since F is perfect, we by the Brauer-Nesbitt Theorem
[6, Thm.V.30.16, Thm.XII.82.1] get a decomposition map D℘ : ZIrr(AK) →
ZIrr(AF ) between the Grothendieck groups of AK and AF , that is the free
abelian groups generated by the isomorphism types of irreducible AK-modules
and AF -modules, respectively.

b) Let V be a projective indecomposable AF -module. Thus there is a primitive
idempotent e ∈ AF such that V ∼= eAF as AF -modules. Hence by lifting of
idempotents, [7, Exc.6.16] for the case AK semisimple and [20, Thm.3.4.1]
for the general case, there is a primitive idempotent ê ∈ AR℘ ⊆ AK such that

ê = e. Thus the projective indecomposable AR℘ -module Ṽ := êAR℘ lifts V in

the sense that Ṽ ∼= êAR℘
∼= eAF

∼= V as AF -modules.

c) We show Tits’ Deformation Theorem: Let AF be semisimple. Since F is
perfect, there is a finite field extension F ⊆ F ′ such that AF ′ is split semisimple,
and there is a finite field extension K ⊆ K ′ with ring of integers R′ having a
prime ideal ℘′ ⊳ R′ such that ℘′ ∩ R = ℘ and R′/℘′ ∼= F ′. Then for any
ψ ∈ Irr(AF ′) the associated irreducible AF ′ -module being projective, there is

ψ̂ ∈ Irr(AK′) = Irr(AK) such that D℘(ψ̂) = ψ, implying that ψ is realisable over
F , that is AF is split. By Wedderburn’s Theorem we have

∑
ψ∈Irr(AF ) d

2
ψ = n,

and since the lifting map ψ → ψ̂ is injective we conclude
∑

bψ∈Irr(AK) d
2
bψ = n,

implying that AK is semisimple as well. Moreover, the map ψ → ψ̂ is also
surjective, that is D℘ : Irr(AK) → Irr(AF ) is a bijection.

(3.3) Proposition. Let λ : A → R be a trace form such that τλ : A2 →
R : [A,B] 7→ λ(AB) has discriminant 0 6= ∆ ∈ R with respect to {A1, . . . , An}.
Then, letting R∆ ⊆ K be the localisation of R with respect to {∆k; k ∈ N0} ⊆
R, we for all ϕ ∈ Irr(AK) have ϕ(Ai) ∈ R and ϕ(A∗

i ) ∈ R∆ as well as cϕ ∈ R∆.
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Proof. Let S be the irreducible AK -module affording ϕ, with associated repre-
sentation δ. Since ϕ and cϕ are independent of the particular choice of a K-basis
of S, we may assume that δ(AR℘) ⊆ Rd×d℘ , where d := dimK(S), implying that
ϕ(AR℘) ⊆ R℘. Since R is a Dedekind ring, thus a Krull ring [18, Ch.IV.12],
we have R =

⋂
℘⊳R primeR℘ ⊆ K, thus we infer ϕ(A) ⊆ R.

Moreover, AR∆ is a symmetric R∆-algebra. Hence we have A∗
i ∈ AR∆ , for

all i ∈ {1, . . . , n}, thus ϕ(A∗
i ) ∈ R∆. For any prime ideal ℘ ⊳ R such that

∆ 6∈ ℘, that is ℘ ∩ {∆k; k ∈ N0} = ∅, we have R∆ ⊆ R℘. Hence we have
A∗
i ∈ AR℘ , for all i ∈ {1, . . . , n}, and thus the Frobenius-Schur relations imply

cϕ =
∑n
i=1 δ(A

∗
i )jjδ(Ai)jj ∈ R℘ ⊆ K, for any j ∈ {1, . . . , d}. Hence we have

cϕ ∈ ⋂
∆ 6∈℘⊳R primeR℘ = R∆. ♯

(3.4) Proposition. Let ∆ 6∈ ℘ ⊳ R be a prime ideal such that AF is split.
Then D℘ induces a bijection {ϕ ∈ Irr(AK); cϕ 6= 0 ∈ F} → {ψ ∈ Irr(AF ); cψ 6=
0 ∈ F}. In particular, AF is semisimple if and only if cϕ 6= 0 ∈ F for all
ϕ ∈ Irr(AK).

Proof. For all ϕ ∈ Irr(AK) we have cϕ ∈ R℘, and AF is a symmetric F -algebra,
hence the sets are well-defined. We show that the above map is well-defined:

Let ϕ ∈ Irr(AK) such that cϕ 6= 0 ∈ F , hence we have 1
cϕ

∈ R℘. Let δ : AK →
Kd×d be the representation of degree d affording ϕ, where we may assume that
δ(AR℘) ⊆ Rd×d℘ . Since AR℘ is a symmetric R℘-algebra, letting eϕ,ij = 1

cϕ
·∑n

k=1 δ(A
∗
k)jiAk ∈ AR℘ , for all i, j ∈ {1, . . . , d}, the Frobenius-Schur relations

yield δ(eϕ,ij) = Eij ∈ δ(AR℘) ⊆ Rd×d℘ . Thus we have δ(AR℘) = Rd×d℘ , implying

δ(AF ) = F d×d, that is the ℘-modular reduction is irreducible, and we have
cδ = cϕ 6= 0 ∈ F .

As for injectivity, for the centrally primitive idempotent ǫϕ ∈ AR℘ associated

with ϕ we have δ(ǫϕ) = δ(ǫϕ) = Id = Id, while for any ϕ 6= ϕ′ ∈ Irr(AK)
with associated representation δ′ of degree d′, where we also may assume that

δ′(AR℘) ⊆ Rd
′×d′
℘ , we have δ′(ǫϕ) = 0 and thus δ

′
(ǫϕ) = 0 ∈ F d

′×d′ . As for
surjectivity, let ψ ∈ Irr(AF ) such that cψ 6= 0, that is the irreducible AF -module
affording ψ is projective, thus there is an irreducible AK-module lifting it.

Finally, AF is semisimple if and only if
∑
ψ∈Irr(AF ),cψ 6=0∈F d

2
ψ = n, that is∑

ϕ∈Irr(AK),cϕ 6=0∈F d
2
ϕ = n, that is cϕ 6= 0 ∈ F for all ϕ ∈ Irr(AK). ♯

(3.5) Theorem. Let AK be semisimple.

a) Then for the Frame number we have N := ∆ · ∏ϕ∈Irr(AK) c
d2ϕ
ϕ ∈ R.

b) The ideal NRER is the square of an ideal in R.

Proof. We proceed towards in interpretation of N : Given any trace form
ψ : AK → K, let τψ : A2

K → K : [A,B] 7→ ψ(AB) be the associated symmetric
associative K-bilinear form. Given any K-basis B := {B1, . . . , Bn} ⊆ AK , let
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B(τψ)B := [ψ(BiBj)]ij ∈ Kn×n be the associated Gram matrix, hence the
discriminant of τψ with respect to B is given as det(B(τψ)B) ∈ K.

We have AK
∼=

⊕
ϕ∈Irr(AK)K

dϕ×dϕ , hence let E :=
∐
ϕ∈Irr(AK) Eϕ ⊆ AK be a

Wedderburn basis of AK , that is Eϕ := {eϕ,pq ∈ AK ; p, q ∈ {1, . . . , dϕ}} is
the K-basis of the block associated with ϕ such that δϕ(eϕ,pq) = Epq ∈ Kdϕ×dϕ .
This yields ϕ(eϕ,pqeϕ,rs) = δpsδqr and eϕ,pqeϕ′,rs = 0 ∈ AK , for all ϕ 6= ϕ′ ∈
Irr(AK) and p, q ∈ {1, . . . , dϕ} and r, s ∈ {1, . . . , dϕ′}. Thus for any trace form
ψ =

∑
ϕ∈Irr(AK) αϕϕ, where αϕ ∈ K, we get ψ(eϕ,pqeϕ′,rs) = αϕδϕ,ϕ′δpsδqr,

and hence the associated discriminant is det(E(τψ)E) =
∏
ϕ∈Irr(AK)((−1)(

dϕ
2 ) ·

∏dϕ
p=1

∏dϕ
q=1 αϕ) =

∏
ϕ∈Irr(AK)(−1)(

dϕ
2 )α

d2ϕ
ϕ .

For the symmetrising form λ =
∑

ϕ∈Irr(AK)
1
cϕ
ϕ we thus get det(E (τλ)E) =

∏
ϕ∈Irr(AK)(−1)(

dϕ
2 )( 1

cϕ
)d

2
ϕ , while by assumption we have det({Ai}(τλ){Ai}) = ∆.

Thus letting C := {Ai}idE ∈ Kn×n we from det({Ai}(τλ){Ai}) = det(E (τλ)E) ·
det(C)2 infer det(C)2 = ∆ · ∏ϕ∈Irr(AK)(−1)(

dϕ
2 )c

d2ϕ
ϕ . For ω :=

∑
ϕ∈Irr(AK) ϕ we

get det(E(τω)E) =
∏
ϕ∈Irr(AK)(−1)(

dϕ
2 ), hence for the reduced discriminant

we have det({Ai}(τω){Ai}) = det(E(τω)E) · det(C)2 = ∆ · ∏ϕ∈Irr(AK) c
d2ϕ
ϕ = N .

a) Since ω(A) ⊆ R we infer N = det({Ai}(τω){Ai}) = det([ω(AiAj)]ij) ∈ R.

b) Letting ℘⊳R be a prime ideal we may assume that δϕ(AR℘) ⊆ R
dϕ×dϕ
℘ . Since

⊕
ϕ∈Irr(AK) δϕ is faithful, we infer Ai =

∑
ϕ∈Irr(AK)

∑dϕ
p=1

∑dϕ
q=1 δϕ(Ai)pqeϕ,pq ∈

AK for all i ∈ {0, . . . , d}. This shows that a Wedderburn basis can chosen
such that C = {Ai}idE ∈ Rn×n℘ . Letting ν℘ : K∗ → Z be the discrete valua-

tion of K associated with ℘ we infer ν℘(N ) = ν℘(N · ∏
ϕ∈Irr(AK)(−1)(

dϕ
2 )) =

ν℘(det(C)2) = 2ν℘(det(C)) ∈ 2N0. From NR =
∏s
k=1 ℘

ek
k ER, where s, ek ∈ N0

and the ℘k ⊳R are pairwise different prime ideals, we thus get ek ∈ 2N0. ♯

(3.6) Theorem: Fleischmann, 1993 [9]. Let AK be semisimple. Then AF

is semisimple if and only if N 6= 0 ∈ F , that is N 6∈ ℘.

Proof. Let V :=
⊕

ϕ∈Irr(AK) Sϕ with representation δ =
⊕

ϕ∈Irr(AK) δϕ, afford-

ing the character ω =
∑

ϕ∈Irr(AK) ϕ. We may assume that δϕ(AR℘) ⊆ R
dϕ×dϕ
℘

for all ϕ ∈ Irr(AK), hence the AF -module V =
⊕

ϕ∈Irr(AK) Sϕ affords the char-

acter ω =
∑
ϕ∈Irr(AK) ϕ. Since N ∈ F is the discriminant of τω with respect to

{A1, . . . , An}, we show that τω is non-degenerate if and only if AF is semisimple:

If AF is semisimple, then by Tits’ Deformation Theorem AF is split and the
decomposition map D℘ : Irr(AK) → Irr(AF ) : ϕ 7→ ϕ is a bijection, thus δ =⊕

ϕ∈Irr(AK) δϕ : AF → ⊕
ϕ∈Irr(AK) F

dϕ×dϕ is an isomorphism of F -algebras, in

particular δ is faithful. Letting A ∈ rad(τω) E AF , for any ϕ ∈ Irr(AK) and all
i, j ∈ {1, . . . , dϕ}, using the matrix units of the block of AF associated with ϕ, we
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have δϕ(A)ij = tr(EϕkiAE
ϕ
jk) = ω(EϕkiAE

ϕ
jk) = 0 ∈ F , for any k ∈ {1, . . . , dϕ}.

Thus we have δ(A) = 0, implying A = 0.

If AF is not semisimple, then let 0 6= A ∈ rad(AF )⊳AF . Hence δψ(AB) = 0 for
all ψ ∈ Irr(AF ) and B ∈ AF . Thus considering a composition series of Sϕ shows
that ϕ(AB) = 0 ∈ F for all ϕ ∈ Irr(AK) and B ∈ AF , hence ω(AB) = 0 ∈ F
for all B ∈ AF , that is A ∈ rad(τω). ♯

(3.7) Proposition. Let AK be semisimple, and let K ′ ⊆ K be a subfield
with ring of integers R′, such that AR′ := 〈A1, . . . , An〉R′ is an R′-subalgebra
and such that λ : A2

R′ → R′. If the Schur elements cϕ ∈ K, for ϕ ∈ Irr(AK),
are pairwise different, then the character field K ′(ϕ(AK′ );ϕ ∈ Irr(AK)) =
K ′(cϕ;ϕ ∈ Irr(AK)) is the unique minimal splitting field of AK′ in K.

Proof. From the Frobenius-Schur relations we infer that any splitting field of
AK′ contains L := K ′(cϕ;ϕ ∈ Irr(AK)) ⊆ K ′(ϕ(AK′ );ϕ ∈ Irr(AK)). We show
that L is a splitting field:

We may assume that K ′ ⊆ K is Galois. Let σ ∈ AutK′(K) and ϕ ∈ Irr(AK).
Then from AK′ being a K ′-subalgebra we infer that letting Ai 7→ δϕ(Ai)

σ,
for all i ∈ {1, . . . , n} and σ being applied entrywise, K-linear extension yields
an irreducible representation of AK , affording the character ϕσ(

∑n
i=1 αiAi) :=∑n

i=1 αiϕ(Ai)
σ, where αi ∈ K. Since A∗

i ∈ AK′ for all i ∈ {1, . . . , n}, the
Frobenius-Schur relations imply cϕσ = cσϕ ∈ K. Thus for all σ ∈ AutL(K) we
have cϕσ = cϕ, the Schur elements being pairwise different implying ϕσ = ϕ.

The field automorphism σ extends to a K ′-algebra automorphism of AK given
by (

∑n
i=1 αiAi)

σ :=
∑n

i=1 α
σ
i Ai. Thus for A =

∑n
i=1 αiAi ∈ AK we have

ϕσ(Aσ) = ϕσ(
∑n

i=1 α
σ
i Ai) =

∑n
i=1 α

σ
i ϕ(Ai)

σ = ϕ(A)σ ∈ K. In particular,
σ permutes the set {ǫϕ;ϕ ∈ Irr(AK)} of centrally primitive idempotents of
AK , and from ϕσ(ǫσϕ) = ϕ(ǫϕ)σ = 1σ = 1 we infer ǫσϕ = ǫϕσ . Thus for all
σ ∈ AutL(K) we have ǫσϕ = ǫϕ, which since FixK(AutL(K)) = L implies ǫϕ ∈
AL ⊆ AK Hence AL

∼=
⊕

ϕ∈Irr(AK) ǫϕAL has at least as many irreducible
representations as AK , hence equally many, thus is split. ♯

4 Structure of adjacency algebras

We return to our original setting of association schemes.

(4.1) Theorem. Let R be a commutative ring, and let X be an association

scheme such that ∆ :=
∏d
i=0 ni ∈ R∗. Then AR is a symmetric R-algebra with

respect to the symmetrising form λ : AR → R :
∑d

k=0 αkAk 7→ α0, where
{Ai; i ∈ {0, . . . , d}} and { 1

ni
· Ai∗ ; i ∈ {0, . . . , d}} are mutually dual R-bases of

AR; the latter is called the dual Schur basis.
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Proof. Let τλ : A2
R → R : [A,B] 7→ λ(AB) be the associated R-bilinear form.

Hence we have τλ(AB,C) = λ(AB · C) = λ(A · BC) = τλ(A,BC), for all
A,B,C ∈ AR, that is τλ is associative. We show that τλ is symmetric, and
that its discriminant is a unit in R: Let A =

∑d
i=0 αiAi and B =

∑d
j=0 βjAj ,

where αi, βj ∈ R. Then we have λ(AB) =
∑d
i=0

∑d
j=0

∑d
k=0 αiβjp

k
ijλ(Ak) =

∑d
i=0 αiβi∗ni = λ(BA), and λ(AiAj∗) =

∑d
k=0 p

k
ij∗λ(Ak) = niδij ∈ R∗, for all

i, j ∈ {0, . . . , d}, hence the discriminant with respect to the Schur basis equals

(−1)
d+1−|I|

2 · ∆ ∈ R∗, where I := {i ∈ {0, . . . , d}; i∗ = i}. ♯

(4.2) Theorem. Let X be an association scheme, and let F be a field such
that p := char(F ) ≥ 0 and p 6 | n∆, and such that AF is split. Then for any
ϕ ∈ Irr(AF ) we have mϕ 6= 0 ∈ F and cϕ = n

mϕ
∈ F .

Proof. For the natural AF -module we have Fn ∼=
⊕

ϕ∈Irr(AF )

⊕mϕ
k=1 Sϕ, where

Sϕ is the irreducible AF -module affording ϕ. For the centrally primitive idem-

potent ǫϕ = 1
cϕ

·∑d
j=0

ϕ(Aj∗ )

nj
Aj ∈ AF,ϕ in the block associated with ϕ ∈ Irr(AF )

and all i ∈ {0, . . . , d} we have ǫϕAi ∈ AF,ϕ. Hence for the natural character
we get ν(ǫϕAi) =

∑
ψ∈Irr(AF )mψψ(ǫϕAi) = mϕϕ(ǫϕAi) = mϕϕ(Ai) ∈ F . Thus

from ν(ǫϕAi) = 1
cϕ

· ∑d
j=0

ϕ(Aj∗ )

nj
ν(AjAi) = ϕ(Ai)

cϕni
· nni = ϕ(Ai)n

cϕ
∈ F , choosing

i ∈ {0, . . . , d} such that ϕ(Ai) 6= 0 ∈ F , we infer mϕ = n
cϕ

6= 0 ∈ F . ♯

(4.3) Theorem: Hanaki, 2000 [12]. Let X be an association scheme.
a) Let K be a field such that char(K) = 0 and AK is split. Then for any
ϕ ∈ Irr(AK) we have cϕ ∈ Z∆ ⊆ Q, and for the Frame number we have

N =
(−1)

d+1−|I|
2 ∆ · nd+1

∏
ϕ∈Irr(AK)m

d2ϕ
ϕ

∈ Z.

b) Let F be a field such that p := char(F ) ≥ 0. Then AF is semisimple if and
only if p 6 | N ∈ Z.

Proof. a) Let Q be the algebraic closure of Q, hence A
Q

is split. Thus we may
assume that K is an algebraic number field. Let R be the ring of integers in K,
then AR∆ is a symmetric R∆-algebra, hence we infer that cϕ ∈ R∆ ∩ Q = Z∆.
The discriminant of the symmetrising form with respect to the Schur basis

being (−1)
d+1−|I|

2 ∆, we from d + 1 = dimK(AK) =
∑

ϕ∈Irr(AK) d
2
ϕ get N =

(−1)
d+1−|I|

2 ∆ · ∏ϕ∈Irr(AK)(
n
mϕ

)d
2
ϕ = (−1)

d+1−|I|
2 ∆·nd+1

Q
ϕ∈Irr(AK )m

d2ϕ
ϕ

∈ Z∆ ∩R = Z.

b) We may assume that p 6= 0. Then we have AF
∼= AFp ⊗Fp F , and since

Fp is perfect we get rad(AF ) = rad(AFp) ⊗Fp F [7, Thm.7.9]. Hence we may
assume that F is a finite field such that AF is split. Let K be an algebraic
number field with ring of integers R ⊆ K, such that AK is split and R has a
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prime ideal ℘ ⊳ R such that R/℘ ∼= F . Then AF is semisimple if and only if
N ∈ Z \ (℘ ∩ Z) = Z \ pZ. ♯

(4.4) Theorem: Frame, 1941 [10]. Let X be an association scheme.
a) We have n2 | N ∈ Z.
b) If AQ is split, then |N | is a square in Z.
c) Let K be a field such that char(K) = 0 and AK is split. If the multiplicities
mϕ, for ϕ ∈ Irr(AK), are pairwise different, then AQ is split.

Proof. a) Let K be an algebraic number field such that AK is split, let R
be the ring of integers in K, and let ℘ ⊳ R be a prime ideal. Then there is a

Wedderburn basis E ⊆ AK such that C := {Ai}idE ∈ R
(d+1)×(d+1)
℘ . We have∑d

i=0 Ai = Jn = nǫϕ0 ∈ AK , where ǫϕ0 = eϕ0,11 is the centrally primitive
idempotent associated with the trivial character ϕ0. Thus we get [1, . . . , 1] ·
C = (Jn)E = [n, 0, . . . , 0] ∈ Rd+1

℘ . This implies n | det(C) ∈ R℘ and hence

n2 | N ∈ R℘. Thus we get N
n2 ∈ Q ∩ ⋂

℘⊳R primeR℘ = Q ∩R = Z. ♯

(4.5) Theorem: Wielandt, 1964 [21]; Higman, 1975 [14]. Let X be
an association scheme, let p ∈ Z be a prime and l ∈ N. Then we have∑
ϕ∈Irr(AC),pl |mϕ d

2
ϕ ≤ |{i ∈ {0, . . . , d}; pl | nni}|. In particular, if X is com-

mutative then we have |{ϕ ∈ Irr(AC); pl | mϕ}| ≤ |{i ∈ {0, . . . , d}; pl | nni}|.

Proof. Let K be an algebraic number field such that AK is split, let R be the
ring of integers in K, and let ℘⊳R be a prime ideal such that ℘ ∩ Z = pZ; for
the associated valuations we have ν℘|Z = eνp, where e ∈ N is the ramification
index. We may assume that Ψ := [δϕ(Ai)rs; [ϕ, r, s] ∈ T , i ∈ {0, . . . , d}]ϕ,r,s;i ∈
R

(d+1)×(d+1)
℘ , where T := {[ϕ, r, s];ϕ ∈ Irr(AK), r, s ∈ {1, . . . , dϕ}} is ordered

lexicographically; if X is commutative, that is dϕ = 1 for all ϕ ∈ Irr(AK), then
Ψ = Φ(AK) coincides with the character table of AK .

Let N := diag[n0, . . . , nd] ∈ Z(d+1)×(d+1) and M := diag[mϕId2ϕ ;ϕ ∈ Irr(AK)] ∈
Z(d+1)×(d+1). The orthogonality relations read (ΨQ)N−1(PΨ)tr = nM−1 ∈
K(d+1)×(d+1), where Q ∈ Z(d+1)×(d+1) is the permutation matrix describing
the involution ∗ : i 7→ i∗ on {0, . . . , d}, and P ∈ Z(d+1)×(d+1) is the per-
mutation matrix describing the appropriate reordering of T . In particular
Ψ ∈ K(d+1)×(d+1) is invertible. Inverting yields (PΨ)−trN(ΨQ)−1 = n−1M

and thus (PΨ)trM(ΨQ) = nN ∈ R
(d+1)×(d+1)
℘ .

Since R℘ is a principal ideal domain, it has an elementary divisor theory with
respect to its only prime ideal ℘, where elementary divisors are greatest common
divisors of appropriate matrix minors. Writing M = diag[m0, . . . ,md], we for
k ∈ N0 have |{i ∈ {0, . . . , d}; ν℘(mi) ≥ k}| ≤ |{i ∈ {0, . . . , d}; ν℘(nni) ≥ k}|. ♯

(4.6) Remark. The above matrix calculation relates to the Frame number

as follows: We have det(Q) = (−1)
d+1−|I|

2 and det(P ) =
∏
ϕ∈Irr(AK)(−1)(

dϕ
2 ),
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thus we get (−1)
d+1−|I|

2 det(Ψ)2 · ∏ϕ∈Irr(AK)(−1)(
dϕ
2 )m

d2ϕ
ϕ = nd+1∆, thus N =

det(PΨ2). The associated Wedderburn basis E ⊆ AK is given as E id{Ai} =
n−1MP (ΨQ)N−1. Hence from n−1(ΨQ)N−1 = M−1(PΨ)−tr and using MP =
PM and P = P−1 = P tr, we conclude E id{Ai} = MPM−1P−trΨ−tr = Ψ−tr,
implying C := {Ai}idE = Ψtr.

(4.7) Theorem: Higman, 1975 [14]. Let X be an association scheme. Then
|Irr(AC)| = 2 implies d = 1. In particular, if d ≤ 4 then X is commutative.

Proof. Let Irr(AC) = {ϕ0, ϕ}, where ϕ0 is the trivial character. Hence we have
d+1 = dimC(AC) = 1+d2

ϕ, thus d2
ϕ = d. For the natural character ν = ϕ0+mϕϕ

we have 0 = ν(Ai) = ni +mϕϕ(Ai), for all i ≥ 1, thus ϕ(Ai) = −ni
mϕ

< 0, and

since ϕ(Ai) is an integer we conclude ϕ(Ai) ≤ −1. For Jn =
∑d
i=0 Ai = nǫϕ0

we have 0 = ϕ(Jn) = dϕ +
∑d

i=1 ϕ(Ai) ≤ dϕ − d = dϕ − d2
ϕ, thus d2

ϕ ≤ dϕ,
implying dϕ = 1 and hence d = d2

ϕ = 1.

If d ≤ 3, then from
∑
ϕ∈Irr(AC) d

2
ϕ = d + 1 ≤ 4 and dϕ0 = 1 we conclude that

dϕ = 1 for all ϕ ∈ Irr(AC), that is AC is commutative. Finally, if d = 4 then
assume that AC is not commutative. Then we have Irr(AC) = {ϕ0, ϕ} where
dϕ = 2, implying d = 1, a contradiction. ♯

(4.8) Theorem: Bannai-Ito, 1984 [3]. Let X be an association scheme, such
that all non-trivial characters in Irr(AC) have the same multiplicity m. Then
X is commutative, and we have n1 = · · · = nd = m and |N | = nd+1.

Proof. We may assume that d ≥ 1; we have n0 = mϕ0 = dϕ0 = 1 any-
way. Then n = 1 + m · ∑

ϕ0 6=ϕ∈Irr(AC) dϕ implies that n and m are coprime.

Since
∑
ϕ0 6=ϕ∈Irr(AC) d

2
ϕ = d we infer that |N | = nd+1∆

md
∈ Z, and thus md |

∆, hence m ≤ ∆
1
d . The inequality between the geometric and arithmetic

mean yields ∆
1
d = (

∏d
i=1 ni)

1
d ≤ 1

d
· ∑d

i=1 ni = n−1
d

=
m·Pϕ0 6=ϕ∈Irr(AC) dϕ

d
≤

m·Pϕ0 6=ϕ∈Irr(AC) d
2
ϕ

d
= m ≤ ∆

1
d . Hence

∑
ϕ0 6=ϕ∈Irr(AC) dϕ =

∑
ϕ0 6=ϕ∈Irr(AC) d

2
ϕ

implies dϕ = d2
ϕ = 1 for all ϕ0 6= ϕ ∈ Irr(AC), that is AC is commutative, thus

|Irr(AC)| = d + 1. Moreover, (
∏d
i=1 ni)

1
d = 1

d
· ∑d

i=1 ni implies n1 = · · · = nd,
hence we have 1 + dn1 = n = 1 + dm, implying n1 = m and ∆ = md. ♯

(4.9) Theorem: Hanaki, 2002 [11]; Hanaki-Uno, 2006 [13]. Let X be
an association scheme such that n = pl, where p ∈ Z is a prime and l ∈ N.
a) Let F be a field such that char(F ) = p. Then AF is a local algebra.
b) If n = p then all non-trivial characters in Irr(AC) have the same multiplicity.

Proof. a) The adjacency algebra AF is local if and only if the trivial repre-
sentation is the only irreducible representation. Hence we may assume that F
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is a finite field and AF is split. Let K be an algebraic number field with ring
of integers R, having a prime ideal ℘ ⊳ R such that R/℘ ∼= F , where we may
assume that AK is split. We show that AF has a unique primitive idempotent:

Let first eϕ ∈ AK be a primitive idempotent associated with ϕ ∈ Irr(AK), then
from λ =

∑
ϕ∈Irr(AK)

1
cϕ
ϕ we get λ(eϕ) = 1

cϕ
=

mϕ
n

∈ K. Let now f ∈ AF be

a primitive idempotent. Then there is a primitive idempotent f̂ ∈ AR℘ such

that f̂ = f . Let f̂ =
∑

ϕ∈Irr(AK)

∑kϕ
i=1 eϕ,i be a decomposition into pairwise

orthogonal primitive idempotents eϕ,i ∈ AK , where eϕ,i is associated with ϕ ∈
Irr(AK) and kϕ ∈ {0, . . . , dϕ}. Hence we have λ(f̂) = 1

pl
· ∑ϕ∈Irr(AK) kϕmϕ ∈

R℘∩Q = Z〈p〉, implying that n = pl | ∑
ϕ∈Irr(AK) kϕmϕ ≤ ∑

ϕ∈Irr(AK) dϕmϕ =

n, thus kϕ = dϕ for all ϕ ∈ Irr(AK), hence f̂ = A0 and thus f = f̂ = A0.

b) Let K be an algebraic number field with ring of integers R such that AK is
split, where we may assume that Q ⊆ K is Galois, and let ℘ ⊳ R be a prime
ideal such that F := R/℘ is a field such that char(F ) = p. We show that all
ϕ0 6= ϕ ∈ Irr(AK) are algebraically conjugate, then in particular all the Schur
elements cϕ = n

mϕ
∈ Q are the same, and thus the multiplicities as well:

For ϕ0 6= ϕ ∈ Irr(AK) let O := {ϕσ ∈ Irr(AK);σ ∈ AutQ(K)} and O′ :=

Irr(AK) \ ({ϕ0}
.∪ O), where the latter is to be shown to be the empty set,

and let ψ :=
∑

ϕ′∈O ϕ
′ and ψ′ :=

∑
ϕ′∈O′ ϕ′. Hence we have ψ(Ai), ψ

′(Ai) ∈
FixK(AutQ(K)) ∩ R = Q ∩ R = Z, for all i ∈ {0, . . . , d}, and letting dψ :=
ψ(A0) = |O| and dψ′ := ψ′(A0) = |O′| be the associated degrees we have
1 ≤ dψ < |Irr(AK)| ≤ ∑

ϕ∈Irr(AK)mϕdϕ = n = p and similarly 0 ≤ dψ′ < p.

Since the trivial character is the unique irreducible character of AF , decom-
position theory implies that ψ(Ai) − nidψ ∈ ℘. Thus there are ai ∈ Z such
that ψ(Ai) = nidψ − pai ∈ Z, and similarly there are a′i ∈ Z such that and
ψ′(Ai) = nidψ′ − pa′i ∈ Z, for all i ∈ {0, . . . , d}. The orthogonality relations im-

ply 0 =
∑d

i=0
ϕ0(Ai∗)ψ(Ai)

ni
=

∑d
i=0 ψ(Ai) = p(dψ−

∑d
i=0 ai), thus

∑d
i=0 ai = dψ

and similarly
∑d

i=0 a
′
i = dψ′ . Again by the orthogonality relations we get 0 =

∑d
i=0

ψ(Ai∗ )ψ′(Ai)
ni

=
∑d

i=0 nidψdψ′ −p ·∑d
i=0(dψa

′
i+dψ′ai∗)+p2 ·∑d

i=0
ai∗a

′
i

ni
=

−pdψdψ′ + p2 · ∑d
i=0

ai∗a
′
i

ni
. Since ni < n = p for all i ∈ {0, . . . , d}, this implies

dψdψ′ = p · ∑d
i=0

ai∗a
′
i

ni
∈ Z〈p〉, hence p | dψdψ′ ∈ Z, and thus dψ′ = 0. ♯

(4.10) Example: Johnson scheme J (7, 2). By (2.7) the adjacency algebra
AF is split for any field F . Hence we let K := Q and R := Z and consider
the cases F := Fp for p ∈ {2, 3, 5, 7}. We have n = 21 and n0 = 1 and n1 =

n2 = 10, hence ∆ =
∏2
i=0 ni = 100 = 22 · 52. Moreover, we have I = {0, . . . , 2},

hence the Frame number is N = (−1)0 · ∆ · ∏2
i=0 c

d2i
i = 11025 = 32 · 52 · 72,

and the decomposition matrices, that is the matrices describing the various
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decomposition maps, are as follows, where 3, 7 6∈ ∆ while 2, 5 ∈ ∆:

mi ci di p = 7 p = 3 p = 5 p = 2
ϕ0 1 21 1 1 . 1 . 1 . 1 . .
ϕ1 6 7

2 1 1 . . 1 . 1 . 1 .
ϕ2 14 3

2 1 . 1 1 . . 1 . . 1

(4.11) Example. Let G := J1 be the smallest sporadic simple Janko
group, of order |G| = 175560 = 23 · 3 · 5 · 7 · 11 · 19, let H := L2(11) < G
be the largest maximal subgroup, of order |H | = 660 = 22 · 3 · 5 · 11, and let X
be the Schurian scheme on X := H\G. Then X is commutative such that d = 4
and n = 266 = 2 · 7 · 19. We have [n0, . . . , n4] = [1, 11, 110, 132, 12], and by (5.4)
the character table Φ(AC) is given as follows:

mi ci di A0 A1 A2 A3 A4

ϕ0 1 266 1 1 11 110 132 12

ϕ1 56 19
4 1 1 −7−

√
5

2
5+7

√
5

2
3−9

√
5

2
−3+3

√
5

2

ϕ2 56 19
4 1 1 −7+

√
5

2
5−7

√
5

2
3+9

√
5

2
−3−3

√
5

2
ϕ3 76 7

2 1 1 4 5 −8 −2
ϕ4 77 38

11 1 1 1 −10 4 4

Since AQ is commutative, the character field K := Q(
√

5) is the unique minimal

splitting field of AQ in C; the ring of integers in K is R := Z[ 1+
√

5
2 ], which is

a principal ideal domain. The valencies ni = ϕ0(Ai) are pairwise different,

implying that I := {0, . . . , 4}, and yielding ∆ =
∏4
i=0 ni = 1916640 = 25 ·

32 · 5 · 113. The multiplicities mi are not pairwise different, and we have N =
(−1)0 · ∆ · n5 · ∏4

i=0(
1
mi

)d
2
i = 139081177620 = 22 · 32 · 5 · 72 · 112 · 194, which is

not a square in Z, but only is a square in R.

As for the decomposition maps, let ℘⊳R be a prime ideal such that ℘∩Z = pZ
for p ∈ {2, 3, 5, 7, 11, 19}, where 11, 19 6∈ ∆ while 2, 3, 5, 11 ∈ ∆. Appropriate
choices of ℘ for p ∈ {11, 19} yield:

ci p = 19 p = 7
ϕ0 266 1 . . 1 . . .
ϕ1

19
4 1 . . . 1 . .

ϕ2
19
4 . 1 . . . 1 .

ϕ3
7
2 . . 1 1 . . .

ϕ4
38
11 . 1 . . . . 1

ci p = 11 p = 5 p = 3 p = 2
ϕ0 266 1 . . . 1 . . . 1 . . . 1 . . .
ϕ1

19
4 . 1 . . . 1 . . . 1 . . . 1 . .

ϕ2
19
4 . . 1 . . 1 . . . . 1 . . . 1 .

ϕ3
7
2 . . 1 . . . 1 . . . . 1 . . . 1

ϕ4
38
11 . . . 1 . . . 1 . . . 1 1 . . .
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5 Commutative schemes

In this section let X be a commutative association scheme.

(5.1) The natural module. Endowing the natural AC-module Cn with the
standard scalar product 〈v, w〉 := v · wtr ∈ C, for all v, w ∈ Cn, the adjoint of

A ∈ Cn×n is given as Aadj = A
tr

, where : C → C is complex conjugation. Since

Aadj
j = A

tr

j = Aj∗ ∈ A, for all j ∈ {0, . . . , d}, we conclude that Aj is a normal
matrix, that is Aj commutes with its adjoint. Hence by the spectral theorem
for complex normal matrices there is an orthogonal direct sum decomposition
Cn =

⊕t
i=0 Vi as C-vector spaces, for some t ∈ N0, such that the strata Vi are

maximal simultaneous eigenspaces of all elements of AC.

Letting ϕi(Aj) ∈ C be the associated eigenvalue of Aj , for all i ∈ {0, . . . , t} and
j ∈ {0, . . . , d}, we have Aj |Vi = ϕi(Aj) · idVi . Since (Aadj)|Vi = (A|Vi)adj for all
A ∈ AC, we conclude that ϕi(Aj∗) = ϕi(Aj) ∈ C; in particular if j∗ = j then
we have ϕi(Aj) ∈ R. For the minimum and characteristic polynomials of Aj we

have µAj =
∏t
i=0(T − ϕi(Aj)) ∈ C[T ] and χAj =

∏t
i=0(T − ϕi(Aj))

mi ∈ C[T ],
where mi := dimC(Vi) ∈ N. Since the natural representation is faithful, the
character table of AC is given as Φ := Φ(AC) = [ϕi(Aj)]ij ∈ C(t+1)×(d+1) with
associated multiplicities mi ∈ N and degrees di = 1, for all i ∈ {0, . . . , t}.
If X is symmetric, then Atr

i = Ai ∈ A ⊆ Rn×n shows that Ai is a symmetric
real matrix, for all i ∈ {0, . . . , d}. Letting Rn be endowed with the standard
scalar product 〈v, w〉 := v · wtr ∈ R, for all v, w ∈ Rn, by the spectral theorem
for symmetric real matrices there is an orthogonal direct sum decomposition
Rn =

⊕t
i=0Wi as R-vector spaces such that Vi = Wi ⊗R C.

(5.2) Characters. Let K be an algebraic number field such that AK is split,
and let R be the ring of integers in K. The algebra AK is split semisimple, this
implies t = d, hence we have AK

∼=
⊕

i∈{0,...,d} EndK(Si) ∼=
⊕

i∈{0,...,d}K,

where Si is the irreducible AK-module affording ϕi ∈ Irr(AK). We have
ϕi(Aj) ∈ R for all i, j ∈ {0, . . . , d}, and Φ ∈ R(d+1)×(d+1) is a square ma-
trix. We may assume that K := Q(ϕi(Aj); i, j ∈ {0, . . . , d}) is the character
field, being the unique minimal splitting field of AQ in C.

Letting N := diag[n0, . . . , nd] ∈ Z(d+1)×(d+1) and M := diag[m0, . . . ,md] ∈
Z(d+1)×(d+1), the orthogonality relations yield row orthogonality ΦN−1Φtr =
nM−1 ∈ K(d+1)×(d+1); in particular, Φ is invertible, and we have Biggs’ for-
mula (1974)

∑d
j=0

1
nj
ϕi(Aj)ϕi(Aj) = n

mi
relating the character ϕi and its

multiplicity mi. Letting Q ∈ Z(d+1)×(d+1) be the permutation matrix describ-
ing the involution ∗ : i 7→ i∗ on {0, . . . , d}, we have Φ = ΦQ. By inverting, row

orthogonality implies Φ−trNΦ
−1

= 1
n
M , and thus we have column orthogo-

nality ΦtrMΦ = nN ∈ R(d+1)×(d+1).

Let ϕ0 ∈ Irr(AK) be the trivial character, that is we have ϕ0(Ai) = ni ≥ 0
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for all i ∈ {0, . . . , d}. From row orthogonality we infer that ϕ0 is the unique
irreducible character ϕ ∈ Irr(AK) such that ϕ(Ai) ≥ 0 for all i ∈ {0, . . . , d}.
Hence the valencies ni = ϕ0(Ai) and thus the multiplicities mi are determined
from the character table Φ alone.

Let E = {ǫ0, . . . , ǫd} ⊆ AK be the Wedderburn basis, where ǫi ∈ AK is the cen-
trally primitive idempotent associated with ϕi. Hence we have E id{Ak} = Φ−tr ∈
K(d+1)×(d+1). The intersection matrices Pj = {Ak}(Aj){Ak} ∈ Z(d+1)×(d+1), for
j ∈ {0, . . . , d}, being the representing matrices of the right regular represen-
tation of AK with respect to the Schur basis, we from ǫiAj = ϕi(Aj)ǫi, for
i ∈ {0, . . . , d}, get E id{Ak} · Pj = Cj · E id{Ak}, where Cj := diag[ϕi(Aj); i ∈
{0, . . . , d}] ∈ R(d+1)×(d+1). Hence we have Pj = (E id{Ak})

−1 · Cj · E id{Ak} =
ΦtrCjΦ

−tr, thus the intersection matrices Pj are determined from Φ alone.

Conversely, we show how Φ can be determined from the Pj : Since E id{Ak}
describes the Wedderburn isomorphism AK

∼=
⊕d

i=0 AKǫi ∼=
⊕d

i=0K in terms
of the Schur basis, the rows of E id{Ak} = Φ−tr are simultaneous eigenvectors
of all the Pj , with associated eigenvalues ϕi(Aj); this is also seen from the
equation Φ−trPj = CjΦ

−tr. Since PK ∼= AK as K-algebras, any non-zero
simultaneous eigenspace of all the Pj corresponds to a submodule of AK having
only one constituent, thus is one-dimensional. Hence the non-zero simultaneous
eigenspaces of all the Pj are the K-spans of the various rows of Φ−tr. Thus
Φ−tr can be determined up to scalars from the Pj , by computing eigenspaces
and intersecting them, where it is sufficient to determine only a subset of the Pj
and their eigenspaces such that one-dimensional simultaneous eigenspaces are
obtained; finally Φ is found from transposing, inverting and using ϕi(A0) = 1.

The P tr
j are the representing matrices of the left regular representation of AK ,

that is the right regular representation of the opposite algebra Aopp
K

∼= AK , with
respect to the dual Schur basis. The Frobenius-Schur relations imply E id{A∗

k
} =

diag[ci; i ∈ {0, . . . , d}]−1 · Φ ∈ K(d+1)×(d+1), where ci ∈ K is the Schur element
associated with ϕi. Hence the rows of Φ are simultaneous eigenvectors of all the
P tr
j , with associated eigenvalues ϕi(Aj); this is also seen in terms of matrices,

since from Φ−trPj = CjΦ
−tr we get C−1

j Φ−tr = Φ−trP−1
j , and thus inverting

and transposing yields ΦP tr
j = CjΦ. As above we conclude that the non-zero

simultaneous eigenspaces of all the P tr
j are the K-spans of the various rows of Φ.

Thus Φ can be determined directly from the P tr
j , avoiding a matrix inversion.

(5.3) Central Schurian schemes. Let X := G be a finite group, let G =∐d
i=0 Ci be its conjugacy classes, and let xi ∈ Ci for all i ∈ {0, . . . , d}, where

x0 := 1. For i ∈ {0, . . . , d} let Ri := {[x, y] ∈ G2;x−1y ∈ Ci}. Then we have

G2 =
∐d
i=0Ri where R0 = {[x, x];x ∈ G}, and letting i∗ ∈ {0, . . . , d} such that

C−1
i = Ci∗ we have Rtr

i = Ri∗ ; hence Rtr
i = Ri if and only if Ci is self-inverse.

Indeed X := [G, {R0, . . . , Rd}] is a Schurian association scheme:

We consider the transitive action of G×G on G via [g, h] : x 7→ g−1xh. We have
StabG×G(1) = ∆(G) := {[g, g]; g ∈ G} ∼= G, and hence the ∆(G)-suborbits are
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given by x∆(G) = {g−1xg; g ∈ G} for x ∈ G, that is the conjugacy classes of G.
The diagonal action of G×G on G2 is given by [g, h] : [x, y] 7→ [g−1xh, g−1yh].
For i ∈ {0, . . . , d} let [1, xi]

G×G = {[g−1h, g−1xih]; g, h ∈ G} be an orbital.
Then (g−1h)−1(g−1xih) = h−1xih ∈ Ci implies [1, xi]

G×G ⊆ Ri. Hence from∐d
i=0[1, xi]

G×G = G2 =
∐d
i=0 Ri we infer [1, xi]

G×G = Ri for all i ∈ {0, . . . , d}.
For i, j, k ∈ {0, . . . , d}, since [1, xk] ∈ Rk we have pkij = |{x ∈ G; [1, x] ∈
Ri, [x, xk] ∈ Rj}| = |{x ∈ G;x ∈ Ci, x

−1xk ∈ Cj}| = |Ci ∩ xkC−1
j | = |{[x, y] ∈

Ci × Cj ;xy = xk}| =: akij , the central structure constants of G:

Let R be a ring, and let Z(R[G]) be the centre of the group algebra R[G]. Then
{C+

i ;∈ {0, . . . , d}} ⊆ Z(R[G]) is an R-basis, where C+
i :=

∑
x∈Ci x ∈ R[G] is

the associated conjugacy class sum. Then we have C+
i C

+
j =

∑d
k=0 a

k
ijC

+
k ,

for all i, j, k ∈ {0, . . . , d}. Thus we infer that Z(R[G]) → AR : C+
i 7→ Ai is an

isomorphism of R-algebras; in particular X is commutative.

Let K be a field such that char(K) = 0 and K[G] is split. For χ ∈ Irr(K[G]) let
ωχ ∈ Irr(Z(K[G])) be the associated central character given by ωχ(C+

i ) =
|Ci|χ(xi)
χ(1) ∈ K, for all i ∈ {0, . . . , d}, describing the scalar action of Z(K[G])

on the irreducible module affording χ. Hence the character table [ωχ(C+
i );χ ∈

Irr(K[G]), i ∈ {0, . . . , d}]χ,i of Z(K[G]) with respect to the class sum basis
coincides with the character table of AK with respect to the Schur basis. Thus
the character table of Z(K[G]), and hence the irreducible characters of G, can
be determined from the central structure constants.

(5.4) Example. Let X be the Schurian scheme on X := H\G where G := J1

andH := L2(11) < G from (4.11). Still letting [n0, . . . , n4] = [1, 11, 110, 132, 12],
the intersection matrix P1 ∈ Z5×5 associated to A1 ∈ A is given as follows:

P1 =




. 1 . . .
11 . 1 . .
. 10 4 5 .
. . 6 5 11
. . . 1 .




Hence for the minimum polynomial of b := [1, 0, 0, 0, 0] ∈ K5 with respect to
P1 we have µP1,b = T 5 − 9T 4 − 42T 3 + 193T 2 + 341T − 484 = (T − 11)(T −
−7−

√
5

2 )(T − −7+
√

5
2 )(T −4)(T −1) ∈ K[T ], thus for the minimum polynomial of

P1 we have µP1 = µP1,b. Hence we have 〈P i1 ; i ∈ N0〉K = 〈P 0
1 , . . . , P

4
1 〉K , where

{P 0
1 , . . . , P

4
1 } is K-linearly independent. Hence we have 〈P 0

1 , . . . , P
4
1 〉K = PK ,

and it suffices to compute the eigenspaces of P1, which are as follows:




1 1 1 1 1

110 + 110
√

5 −60 − 40
√

5 20 + 6
√

5 −35−5
√

5
2 55

110 − 110
√

5 −60 + 40
√

5 20 − 6
√

5 −35+5
√

5
2 55

66 24 3 −4 −11
33 3 −3 1 11



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The character table Φ is then found from inverting, transposing and normalising
the above matrix. Equivalently, it suffices to compute the eigenspaces of P tr

1 ,
where normalising eigenvectors directly yields the character table Φ:




1 11 110 132 12

1 −7−
√

5
2

5+7
√

5
2

3−9
√

5
2

−3+3
√

5
2

1 −7+
√

5
2

5−7
√

5
2

3+9
√

5
2

−3−3
√

5
2

1 4 5 −8 −2
1 1 −10 4 4



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