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Association schemes are a central notion in algebraic combinatorics. They pro-
vide a unified approach to various questions from design theory, coding theory,
algebraic graph theory, discrete geometry, group theory and representation the-
ory. This is facilitated by viewing ideas from the theory of groups and their
representations from a combinatorial perspective, thus leading to a more gen-
eral picture. The aims of this lecture are to introduce association schemes and
the related basic structural notions and to present newer developments, in par-
ticular as far as their representation theory is concerned.
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0 Introduction

The theory of association schemes has its origin in the design of statistical ex-
periments [4], in the construction of so-called balanced incomplete block
designs [1, Ch.1.2]; In [8], association schemes were first recognised and fully
used as the basic underlying structure of coding theory and design theory [1],
giving birth to algebraic combinatorics as a mathematical discipline [3]. Be-
sides that, association schemes appear e. g. in the theory of distance-regular
graphs [5], in group theory related to coherent configurations [14, 15, 16]
and to Schur rings [21], in representation theory related to centraliser alge-
bras [19], and are interesting mathematical objects themselves deserving serious
study, in particular as far as their representation theory is concerned [17].

1 Association schemes

(1.1) Association schemes. Let X # () be a finite set and n := | X| € N. For
deNylet X2:=Xx X = H?:O R; be a disjoint union of relations R; # 0,
where Ry := {[z,z];2 € X} is the identity relation, having the following
pairing and regularity properties:

i) For all i € {0,...,d} there is i* € {0,...,d} such that for the transposed
relation we have R := {[y,z] € X% [z,y] € R;} = R;~. In particular we have
=i and 0* = 0; let 7 := {i € {0,...,d};i* = i}.

ii) For all i,5,k € {0,...,d} there is an intersection number pfj € Ny such
that for all [z, 2] € Ry, we have |{y € X;[z,y] € Ry, [y, 2] € R;}| = p};, indepen-
dent of the particular choice of [z, z] € Ry.

Then X := [X,{Ry,...,Rq}] is called a (non-commutative) association
scheme or homogeneous coherent configuration [16] on X, of order n,
and of class d or rank d + 1. Elements x,y € X such that [z,y] € R;, for
i €{0,...,d}, are called i-th associates. Let the valency of R; be defined as
ni = pY.; if n; <1 for alli € {0,...,d} then X is called thin.

If pfj = p?i for all 4,5,k € {0,...,d}, then X is called commutative. If
Z =1{0,...,d} then X is called symmetric or of Bose-Mesner type; in this
case by (1.2) we have pfj = p‘?:i* = p‘;?i, thus X' is commutative.

E. g. for |X| > 2, letting Ry := {[z,2];2 € X} and Ry := X?\ Ry, we get
the trivial scheme [X,{Rg, R1}], which is the unique association scheme on
X of class 1. It is symmetric, and we have no = 1 and n; = n — 1, as well as

. 1
PO = [pfo]i,k = IQ and P1 = [pi‘cl]i,k = |: n—1 n—2 :|

(1.2) Proposition. Let X’ be an association scheme and i, j, k € {0,...,d}.
a) We have n; = [{y € X;[z,y] € R;}| € N, for any x € X. In particular we
have ng = 1 and ) ;_,n; =n, as well as n; = n;-.
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b) We have pgj = 0, and py = dix and pgj = n;0;5~, as well as pfj = pf*i*.
Moreover, we have E?:o pfj =n; and E?:o pfj = n;, as well as the triangle
ko i
formula npf; = n;pj., = nipj;-.
c) For I,;s,t € {0,...,d} we have the quadrangle formula ZZ:O pfjpzk =
d . . . d NP
Yo plsipfj, and if pfj # 0 we have the inequality p¥, < i min{p’,, pl., }.

Proof. a) For any [z,z] € Ry, that is for any z = z € X, we have n; =
P = Hy € Xs[x,y] € Ri,[y. 2] € Ri-}| = {y € X;[2,9],[2,9] € Ri}| = {y €
X; [z, y] € R;}|, thus since R; # () we conclude n; # 0. Moreover, we have ng =
H{y € X;[z,y] € Ro}| = |{z}| =1, and from X = ]_[?Zo{y € X; [z, y] € R;}, for
any x € X, we get Z?:o n; = Z?:o Hy € X;[x,y] € R;}| = |X| = n. Finally,
from R; = [[,cx{y € X;[z,y] € Ri} we get nn; = |R;| = |Ri=| = nng-.

b) For any [z, z] € Ry, we have pf; = [{y € X;[z,y] € Ro,[y,2] € Rj}| = [{y €
X;y = x,[z,2] € R;}|, hence p; = {x}| = 1if j = k, and pf; = [0 = 0 if
j # k. Similarly we have pfy = [{y € X;[2,y] € R;, [y, 2] € Ro}| = {y € X;y =
2, [x, 2] € R;}|, hence pfy = [{z}| = 1if i = k, and pk, = |0| = 0 if i # k.

For any [z, z] € Ry, that is for any x = z € X, we have p{; = [{y € X;[z,y] €
Ri,ly,z] € R} = {y € X;[x,y] € Ry N Rj-}|, hence pY; = 0 if i # j*. For
any [z, z] € Ry, that is [z,2] € Ry~, we have pf; = {y € X;[z,y] € R;,[y, 2] €
R} =y € X;[y,2] € Riv,[2,9] € Ry} = plse.

For any [z,z] € Ry we have Z?:opfj = Z;l:OHy € X;lz,y] € Ri,ly, 2]
Ri}| = {y € X;[z,y] € Ri}| = ni and 300 pfy = Siol{y € X;[w,9]
Ri, [y, 2] € R} = {y € X3 [y, 2] € Rj}| = n;.

For any 2 € X we have ngp}; = [{[y,2] € X?;[z,y] € Ry, [y,2] € R;,[z,2] €
Ry}, thus we get nnwpl; = [{[z,y,2] € X3 [x,y] € Ri,[y, 2] € Ry, [z,2] €
R} = {[z,y,2] € X3 [y,2] € Ri,[z,2] € Ry,[y,2] € R;}| = nn;pl., and
nnpl; = |{[x,y, 2] € X?;[x, 2] € Ry, [2,9] € Rj-, [x,y] € Ri}| = nnipj ..

S
S

c¢) For [w, z] € R; we get ZZ:O pfjp’;k = EZ:O Hlx,y] € X?;[w, 2] € Ry, [z, 2]
Ry, [z,y] € Riyly,2] € RJ}| = [{[z,y] € X2;[w7x] € R, [z,y] € Ri,ly, 2]
RJ}| = Zld:O |{[x,y] € X2;[way] € Rlv[yvz] € Rja[wvx] € RS?[Ivy] € Rl}| =
Z?l:oplsipfj'

For any [z,y,2z] € X? such that [z,y] € R;, [y,2] € Rj, and [z,2] € Ry,
which by assumption exists, we have p¥, = [{w € X;[z,w] € Ry, [w, 2] €
R} =YL {w € X;[z,w] € Ry, [w,2] € Ry, [w,y] € Ri}|, hence from {w €
X; [z, w] € Ry, [w, z] € Ry, [w,y] € R} C {w € X;[z,w] € Ry, [w,y] € R} and
{w € X;[z,w] € Ry, [w, 2] € Ry, [w,y] € R} C {w e X;[w,z] € Ry, [w,y] € Ry}
we deduce p¥, < Z;i:o min{p,, pl.,}. 1
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(1.3) Schurian schemes. Let X # () be a finite set and n := | X| € N, and let
G < S, be a transitive permutation group on X. Then G acts diagonally on
X2 yielding the disjoint union X2 = Hf:o O; of G-orbits, called the associated
orbitals, where d + 1 € N is called the rank of the permutation action. The

Schurian scheme X := [X,{O,...,Oq}] is an association scheme of class d:
Since x§ = X for any zy € X, the diagonal Oy := {[z,7] € X%z €

X} = {[zf,2]] € X%g € G} indeed is an orbital. For any orbital O =
{[x9,y9] € X% g € G}, where z,y € X, we have the paired orbital O* =
{ly,z] € X?[z,y] € O}. Fori,j,k € {0,...,d} let [x,2],[2',2'] € O. Hence
there is ¢ € G such that [2/,2'] = [29,29], thus we have {y € X;[z,y] €
Oily, 2 € O} ={y € X;[a,y9 1€ O, [y9 2] € O;} = {y € X;[a9,y/] €
O;,[V,29 € O;} ={y' € X;[2/,y] € O, [y, 2] € O;}, hence |{y € X;[x,y] €
Oi, [y, 2] € O} = {y € X;[2,y] € O;, [y, 7] € O;}], implying regularity. f

The association scheme X is symmetric if and only if for all x,y € X there
is an orbital O such that [z,y],[y,z] € O, that is there is ¢ € G such that
[y, z] = [29,y9], that is 29 = y and y9 = z, that is G is generously transitive.

For any zg € X let H := Stabg(zo) < G; hence H\G — X: Hg — z is an
isomorphism of G-sets, and we have n = | X| = [G: H]. Let X = [[;_, X; be the
disjoint union of H-orbits, for some r € Ny, called the associated H-suborbits.
Letting z; € X; and g; € G such that x; = a2’ as well as H; := Staby(x;) =
HNHY% <H, forallie{l,...,7}, and for completeness go := 1 and Hy := H,
we get an isomorphism of H-sets H;\H — X;: H;h — zl.

Since 5 = X, for any orbital O there is z € X such that [zg,2] € O. For
z,y € X we have [zo,z], [x0,y] € O if and only if x and y are in one and the
same H-suborbit: If y = 2", for some h € H, then [z¢,y] = |70, 2"] = [0, 2]";
if conversely [xo, ], [x0,y] € O then there is g € G such that [zg,y]? = [z, 2],
implying that g € Stabg(zo) = H and y = 9. Hence there is a bijection
between the H-suborbits and the orbitals, implying that » = d, and we may
assume that X; = {z € X;[zo,2] € O;}, for all i € {0,...,d}.

The valencies coincide with the subgroup indices n; = [{z € X;[zo,z] € O;}| =
|X;| = [H: H;], and pfj = Nz € Xy;[z,zfF] € O,} = {z € Xi;[xo,xglzl] €
O} =1Xi N ngf , for all 4,7,k € {0,...,d}; to straightforwardly determine

the matrix P; = [pf;]ix we better use pj; = Z—i Pl = Z—i X N X

E. g. X := G becomes a G-set by right multiplication action; hence we have
n = |G|. The orbitals are given by O, := {[z,29] € X?;x € X}, thus we have
ng = 1, for all g € G. Hence the regular Schurian scheme [X,{O4;9 € G}] is
thin; it is symmetric if and only if exp(G) := lem{|g| € N;g € G} < 2.

(1.4) Example: Johnson schemes. Let V # {) be a finite set and v := |V €
N, and let k£ € Ng such that k < 3. Let X be the set of all k-element subsets of V,
hence n := |X| = (}). Fori € {0,...,k} let R; := {[z,y] € X% [z Ny| =k —i}.
Hence we have X2 = Hf:o R; , where Ry = {[z,2] € X%z € X} and R = R;



Table 1: Petersen graph.
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for all i € {0, ..., k}. Regularity is fulfilled as well, by specifying an appropriate
group action, hence the Johnson scheme J(v,k) := [X,{Ryp,...,Rr}] is a
symmetric Schurian association scheme of class k:

The symmetric group S, acts k-transitively on V, that is S, acts transitively
on X. For all z,y € X and 7 € S, we have |z Ny| = |z™ Ny"|, hence the R; are
unions of orbitals. Conversely, let z,y,2',y’ € X such that |z Ny| = |2/ Ny/|.
Then we have |2\ (z Ny)| = |2\ (' Ny')] and |y \ (z Ny)| = |y"\ (@' Ny,
and let 7 € S, such that (zNy)" =2’ Ny’ and z\ (zNy)" =2’ \ (&' Ny') and
y\(xNy)™ =y \ ('’ Ny’). Then we have 2™ = 2’ and y™ = y’, implying that
the R; are precisely the orbitals. i
For 2 € X we have H := Stabs, (z) 2 S,_x X Sk, and for ¢ € {0,...,k} and
y € X such that [z,y] € R;, that is [z Ny| = k — i, we have Staby(y) =
(Sp—k—i X Si) X (Sp—i X 8;), hence n; = [H: Staby(y)] = (U:k) (’f), thus from
n= Zf:o n; we recover the identity (}) = Zf:o (U_.k) (k)

2 2

E. g. the relation Ry of J(4,2) can be depicted as the regular octahedron,

Ry becoming the space diagonals, hence ng = 1, ny = 4 and ny = 1, and
1. A |
Po:=[pllin =15, Pro=[pfilie = | 4 2 4 |, Pre=[plie=| - 1
1. 1
E. g. the relation Ry of J(5,2) can be depicted as the Petersen graph, Table
1. Hence we have ng = 1, ny = 6 and no = 3, as well as Py := [p?o]i,k = I3 and
R .1
Pr=[phlixr=16 3 4 |and Po:=[phlixr=] . 2 2
2 2 3 1

(1.5) Example: Hamming schemes. Let F be a finite set and ¢ := |F| > 2,
and for n € N let X := F™, hence |X| = ¢". For ¢ = [21,...,2,] € F"™ and



Y= [y1,.---,yn] € F" let d(z,y) := |{i € {1,...,n};2; # vi}| € Ny be the
associated Hamming distance. This defines a metric on F™: The Hamming
distance is positive definite, that is we have d(z,y) = 0 if and only if z = y,
symmetric, that is we have d(z,y) = d(y,z), and the triangle inequality
holds: From {i € {1,...,nh;2; # z} = {i € {1,....n}yi = 2 # z} U {i €
{I,...onbys a2 C{ie{l,...,nhy #z U{i e {1,....,n}; 2 # yi}
we get d(z, z) < d(z,y) + d(y, z), for all z,y,z € F™.

For i € {0,...,n} let R; := {[z,y] € X% d(z,y) = i}. Hence we have X? =
[Ty Ri , where Ry = {[z,2] € X%,z € X} and R* = R, for all i € {0,...,n}.
Regularity is fulfilled as well, by specifying an appropriate group action, hence
the Hamming scheme H(g,n) := [X,{Ro, ..., R,}] is a symmetric Schurian
association scheme of class n:

We consider the wreath product $;1S,, := S, x §, the semidirect product of
Sy, with the direct product §j 1= S x- - xS, with n factors, where S;, acts on S
by permuting the direct factors. The group S, acts naturally on F := {1,..., ¢},

and the natural action of S,, on {1,...,n} induces an action on X, yielding a
transitive action of Sg1S,, given by [z1,...,2z,] — [a:'lji,l yeen ,xZﬁ,l], for all
rze€ X and 7= [1;01,...,0,] € S Sn.

For all z,y € X and © € §;1S,, we have d(x,y) = d(z™,y™), thus §;1S,, induces
isometries of X with respect to the Hamming distance, and the R; are unions of
orbitals; actually, S41S,, is the group of all such isometries of X. Conversely, let
x,y,2',y" € X such that d(z,y) = d(«',y’). Thenlet 7 :={ie{l,...,n};x; #
yi} and J' = {i € {1,...,n};2; # y.}, and let 7 € S,, such that J™ = J'.
Moreover, for i € J' let 0; € S; such that 27’ , = 2} and y”' , = y;, while for
i & J' let 0, € S, such that x‘i’j,l = z}. Then for 7 := [1;01,...,0,] € SISy
we have 2™ = 2’ and y™ = 3/, implying that the R; are precisely the orbitals.

For x € X we have H := Stabs,;s, (¥) = S;—1 1Sy, and for i € {0,...,n} and
y € X such that [z, y] € R;, that is d(z,y) = 1, we have Stabg (y) = (S4—21S;) x

(84-128n-1), hence n; = [H: Staby (y)] = sy = (@= D™ (1)

thus from | X| = Z?:o n; we recover the identity ¢" = >0 (¢ —1)"- (7).

E. g. the relation Ry of H(2,2) can be depicted as the regular quadrangle, the
lower left hand vertex being located in the origin; then Ry is depicted as the
diagonals. Hence we have ng = 1, n; =2 and ny = 1, as well as Py := [pfo]i,k =
1. |
Iiand P :=[phlix =2 . 2 | and Po:= [phlix = 1
1 . 1

E. g. the relation Ry of H(2,3) can be depicted as the regular cube, the lower
left front vertex being located in the origin; then Ry and Rj3 are depicted as the
face and space diagonals, respectively. Hence we have ng =1, ny = 3, ny = 3



1
. . 3 .2 .
and n3 = 1, as well as Py := [pjplix = 11 and Py := [pji]ix = 9 3
1
o1 1
. L2 . 1
and Py := [phlik = 3 9 and P3 == [pilik = 1
1 1

2 Adjacency algebras

(2.1) Adjacency matrices. Let X be an association scheme. For all i €
{0,...,d} let the i-th adjacency matrix A; = [aizylsyex € {0,1}"7" C
Z™*™ be defined as aiyy = 1 if and only if [z,y] € R;. Then the defining
properties of X yield the following: We have Ay = I,, and Z?:o A; = Jy, where
In = [lzyex € Z™*™ is the all-1 matrix. For all i € {0,...,d} we have
A = A+, and thus X is a symmetric association scheme if and only if all the
A; are symmetric matrices.

By the definition of matrix products, we for all ¢, 5,k € {0,...,d} have 4,A4; =
Zzzo pfjAk € Z™*". Thus A := (Ay, ..., Aq)z C Z™*™ is a Z-algebra, called the
adjacency algebra or Bose-Mesner algebra associated with X'. The algebra

A is Z-free such that rkz(A) = d+ 1, and {Ao, ..., Aq} is a Z-basis, called the
Schur basis. Moreover, X is commutative if and only if A is commutative.

E. g. for the regular Schurian scheme associated to a finite group G we have A =
Z@G, the associated group algebra. For the Hamming scheme H(2, 2), letting

101 .
X = {00101 [1,0]. [L.1]}, we get Ao = L and 4 = | |
11
o1
and Ay = ) 1 L . For the Johnson scheme [J(4,2), letting X :=
1. ..
(1,2}, {1,3}, {14}, {2,3},{2,4}, {3,4}}, we finally get Ay = I; and A; =
.11 1 1 . I |
1 11 1 1
11 . .11 o1
11 . .1 1 |wdd= o1
1 .11 .1 1
.11 1 1 .| |1 |

(2.2) Representations. Let R be a commutative ring. Then Ar := A®z R C
R™ ™ ig an R-free R-algebra such that rtkg(Ag) = d+ 1, and {Ay,...,Aq} C
A C Ag is an R-basis, where we identify A € Z"*" with A®Q 1g € R™*" for all



A e A We have Az = A, and Apg is commutative if and only if A is.

Let V be an Ag-lattice, that is an R-free Ag-module, of degree r :=rkr(V) €
Ny, and let the homomorphism of R-algebras §: Ag — Endg (V) = R™™" be the
associated representation. Then the R-linear map ¢s: Ag — R: A — tr(6(A))
is called the character of Ar afforded by V, where s is independent of the
particular choice of the R-algebra isomorphism to R"*", that is the particular
choice of an R-basis of V, and ¢5(Ag) = 7.

Let F be a field. Then up to isomorphism there are only finitely many irreducible
Ap-modules Sy, ..., S, for some ¢t € Ny; for i € {0,...,t} let d; := dimp(S;) €
N be the associated degree. Let Irr(Ag) := {@o,...,9:} be the characters
afforded by the irreducible Ap-modules; hence we have d; = p;(Ag) € F, and if
Ap is split, that is F' is a splitting field of A, then by Wedderburn’s The-
orem Irr(Ap) is F-linearly independent. The matrix ®(Ar) = [pi(4;)]i; €
F+1x(d+1) g called the F-character table of Ap; we may identify Trr(Ar)
with the rows of ®(Ap).

If V is an Ap-module then by the Jordan-Hoélder Theorem the multiplicity
[V:S;] € Ngof S; in an Ap-module composition series of V' is independent of the
particular choice of the composition series, and we have oy = ZEZO[V: Sil - i
If V is a faithful Ap-module, that is dy is injective, we have [V': S;] > 0 for all
i€ {0,...,t}: Letting e € A be an S;-primitive idempotent, we since dy (e) # 0
have [V': S;] - dimp(End 4, (S;)) = dimp(Homa, (eAp,V)) = dimp(Ve) # 0.

E.g. Vhat := R"™is an Ag-lattice, called the natural or standard module, the
associated representation being 0, = id4, which is faithful. For its character
we have v(A;) = tr(A;) = ndg;, hence v(A;A;) = Ezzopfjtr(/lk) = np); =
nn;d;;-, for all ¢, 5 € {0,...,d}. If F' is a field, the integer m; := [Viar: S;] € N
is called the multiplicity associated with ;, for all ¢ € {0,...,t}.

E. g. V := R becomes an Ag-lattice, called the trivial or index module,
by letting ¢o: Ag — Endg(R) & R: A; — n, for all ¢« € {0,...,d}: By
(1.2) we have @o(AiA;) = (X4 o PhAR) = S omeply = Si_onidh;. =
n; - Zzzop};j* =n;n,, for all 4,5 € {0,...,d}. If F is a field then Sy := F is an
irreducible A g-module.

(2.3) Intersection matrices. Let X’ be an association scheme, and let R be
a commutative ring. Then Apg is an Ag-lattice with R-basis {Ao, ..., A4}, and
for the associated (right) regular representation ¢,: Ar — Endgr(Ag) =
READX(dHD A s (Ap — Ap: A — AA;) the multiplication rule yields
dp: Aj — Pj, for all j € {0,...,d}, where the j-th intersection matrix or
collapsed adjacency matrix is defined as P; := [pfj]zk € Ngdﬂ)x(dﬂ) -
Z(d+1)x(d+1) = R(d+1)x(d+1)

From AgA = A # 0 for all 0 # A € Agr we conclude that §, is faithful.
Hence letting P := (Py, ..., Py)z C ZH1)x(@+1) he the intersection algebra
associated with X, and Pg := P ®z R C R@HTDX(4+1) we get an isomorphism



of R-algebras 0,: Ap — Pr: Aj — P;, for all j € {0,...,d}. For its character
we have p(4,) = Z'Z:Opﬁj for all j € {0,...,d}.

E. g. for the Hamming scheme H(2,2) we have d,: A; — P;, forall j € {0,1,2},
where A; is as given in (2.1) and P; is as given in (1.5). For the Johnson scheme
J(4,2) we have 6,: A; — Pj, for all j € {0,1,2}, where A; is as given in (2.1)
and P; is as given in (1.4).

(2.4) Theorem. Let F be a field such that p := char(F) > 0, let X be an
association scheme, and let J := {j € {0,...,d};p | nn,}.
a) For the Jacobson radical of Ar we have rad(Ap) C (455 € J)r. In

particular, if p J n- ngo n; then Ap is semisimple, that is the regular module
AFr is completely reducible, that is the direct sum of irreducible submodules.
b) We have (J,,) p<Ap, and (J,)r C rad(Ap) if and only if p | n. In particular,
if p | n then Ap is not semisimple.

Proof. We have rad(Ar) := ({U < Ap maximal} = ﬂfzo ann ., (5;) < Ap,
where ann 4, (S;) := {A € Ap; S;A = {0}} < Ap is the annihilator of S;. Then
rad(Ar) < Af is the largest nilpotent ideal, that is we have rad(Ap)* = {0}
for some k € N, and Ay is semisimple if and only if rad(Ap) = {0}.

a) Let A := EZ:O ar Ay € rad(Ap). Considering an Ap-module composition
series of the natural module F”, we from AA; € rad(Ap) C anng, (S;), for all
i€{0,...,t} and j € {0,...,d}, get that 0 = v(4A4,) = EZ:O NNl =
aj+=nn;«. Hence for any j € {0,...,d} such that o; # 0 we have p | nnj,
implying that A € (4;;j € J)r. The assumption p J n - H?:o n; is equivalent
to J = 0, which implies rad(Ar) = {0}.

b) We have A;J,, = n;J, and J, A; = niJ, = n;Jy, for all i € {0,...,d}, hence
(Jn)r < Ar. Moreover, we have J2 = n.J,, hence (J,,)r is nilpotent if and only
if p | n. Hence, if p | n then {0} # (J,)r C rad(Ap). 1

(2.5) Corollary: Maschke’s Theorem. If X is thin, then Ap is semisimple
if and only if p J n.

(2.6) Corollary. Let p J n. Then Ap = (J,)r ® Ay as F-algebras, where
(Jn)F affords the trivial character; and the multiplicity of the trivial module as
a constituent of the natural Ag-module is mg = 1.

Proof. The first assertion follows from (J,)r Nrad(Ar) = {0}. As for the
second assertion, we from J2 = nJ, and 0 # J, # nl, get the minimum
polynomial p;, = T(T —n) € F[T]. Hence we have eigenspace decomposition
F" = E,(J,) @ Eo(J,) with respect to the eigenvalues n and 0, respectively,
where dimp(im(J,)) = 1 yields dimp(FEo(J,)) = n—1, thus dimp(E,(J,)) = 1.
Since J, € Z(Ar) we conclude that Fy(J,) and E,(J,) are Ap-submodules.
Since ¢o(J,) = E?:o wo(A;) = Z;l:o n; = n, and J, acts on Ey(J,) by the
zero map, Eo(J,) does not have the trivial module as a constituent. i



(2.7) Example: Johnson scheme 7(7,2). We have n = (;) = 21 as well

asng = 1 and ny = (?) (f) =10 and ns = (g) (g) = 10. Thus Ap, where F is
a field, is semisimple if char(F') ¢ {2,3,5,7}, it is not semisimple if char(F) €
{3,7}, while (2.4) does not assert anything if char(F') € {2,5}; actually Ap is
semisimple if char(F') = 2 and it is not semisimple if char(F') = 5:

1. A |
WehavePozlg, P1: 10 5 4 ,PQZ . 4 6 ,henceP1P2:
4 6 10 6 3

P, Py, thus J(7,2) is commutative. For the associated minimum polynomials
we get pa, = pup, = (T—10)(T—-3)(T+2) € Z[T] and pa, = pp, = (T'—10)(T+
4)(T — 1) € Z[T). Hence P, and P» have simultaneous Jordan normal forms
over any field F', all irreducible representations of A have degree 1, implying
that Ap is split.

If char(F) ¢ {2,3,5,7}, then both P; and P, have three pairwise distinct
eigenvalues in F', thus are diagonalisable, where simultaneous eigenvectors are
1 11
—10 —3 1 [, the eigenvalues being ordered as above. Thus Ap = Sy®S1®
10 -2 1

m; dz Ao Al A2

. T Il 1][ T 10 10

Sy, and the character table ®(Ap) is given as: ol 61 1 3 _4
ool 14 1] 1 —2 1

The multiplicities are computed as follows: If char(F') = 0 then the multiplicities
can be just read off from the decomposition v = ¢ + 6¢1 + 14¢5. Hence for the
associated characteristic polynomials we have x4, = (T —10)(T—3)%(T+2)* €
Z[T) and x4, = (T —10)(T+4)5(T —1)'* € Z[T]. This yields the characteristic
polynomials of A; and As over any field F', and thus the associated multiplicities.
For the remaining cases we have:

i) If char(F) = 7, then up, = (I'—3)*(T'—5) € F[T] and pp, = (T—3)*(T—1) €
2 1 .
F[T]. Vectors inducing simultaneous Jordan normal forms are | 1 1 1
3 5 1

m; dl AQ Al A2
] @51, and ®(Ap) isgivenas: | o | 7| 1 1 3 3
o1l 14 1] 1 5 1

ii) If char(F) = 3, then up, = (T—1)?T € F[T)| and pp, = (T-1)(T-2) € F[T).

So

Thus Ap & [ g
0

Vectors inducing simultaneous Jordan normal forms are

g m; di Ao Al A2
Ap [ SO ] @ Sy, and ®(Ap) is given as: | o | 15| 1 1 1 1
0 | 6] 1] 1 0 2
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iii) If char(F) =5, then up, = T(T —3)? € F[T] and pp, = T(T — 1) € F[T).

111
Vectors inducing simultaneous Jordan normal forms are .1 . {. Thus
.31
IS m; | di || Ao A1 Ag
Ar =2 Sy @ { Sl ], and ®(Ap) is given as: | o | 1| 1 1 0 0
! 1] 2001 1 3 1
iv) If char(F) = 2, then pup, = T'( T [T] and pp, = T(T — 1) € F[T].
Simultaneous eigenvectors are . |. Thus Ap &£ Sy @ S1 @ S3, and
1
m; | d; Ao A1 A
.. .| ®o 1 1 0 O
O(Ap) is given as: ol 6l 1] 1 1 o
wo | 14| 1 1 0 1

3 Symmetric algebras
In this section we place ourselves in a more general setting.

(3.1) Symmetric algebras. a) Let R be a commutative ring, let A be an
R-free R-algebra such that n :=rkgr(A), let A be a symmetrising form, and let
{A1,...,A,} C Aand {4},..., A%} C A be mutually dual R-bases of A.

Comparing the right and left regular representations of A, for A e Alet A;A=
e PE(A)Ag and AAY = S0 *pi(A)A;, where p; *(A),*pt(A) € R. Then
we have *pj (A) = )\(AA* Ag) = )\(AkA Ar) =pi(A), for all i,k € {1,...,n}.
Hence for the associated representing matrices with respect to the given R-basis
of A and the associated dual basis, respectively, we have P(A) := [pF(A)}x =
[*pi.(A)]ki =: *P(A) € R"*™.

Let V and V’ be A-modules with associated representations § and ¢, respec-
tively. For M € Homp(V, V') let M* := >"" | §(AF)M&'(A;) € Hompg(V, V).
Then S(A)M* = Y, S(AAMI(A,) = S0, S0, “ph(A)3(A7) M (A,) =
S S, PLAV(ADMS () = Yo, 5(AD)ME (A, A) = M*3/(4) for A €
A implies M+ € Hom(V, V).

Moreover, M is independent of the particular choice of an R-basis of A: Let
{4},...,A,} C A be an R-basis of A, and let {A}",..., A} C A be the
associated dual basis. For the base change matrices B = [b;;]ij := (a/3id(a,} €
R™™ and B* = [bflij = {aryidiasy € R we have BB*" = I, that is
S bibl, = 0k, for all j,k € {1,...,n}. This implies > 1| 6(A)M§'(AL) =
lel i1 2 bibikd(AF) MO (Ay) = 327, 6(A7)MO'(A;) = M.

b) Let now R := F be a field such that A is split, and let S and S’ be
irreducible A-modules with associated representations § and ¢’, respectively,
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such that either § % &' or § = &'. Letting E, = [§gk6r] € F*¢ be a
matrix unit, for ¢ € {1,...,d} and r € {1,...,d'} where d := dimp(S)
and d' := dimp(S"), we have Ej := Y"1 6(A7)E,0'(Ai) € Homyu(S,S').
Hence by Schur’s Lemma there are cg g4 € F such that E;LT = 05,5/CS,qr *
diag[l,...,1] € F2xd" In terms of coordinate functions, where p € {1,...,d}
and s € {1,...,d"}, we infer Y. | 0(AF)pg0' (Ai)rs = 85,5/0psCs,qr € F. Inter-
changing the roles of {A1,..., A, } and {47,..., A} } yields c§ ,; € F' such that
D1 0(AF)pg0(Ai)rs = 04rCs s € F. Thus from pscs,qr = 0grCs ,, We infer
that there is a Schur element cg € F' such that cg g = d4rcs, and we have
the Frobenius-Schur relations Z?:l 0(AF)pgd' (As)rs = 05,5/ 0psOgrcs € F.

This yields the orthogonality relations for irreducible characters: Let ¢
and ¢’ be the characters afforded by S and S’, respectively. Then we have
n * n d d’ * d

Zi:l ‘P(Ai)SD/(Ai) = Zi:l Zj:l Zk:l 6(A; )jj(s/(Ai)kk = p,pCp - Zj:l L=
0,0/ Coly, Where ¢, :=cg and dy, :=d = (1 4) € F is the associated degree.

c) By the Gaschiitz-Higman-Tkeda Theorem [6, Thm.IX.62.11], S is projective
if and only if there is M € Endp(S) such that M = ids € End4(S). Hence
this is the case if and only if ¢g # 0 € F. In that case, S lies in a block

As = Endp(9) 2 F9*? of its own, and we have the A-orthogonal decomposition
A2 As @ A’ as F-algebras.

Let S be an irreducible A-module such that ¢, = cg # 0 € F, and for
i,j € {1,...,d} let e, ;; = é > r_16(A5)jiAr € A. Hence for the natural
representation p4: A — Endp(A’) we have pas(ey,i;) € Homy (S, A") = {0},
implying that e, ;; € As. The Frobenius-Schur relations yield d(e, ;) =
é YR 0(AL);i6(Ag) = Eij € F™4. Since §: As — Endp(9) is faith-
tul, we conclude that {e, ;4,5 € {1,...,d}} C Ag is an F-basis, and that
€11y -+ -1 €p,dd € As are mutually orthogonal primitive idempotents, that
is we have ey jie, j; = 0ijeqqi for all i,j € {1,...,d}. Thus we have €, =
Zle it = == - dop_q P(Af)Ar = 1ag € Ag, hence €, € A is the centrally
primitive ideq;npotent associated with Ag.

Since for the commutator subspace [Ag, Ag] :== (AB—BA; A, B € Ag)r we
have [Ag, Ag] = ker(tr), where tr: Ag & F4*¢ — F is the usual matrix trace,
we infer that (tr)r coincides with the F-vector space of all trace forms on
Ag, that is the F-linear forms having [Ag, Ags] in their kernel. Since A restricts
to a symmetrising form on Ag, there is 0 # ¢ € F such that M4, = ¢ tr,
and hence the dual basis associated with {E;;;4,j5 € {1,...,d}} C Ag is given
as {1Eji;i,5 € {1,...,d}} € As. The Frobenius-Schur relations yield 1 =
S S (B ek (Eij )ik = cg, for any k € {1,...,d}.

Since A is semisimple if and only if all irreducible .A-modules are projective, we
conclude that A is semisimple if and only if cg # 0 € F for all irreducible

A-modules S. In that case, we have the A-orthogonal decomposition A4 =
DBocrra) Fiexde "and {e, € A; ¢ € Irr(A)} are mutually orthogonal centrally

primitive idempotents such that Zsaelrr(.A) €p=1,and A = Zsaelrr(A) é@.
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We place ourselves into an even more general setting, until further notice.

(3.2) Decomposition theory. Let R be the ring of integers in an algebraic
number field K, let o << R be a prime ideal, and let R, C K be the localisation
of R with respect to p; hence R, is a discrete valuation ring in K. Moreover,
let ": R, — R,/pR, = R/p =: F be the natural map onto the finite residue
class field F. Let A be an R-free R-algebra with R-basis {41,...,4,} C A
where n :=rkr(A) € N, such that Ax := A®p K is split.

a) Let V be an Agx-module, with representation §, and let {b1,...,bs} C V
be a K-basis where d := dimg (V) € N. Then V is realisable over R,: The
subset V := (bjAi;j €{1,...,d},ie{1,...,n})r, €V is an Ap_-submodule,
and since Ry, is a principal ideal domain we conclude that V is an R-free Ag,-
module, and since it contains a K-basis of V' it hence is a full Ag_-lattice in

V', that is we have YN/K =V Qgr, K =V.

Letting Ap := A®pg F, we thus obtain the Ap-module V=V ®r, F by -
modular reduction. Since F is perfect, we by the Brauer-Nesbitt Theorem
[6, Thm.V.30.16, Thm.XII.82.1] get a decomposition map D, : ZIrr(Ax) —
ZIrr(Ar) between the Grothendieck groups of Ax and Ap, that is the free
abelian groups generated by the isomorphism types of irreducible A x-modules
and Ap-modules, respectively.

b) Let V be a projective indecomposable Ap-module. Thus there is a primitive
idempotent e € Ap such that V = eAr as Ap-modules. Hence by lifting of
idempotents, [7, Exc.6.16] for the case Ax semisimple and [20, Thm.3.4.1]
for the general case, there is a primitive idempotent &€ € Ar, C Af such that

€ = e. Thus the projective indecomposable Ag,-module V= eAg, lifts V in
the sense that V & eAr, = eAr 2V as Ap-modules.

c) We show Tits’ Deformation Theorem: Let Ap be semisimple. Since F is
perfect, there is a finite field extension F' C F’ such that Ap- is split semisimple,
and there is a finite field extension K C K’ with ring of integers R’ having a
prime ideal ' <t R’ such that ¢’ N R = p and R'/p’ = F’. Then for any
¥ € Irr(Ap/) the associated irreducible Ap/-module being projective, there is
¥ € Irr(Ag) = Irr(Ag ) such that Dp(‘Z) = 1), implying that 1) is realisable over
F, that is A is split. By Wedderburn’s Theorem we have 3-, ., (4, dy, =n,

and since the lifting map ¢ — 12 is injective we conclude ) Delr(Ax) de =n,

implying that Ag is semisimple as well. Moreover, the map 1 — zz is also
surjective, that is D, : Irr(Ag) — Irr(Ap) is a bijection.

(3.3) Proposition. Let A\: A — R be a trace form such that 7,: A> —
R: [A, B] — A(AB) has discriminant 0 # A € R with respect to {A1,..., Ap}.
Then, letting Ra C K be the localisation of R with respect to {A*:k € Ny} C
R, we for all ¢ € Irr(Ag) have ¢(A4;) € R and ¢(A}) € Ra as well as ¢, € Ra.
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Proof. Let S be the irreducible Agx-module affording ¢, with associated repre-
sentation d. Since ¢ and c, are independent of the particular choice of a K-basis
of S, we may assume that 6(Ag,) C RE*?, where d := dimg (S5), implying that
¢(Ar,) € Ry, Since R is a Dedekind ring, thus a Krull ring [18, Ch.IV.12],
we have R =) R, C K, thus we infer ¢(A) C R.

©<\R prime
Moreover, Ag, is a symmetric Ra-algebra. Hence we have A} € Agr,, for
all i € {1,...,n}, thus p(AF) € Ra. For any prime ideal p < R such that
A ¢ p, that is p N {A*k € No} = 0, we have Ra C R,,. Hence we have
Aj € Ag,, for all i € {1,...,n}, and thus the Frobenius-Schur relations imply
Co = > 1 0(AF);;0(A;)j; € R, C K, for any j € {1,...,d}. Hence we have
Cp € mAQpQR prime RK’J = Ra. ﬂ

(3.4) Proposition. Let A ¢ o <4 R be a prime ideal such that Ap is split.
Then D, induces a bijection {¢ € Irr(Ak);C, # 0 € F} — {¢ € Irr(AFp); ¢y #
0 € F}. In particular, Ap is semisimple if and only if ¢, # 0 € F for all
e € Irr(Ag).

Proof. Forall ¢ € Irr(Ag) we have ¢, € R,,, and A is a symmetric F-algebra,
hence the sets are well-defined. We show that the above map is well-defined:

Let ¢ € Irr(Ag) such that ¢, # 0 € F, hence we have L € R,. Let 6: Ax —
7

K %4 be the representation of degree d affording ¢, where we may assume that
d(Ar,) C RféXd. Since Ag, is a symmetric R-algebra, letting e, ;; = o
> one1 0(A})jiAr € Ag,, for all 4,5 € {1,...,d}, the Frobenius-Schur relations
yield §(ey i5) = Eij € 0(Ag,) € RE*?. Thus we have 6(Ag,,) = RE*?, implying
0(Ap) = F9%4 that is the p-modular reduction is irreducible, and we have
cg=¢C, #0€cF.

As for injectivity, for the centrally primitive idempotent e, € Ag, associated

with ¢ we have 3(¢,) = 6(e,) = Iy = I4, while for any ¢ # ¢ € Irr(Ag)
with associated representation ¢’ of degree d’, where we also may assume that
d'(Ar,) C Rng,, we have ¢'(e,) = 0 and thus SI(Q,) =0 e F¥*d  Ag for
surjectivity, let ¢ € Irr(Ag) such that ¢ # 0, that is the irreducible Ap-module
affording 1 is projective, thus there is an irreducible Agx-module lifting it.

Finally, Ap is semisimple if and only if Zwehr(AF)’%#OeF di = n, that is

D pelir(Ax ) e £0EF d? =n, that is ¢, # 0 € F for all ¢ € Trr(Ag). t

(3.5) Theorem. Let Ak be semisimple.

2
a) Then for the Frame number we have N := A - [ 4, ci“’ €R.
b) The ideal N'R < R is the square of an ideal in R.

Proof. We proceed towards in interpretation of A: Given any trace form
V¥ Ax — K, let 70 A% — K: [A, B] — 9(AB) be the associated symmetric
associative K-bilinear form. Given any K-basis B := {B1,...,B,} C Ak, let
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B(ty)B = [W(BiBj)]i; € K™*™ be the associated Gram matrix, hence the
discriminant of 7, with respect to B is given as det(g(7y)5) € K.

We have A = ®<PEIIT(AK) K%>de hence let £ := Hwehr(AK) E, C Ak bea
Wedderburn basis of Ay, that is £, 1= {eg pq € Ax;p,q € {1,...,d,}} is
the K-basis of the block associated with ¢ such that d,(ey pg) = Epq € K %X de.
This yields ¢(ep pgep,rs) = Opsdqr and ey peeyr rs = 0 € Ag, for all ¢ # ¢’ €
Irr(Ak) and p,q € {1,...,d,} and r,s € {1,...,dy }. Thus for any trace form
v = Zwelrr(AK)o‘%"% where o, € K, we get t(eppg€yr,rs) = Qpli,0r0psdar,
and hence the associated discriminant is det(g(7y)e) = Hwehr(AK)((—l)(df) .

d, dy dp) d?
[Tz a2 o) = Toenman (-1 Faiy

For the symmetrising form A = > L

pelir(Ax) o % We thus get det(g(a)e) =

do

H(pehr(AK)(—l)( 2 )(é)di, while by assumption we have det(4,3(72){a,3) = A.
Thus letting C := {Ai}idg € K™ we from det({Ai}(TA){Ai}) = det(g(ﬂ\)g) .
2

det(C)? infer det(C)? = A - Hwehr(AK)(—l)(d;)cZ“’. For w =37 ciia,) @ We

get det(g(1w)e) = Hwehr(AK)(_l)(d;’), hence for the reduced discriminant

d2
we have det((4,}(7)(4,}) = det(e(rw)e) - det(C)? = A [T cppan) &” =N

a) Since w(A) C R we infer N = det(14,1(7w){a,}) = det([w(As4;)]i5) € R.

b) Letting p<\R be a prime ideal we may assume that d,(Ag,) C Rgf’ %2 Since

@cpelrr(AK) d,, is faithful, we infer A; = Zwehr(AK) Zﬁil 2221 3o (Ai)pgey,pg €
Ag for all ¢ € {0,...,d}. This shows that a Wedderburn basis can chosen
such that C' = (4,)ide € RZ*". Letting v,: K* — Z be the discrete valua-
tion of K associated with p we infer v,(N) = v (N - Hwehr(AK)(—l)(d;)) =
v (det(C)?) = 2v,(det(C)) € 2Ng. From N R = [];_, pt* IR, where s, ex, € Ny
and the gy < R are pairwise different prime ideals, we thus get e; € 2Nj. #

(3.6) Theorem: Fleischmann, 1993 [9]. Let A be semisimple. Then Ar
is semisimple if and only if N # 0 € F, that is N & .

Proof. Let V := @, 14y ) S With representation 6 = @ ¢y, 9y afford-
ing the character w =} ¢4, - We may assume that _54,(./43@) C Rg”’Xd”’
for all ¢ € Irr(Ag ), hence the A_F—module V' =@ en(ay) Sy affords the char-
acter w = Zcpelrr(AK) P. Since N € F is the discriminant of 7 with respect to
{A,..., A}, we show that 75 is non-degenerate if and only if Ap is semisimple:
If Ap is semisimple, then by Tits” Deformation Theorem Ap is split and the
decomposition map Dg,: Irr(Ag) — Irr(Ar): ¢ — @ is a bijection, thus 0 =
®<p61rr(AK16¢: Ar = D enm(ar) Fa*ds i5 an isomorphism of F-algebras, in
particular 0 is faithful. Letting A € rad(rz) < Ap, for any ¢ € Irr(Agk) and all
i,j € {1,...,d,}, using the matrix units of the block of A associated with @, we
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have 65(A)i; = tr(EfAES) = W(EJAESR) =0 € F, for any k € {1,...,d,}.
Thus we have §(A) = 0, implying A = 0.

If A is not semisimple, then let 0 # A € rad(Ap) << Ap. Hence §4(AB) = 0 for
ally € Irr(Ar) and B € Ap. Thus considering a composition series of Ep shows
that §(AB) =0 € F for all ¢ € Irr(Agk) and B € Ap, hence W(AB) =0 € F
for all B € Ap, that is A € rad(7z). i

(3.7) Proposition. Let Ak be semisimple, and let K’ C K be a subfield
with ring of integers R’, such that Ar := (A1,..., A,)r is an R’-subalgebra
and such that A\: A%, — R’. If the Schur elements c, € K, for ¢ € Irr(Ag),
are pairwise different, then the character field K'(o(Ag/);p € Irr(Ak)) =
K'(cy; ¢ € Irr(Ag)) is the unique minimal splitting field of Ax in K.

Proof. From the Frobenius-Schur relations we infer that any splitting field of
Agr contains L := K'(c,; ¢ € Irr(Ak)) € K'(p(Ak); ¢ € Irr(Ak)). We show
that L is a splitting field:

We may assume that K’ C K is Galois. Let 0 € Autg/(K) and ¢ € Irr(Ak).
Then from Ag being a K'-subalgebra we infer that letting A; — J,(A4;),
for all i € {1,...,n} and o being applied entrywise, K-linear extension yields
an irreducible representation of A, affording the character ¢ (3.1 | a; A;) :=
Yo aip(A;)°, where a; € K. Since AY € A for all i € {1,...,n}, the
Frobenius-Schur relations imply cye = ¢, € K. Thus for all ¢ € Autp,(K) we
have c,o = ¢y, the Schur elements being pairwise different implying ¢ = ¢.

The field automorphism o extends to a K’-algebra automorphism of Ax given
by (i, aiA)7 == > afA;. Thus for A = Y | a;A; € Ak we have
07 (A7) = 7 (X afA;) = >0 ale(A)7 = p(A)? € K. In particular,
o permutes the set {e,;p € Irr(Ag)} of centrally primitive idempotents of
Ag, and from ¢7(e) = p(e,)7 = 19 = 1 we infer €7 = €yo. Thus for all
o € Auty(K) we have €], = ¢,, which since Fixx (Autz(K)) = L implies e, €
A, € Ax Hence Aj = @wem(m{) e, Az has at least as many irreducible
representations as Ag, hence equally many, thus is split. i

4 Structure of adjacency algebras
We return to our original setting of association schemes.

(4.1) Theorem. Let R be a commutative ring, and let X’ be an association
scheme such that A := Hf:o n; € R*. Then Ap is a symmetric R-algebra with
respect to the symmetrising form \: Ap — R: ZZ:O apAr — «ag, where
{A;;1 €{0,...,d}} and {nl - Aj;1€{0,...,d}} are mutually dual R-bases of
Apg; the latter is called the dual Schur basis.
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Proof. Let 7\: A% — R: [A, B] — A(AB) be the associated R-bilinear form.
Hence we have m\(AB,C) = MAB - C) = AA - BC) = 7\(A, BC), for all
A, B,C € Ag, that is 7, is associative. We show that 7, is symmetric, and
that its discriminant is a unit in R: Let A = Z?:o a;A; and B = Z?:o BiA;,
where a;,8; € R. Then we have A\(AB) = Ef:o Zj:o ZZ:O 3P M(Ax) =
ZLO a;Bi+n; = A(BA), and M\(A;4;+) = ZZ:O Pl MAg) = nidy; € R*, for all
i,7 € {0,...,d}, hence the discriminant with respect to the Schur basis equals
(—1)™ 7 . A € R*, where T := {i € {0,...,d};i* = i}. {

(4.2) Theorem. Let X be an association scheme, and let F' be a field such
that p := char(F) > 0 and p } nA, and such that Ap is split. Then for any
¢ € Irr(Ap) we have my, #0 € F and ¢, = o € F.

Proof. For the natural Ap-module we have F" = @y, (4, D, S,, where
S, is the irreducible Ap-module affording ¢. For the centrally prlmltlve idem-

potent €, = é 'Z;l:o MAj € Ar,, in the block associated with ¢ € Irr(Af)

4

and all ¢ € {0,...,d} we have e, A; € Ap,. Hence for the natural character
we get v(e,A;) = ZIZJEITT(.AF) mwz/J(eyJ i) = myp(epAi) = myp(A;) € F. Thus
from v(e, A;) = é : Z?:o o (A jAi) = = ‘i) -nn; = “"(A )" ¢ F, choosing
i € {0,...,d} such that p(A;) #0 € F, Welnfermg,—— ;EOEF i

(4.3) Theorem: Hanaki, 2000 [12]. Let X be an association scheme.
a) Let K be a field such that char(K) = 0 and Ak is split. Then for any
¢ € Irr(Ag) we have ¢, € Za C Q, and for the Frame number we have

d+1—|7|
— A- nd+1

N = (=1) €Z.

az
HLPGIFF(.AK) m‘/’

b) Let F be a field such that p := char(F) > 0. Then Ap is semisimple if and
only if p Y N € Z.

Proof. a) Let Q be the algebraic closure of Q, hence A@ is split. Thus we may
assume that K is an algebraic number field. Let R be the ring of integers in K,
then Ag, is a symmetric Ea-algebra, hence we infer that c, € RA N Q = Za.

The discriminant of the symmetrising form with respect to the Schur basis
d+1-|Z]

being (—1) A, we from d+ 1 = dimg(Ag) = Z«pelrr(AK)d?a get N =
\Z| _n AR e
(-)TETA et Gag )= 7 €EZANR=1Z.
HﬂpEIrr(AK)

b) We may assume that p # 0. Then we have AF = Ap, ®r, I, and since
[, is perfect we get rad(Ar) = rad(Ar,) ®r, F [7, Thm.7.9]. Hence we may
assume that F' is a finite field such that Ap is split. Let K be an algebraic
number field with ring of integers R C K, such that Ag is split and R has a



17

prime ideal p < R such that R/p = F. Then Ap is semisimple if and only if
N eZ\(pNZ)=17Z\ pZ. i

(4.4) Theorem: Frame, 1941 [10]. Let X be an association scheme.

a) We have n? | N € Z.

b) If Ag is split, then [N is a square in Z.

c) Let K be a field such that char(K) = 0 and Ay is split. If the multiplicities
My, for ¢ € Irr(Agk ), are pairwise different, then Ag is split.

Proof. a) Let K be an algebraic number field such that Ag is split, let R
be the ring of integers in K, and let o <« R be a prime ideal. Then there is a
Wedderburn basis € C Ay such that C = (4,ide € RSV We have
Ef:o A = Jp = ney, € Ak, where €,y = ey.11 is the centrally primitive
idempotent associated with the trivial character ¢g. Thus we get [1,...,1] -
C = (Ju)e = [n,0,...,0] € RE™. This implies n | det(C) € R, and hence
n? | N € R,. Thus we get 2 € QN4 prime RBo = QN R =Z. i
(4.5) Theorem: Wielandt, 1964 [21]; Higman, 1975 [14]. Let X be
an association scheme, let p € Z be a prime and | € N. Then we have
> pelin(Ac) pl | m., d2 < |{i € {0,...,d};p" | nn;}|. In particular, if X is com-
mutative then we have |{¢ € Irr(Ac);p' | my}| < |{i € {0,...,d};p' | nn;}|.

Proof. Let K be an algebraic number field such that Ag is split, let R be the
ring of integers in K, and let p < R be a prime ideal such that p NZ = pZ; for
the associated valuations we have v, |z = ev,, where e € N is the ramification
index. We may assume that U := [0, (A;)rs; @7, 8] € T,i € {0,...,d}prsi €
Rg(odﬂ)x(dﬂ), where 7 := {[p,7,s];¢ € Irt(Ak),r,s € {1,...,d,}} is ordered
lexicographically; if X' is commutative, that is d, = 1 for all ¢ € Irr(Ag), then
U = ®(Ag) coincides with the character table of Ag.

Let N := diag[no, .. .,ng] € Z@D*E+) and M = diag[mylaz; ¢ € Irr(Ak)] €
Z(4+1)x(d+1) - The orthogonality relations read (VQ)N~'(PW)™ = nM~! €
K@Dx@+1) - where Q € Z@+D*x(d+1) i the permutation matrix describing
the involution #: 4 +— i* on {0,...,d}, and P € Z(@HDx(+) ig the per-
mutation matrix describing the appropriate reordering of 7. In particular
U ¢ K@HDx(d+D) s invertible. Inverting yields (P¥) " N(¥Q)~* = n~'M
and thus (PU)" M (TQ) = nN € RIT*@H,

Since Ry, is a principal ideal domain, it has an elementary divisor theory with
respect to its only prime ideal p, where elementary divisors are greatest common

divisors of appropriate matrix minors. Writing M = diag[my, ..., mg|, we for
k € Ng have [{i € {0,...,d};vp(m;) >k} < |{i €{0,...,d};vo(nn;) > k}|. 4

(4.6) Remark. The above matrix calculation relates to the Frame number
- d
as follows: We have det(Q) = (—1)d+12 = and det(P) = Hwehr(AK)(—l)( 50),
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d+1—|T| de

2
thus we get (=1)~ 2 det(¥)? - H@GIH(AK)(—l)( 2 )mi“’ = nd*t1A| thus N =
det(PU?). The associated Wedderburn basis & C Ag is given as gidga,} =
n~!MP(VQ)N~t. Hence from n= ' (VQ)N~! = M~1(P¥)~' and using M P =
PM and P = P~ = P¥, we conclude gid(s,, = MPM~'P=0g—t — =t
implying C' := 4,3idg = ¥,

(4.7) Theorem: Higman, 1975 [14]. Let X be an association scheme. Then
|Irr(Ac)| = 2 implies d = 1. In particular, if d < 4 then X is commutative.

Proof. Let Irr(Ac) = {0, ¢}, where ¢ is the trivial character. Hence we have
d+1 = dimc(Ac) = 1+d2, thus d?, = d. For the natural character v = o+mp
we have 0 = v(4;) = n; + myp(A4;), for all ¢ > 1, thus p(4;) = = < 0, and

M
since p(A;) is an integer we conclude p(A4;) < —1. For J,, = Z?:o Ai = neg,
we have 0 = ¢(J,,) = dy + 30, ¢(A;) < dy —d = dy, — d2, thus d2 < d,
implying d, = 1 and hence d = df, =1.

If d <3, then from 37y, (4. d2 =d+1 <4 anddy, =1 we conclude that
d, =1 for all ¢ € Irr(Ac), that is Ac is commutative. Finally, if d = 4 then
assume that Ac is not commutative. Then we have Irr(Ac) = {po, ¢} where

d, = 2, implying d = 1, a contradiction. i

(4.8) Theorem: Bannai-Ito, 1984 [3]. Let X be an association scheme, such
that all non-trivial characters in Irr(Ac) have the same multiplicity m. Then
X is commutative, and we have n; = --- = ng = m and |N| = n¢+L.

Proof. We may assume that d > 1; we have ng = my, = dy, = 1 any-
way. Thenn =1+ m - tho#«ﬂGIrr(Ac) d, implies that n and m are coprime.

Since D, oet(Ac) d2 = d we infer that [N] = "L:;A € Z, and thus m? |

A, hence m < Ai. The inequality between the geometric and arithmetic
. d

mean yields At = (Hle ni)% < é . Z?:l n; = nT_l = mz%#w;m(%) z <

MY cpetm(ac) o 1 . o

PEEEe 2 = m < Ad. Hence Yo, o ocrran) o = D rpetn(ac) Do

implies d, = d?, = 1 for all ¢y # ¢ € Trr(Ac), that is Ac is commutative, thus

|Irr(Ac)| = d + 1. Moreover, (Hjl:1 ng)i = L E?:l n,; implies ny = -+ - = ng,
hence we have 1 4+ dn; = n = 1 4 dm, implying n; = m and A = m¢. #

(4.9) Theorem: Hanaki, 2002 [11]; Hanaki-Uno, 2006 [13]. Let X be
an association scheme such that n = p', where p € Z is a prime and [ € N.

a) Let F be a field such that char(F) = p. Then Ap is a local algebra.

b) If n = p then all non-trivial characters in Irr(Ac) have the same multiplicity.

Proof. a) The adjacency algebra Ap is local if and only if the trivial repre-
sentation is the only irreducible representation. Hence we may assume that F
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is a finite field and Ap is split. Let K be an algebraic number field with ring
of integers R, having a prime ideal p < R such that R/p 2 F, where we may
assume that Ag is split. We show that Ap has a unique primitive idempotent:

Let first e, € Ak be a primitive idempotent associated with ¢ € Irr(Ag), then

from A = > a0 écp we get A(ey) = é =22 e K. Let now f € Ap be

a primitive idempotent. Then there is a primitive idempotent f € Agr, such

that f = f. Let f = D petrr(Ax) Ef;"l €e,i be a decomposition into pairwise

orthogonal primitive idempotents e, ; € Axk, where e, ; is associated with ¢ €

o~

Irr(Ak) and k, € {0,...,d,}. Hence we have A\(f) = & - et Ax) ey €

P
R,NQ = Zyy, implying that n = p' | D et Ag) Kot < Z@elrﬂAK) dpymy =

n, thus k, = d,, for all ¢ € Irr(Ag), hence fz Ap and thus f = fz Ayp.

b) Let K be an algebraic number field with ring of integers R such that Ay is
split, where we may assume that Q C K is Galois, and let o << R be a prime
ideal such that F' := R/p is a field such that char(F) = p. We show that all
wo # ¢ € Irr(Ag) are algebraically conjugate, then in particular all the Schur
elements c, = mig, € Q are the same, and thus the multiplicities as well:

For ¢o # ¢ € Irr(Ak) let O = {97 € Irr(Ak);0 € Autg(K)} and O =
Irr(Ak) \ ({po} U O), where the latter is to be shown to be the empty set,
and let ¢ := Zw/eo ¢ and ¢/ = E«p'eO' ¢'. Hence we have ¥(A4;),¥'(A;) €
Fixg (Autg(K)) "R = QN R = Z, for all ¢ € {0,...,d}, and letting dy =
¥(Ao) = |O] and dy := ¢¥'(Ap) = |O’| be the associated degrees we have
1 <dy < |Irr(Ag)| < X pen(ag) Mede =n = p and similarly 0 < dyr < p.
Since the trivial character is the unique irreducible character of Ap, decom-
position theory implies that ¢¥(A;) — n;dy € p. Thus there are a; € Z such
that ©(4;) = ndy — pa; € Z, and similarly there are a} € Z such that and
' (A;) = nidy —pa), € Z, for all i € {0, ...,d}. The orthogonality relations im-
ply 0 = Z?:o WA%W = Zgzo ¥(Ai) = p(dy — Zlii:o a;), thus Zgzo ai = dy
and similarly Z?:o a; = dys. Again by the orthogonality relations we get 0 =
d A )P (A d d d agmai _
> im0 W =D i nidydyr —p- 3o (dyai +dyrai-) +p* - 30 Tt =

—pdydy + p* - Z?:o a%“/ Since n; < n =p for all « € {0,...,d}, this implies
dydy =p- Y0, ‘“n—a; € Zypy, hence p | dydy € Z, and thus dy = 0. i

(4.10) Example: Johnson scheme 7(7,2). By (2.7) the adjacency algebra
Ap is split for any field F. Hence we let K := Q and R := Z and consider
the cases F':=TF, for p € {2,3,5,7}. We have n = 21 and ng = 1 and n; =
ne = 10, hence A = H?:o n; = 100 = 22.52. Moreover, we have Z = {0,...,2},
hence the Frame number is N’ = (=1)° - A - H?:o c?? = 11025 = 32 - 52 . 72,
and the decomposition matrices, that is the matrices describing the various



decomposition maps, are as follows, where 3,7 ¢ A while 2,5 € A:

m; | ¢ |ld;i||p=T|p=3|p=5| p=2
Yo 21 1|1 1 1 I
01| 6 § It .|. 1 1 1.
w2 | 14 5|1 111 1 1
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(4.11) Example. Let G := J; be the smallest sporadic simple Janko
group, of order |G| = 175560 = 23-3-5-7-11-19, let H := Ly(11) < G
be the largest maximal subgroup, of order |H| = 660 = 2%-3-5-11, and let X
be the Schurian scheme on X := H\G. Then X is commutative such that d = 4
and n =266 = 2-7-19. We have [ng,...,n4] = [1,11,110,132,12], and by (5.4)
the character table ®(Ac) is given as follows:

m; | ¢ | di || Ao Ay Ao As Ay
Yo 11266 1 1 11 110 132 12
01 56 % 1 1 77;\/5 5+;\/5 3*2\/5 *34»23\/5
oo | 56 2| 1 1 —7J2r\/5 5—;\/5 3+92>\/5 —3—23\/5
w3 | 76 % 1 1 4 5 -8 -2
ea | TT] B 1] 1 1 -10 4 4

Since Ag is commutative, the character field K := Q(1/5) is the unique minimal
splitting field of Ag in C; the ring of integers in K is R := Z[#], which is
a principal ideal domain. The valencies n; = ¢o(A;) are pairwise different,
implying that Z := {0,...,4}, and yielding A = [[}_,n; = 1916640 = 25 -
32 .5-113. The multiplicities m; are not pairwise different, and we have N' =
(—1)°- A n® - Ty ()% = 139081177620 = 22 - 32 - 5 72- 112 - 19%, which is
not a square in Z, but 6n1y is a square in R.

As for the decomposition maps, let p <t R be a prime ideal such that pNZ = pZ
for p € {2,3,5,7,11,19}, where 11,19 ¢ A while 2,3,5,11 € A. Appropriate
choices of p for p € {11,19} yield:

Gl p=19 p="7
wo | 266 || 1 1 .
©1 % 1 . 1 .
©3 32 1)1 .
vy 11 1 1
C; p=11 p=>5 p=3 p=2
wo | 266 || 1 . 1 . 1 . 1 .
01 % 1. 1 1. 1.
©2 1@ 1 1. 1. 1
©3 5 1 . 1 . 1 .
38
w4 | 7 1 1 11
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5 Commutative schemes

In this section let X be a commutative association scheme.

(5.1) The natural module. Endowing the natural Ac-module C* with the
standard scalar product (v,w) := v -w" € C, for all v,w € C", the adjoint of
A € C™ ™ is given as A = Ztr, where : C — C is complex conjugation. Since
A?dj = Z;r =A;« € A for all j € {0,...,d}, we conclude that A; is a normal
matrix, that is A; commutes with its adjoint. Hence by the spectral theorem
for complex normal matrices there is an orthogonal direct sum decomposition
Cr = @E:o V; as C-vector spaces, for some ¢t € Ny, such that the strata V; are
maximal simultaneous eigenspaces of all elements of Ac.

Letting ¢;(A;) € C be the associated eigenvalue of A;, for all ¢ € {0,...,¢} and
j €40,...,d}, we have A;|y, = ¢i(A;) - idy,. Since (A*Y)|y, = (Aly,)*V for all
A € Ac, we conclude that ¢;(Aj«) = B,(A;) € C; in particular if 7% = j then
we have ¢;(A;) € R. For the minimum and characteristic polynomials of A; we
have ua, = [T_o(T — ¢1(4;)) € CIT] and xa, = [T_(T — @1(4;))™ € C[T],
where m; := dim¢(V;) € N. Since the natural representation is faithful, the
character table of Ac is given as ® := ®(Ac) = [p;(A;)];; € CUHD*H) with
associated multiplicities m; € N and degrees d; = 1, for all ¢ € {0,...,t}.

If X is symmetric, then A = A; € A C R™ "™ shows that A; is a symmetric
real matrix, for all i € {0,...,d}. Letting R™ be endowed with the standard
scalar product (v, w) := v - w' € R, for all v,w € R™, by the spectral theorem
for symmetric real matrices there is an orthogonal direct sum decomposition
R™ = @E:o W; as R-vector spaces such that V; = W; ®g C.

(5.2) Characters. Let K be an algebraic number field such that Ag is split,
and let R be the ring of integers in K. The algebra Ag is split semisimple, this
implies ¢ = d, hence we have Ax = ®ie{0,...,d} Endg(S;) = @ie{o,...,d} K,
where S; is the irreducible Agx-module affording ¢; € Irr(Agx). We have
¢i(A;) € R for all 4,5 € {0,...,d}, and ® € RUEFTV*(@+D) g a square ma-
trix. We may assume that K := Q(p;(4;);i,5 € {0,...,d}) is the character
field, being the unique minimal splitting field of Ag in C.

Letting N := diag[no,...,nq € ZEHDXHD and M := diag[mo, ..., ma| €
Z(d+1)x(d+1) the orthogonality relations yield row orthogonality PN 1ot =
nM~—1 e K(@+D)x(d+1). in particular, ® is invertible, and we have Biggs’ for-
mula (1974) Z?:o nij@(Aj)goi(Aj) = 2 relating the character ¢; and its

m;
multiplicity m;. Letting Q € Z(¢+1)x(d+1) he the permutation matrix describ-
ing the involution *: i +— ¢* on {0,...,d}, we have ® = ®Q. By inverting, row
orthogonality implies ® % N T '=1lym , and thus we have column orthogo-

nality ®"M® = nN e R+ x(d+1)
Let o € Irr(Ag) be the trivial character, that is we have @g(A;) = n; > 0
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for all ¢ € {0,...,d}. From row orthogonality we infer that ¢g is the unique
irreducible character ¢ € Irr(Ag) such that p(A;) > 0 for all ¢ € {0,...,d}.
Hence the valencies n; = ¢o(A;) and thus the multiplicities m; are determined
from the character table ® alone.

Let &€ = {ep,...,ea} € Ak be the Wedderburn basis, where ¢; € Ak is the cen-
trally primitive idempotent associated with ¢;. Hence we have gidg4,) = ORRNS
K(@+Dx(d+D) The intersection matrices Pj = (4,1(4;)a,} € Z@HDX@+D for
j € {0,...,d}, being the representing matrices of the right regular represen-
tation of Ag with respect to the Schur basis, we from ¢;A; = ¢;(4;)e;, for
i € {0,...,d}, get gidga,y - Pj = Cj - gidga,y, where C; := diag[p;(A;));i €
{0,...,d}] € RE@+DX(@+D Hence we have P; = (gida,})~! - C) - gid(a,y =
P C; @', thus the intersection matrices P; are determined from @ alone.

Conversely, we show how ® can be determined from the Pj: Since gidig, )

describes the Wedderburn isomorphism Ag = @?:0 Age; = @?:0 K in terms
of the Schur basis, the rows of gidgs,} = O~ are simultaneous eigenvectors
of all the P;, with associated eigenvalues ¢;(A;); this is also seen from the
equation " P; = C;® . Since Px = Ak as K-algebras, any non-zero
simultaneous eigenspace of all the P; corresponds to a submodule of Ax having
only one constituent, thus is one-dimensional. Hence the non-zero simultaneous
eigenspaces of all the P; are the K-spans of the various rows of ®~*. Thus
®~™ can be determined up to scalars from the P;, by computing eigenspaces
and intersecting them, where it is sufficient to determine only a subset of the P;
and their eigenspaces such that one-dimensional simultaneous eigenspaces are
obtained; finally ® is found from transposing, inverting and using ;(Aq) = 1.

The P;’r are the representing matrices of the left regular representation of Ag,
that is the right regular representation of the opposite algebra AP = Ay, with
respect to the dual Schur basis. The Frobenius-Schur relations imply gidg Az} =
diag[ci;i € {0,...,d}]7' - @ € K(@HDX(d+D) "where ¢; € K is the Schur element
associated with ¢;. Hence the rows of ® are simultaneous eigenvectors of all the
P;r, with associated eigenvalues ¢;(A;); this is also seen in terms of matrices,
since from 7P = C;@7 we get C;'®~"" = &~ P!, and thus inverting
and transposing yields @P;r = C;®. As above we conclude that the non-zero
simultaneous eigenspaces of all the P;’r are the K-spans of the various rows of ®.
Thus @ can be determined directly from the P}r, avoiding a matrix inversion.

(5.3) Central Schurian schemes. Let X := G be a finite group, let G =
H(ii:O C; be its conjugacy classes, and let z; € C; for all i € {0,...,d}, where
zo := 1. For i € {0,...,d} let R; := {[z,y] € G*;27'y € C;}. Then we have
G? = ]_[?:0 R; where Ry = {[z,z];x € G}, and letting i* € {0, ...,d} such that
Cr ! = ;. we have RY" = R;-; hence RY = R; if and only if C; is self-inverse.
Indeed X := [G,{Ry,..., Rq}] is a Schurian association scheme:

We consider the transitive action of G x G on G via [g, h]:  +— g~ 'zh. We have
Stabgxa(1) = A(G) :={[g,9];9 € G} = G, and hence the A(G)-suborbits are
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given by 22 = {g=xg; g € G} for x € G, that is the conjugacy classes of G.
The diagonal action of G x G' on G? is given by [g, h]: [z,y] — [¢~'zh, g~ 'yh].
For i € {0,...,d} let [1,2;]%¢ = {[g~'h,g 'a;h];g,h € G} be an orbital.
Then (¢ th)~Y(g~'x;h) = h~tz;h € C; implies [1,2;]9*% C R;. Hence from
]_['Z:O[l,:vi]GXG =G?*= Hf:o R; we infer [1,7;]9*¢ = R, for all i € {0,...,d}.

For i,5,k € {0,...,d}, since [1l,zx] € Ry we have pfj = Nz € G;[1,z] €
R, [z,zx]) € R} = |{z € G;z € Ci, a7 oy, € Cj}| = |C; ﬂa:ij_1| = [{[z,y] €
C; x Cjyxy = xp }| = afj,
Let R be a ring, and let Z(R[G]) be the centre of the group algebra R[G]. Then
{CF;€{0,...,d}} € Z(R[G]) is an R-basis, where C;f := Y . = € R[G] is
the associated conjugacy class sum. Then we have C';FC’;F = EZ:O aij]j,
for all 4,4,k € {0,...,d}. Thus we infer that Z(R[G]) — Ag: C;f — A; is an
isomorphism of R-algebras; in particular X is commutative.

Let K be a field such that char(K) = 0 and K[G] is split. For x € Irr(K[G]) let
wy € Irr(Z(K|G])) be the associated central character given by w, (C;") =

% € K, for all i € {0,...,d}, describing the scalar action of Z(K[G))

on the irreducible module affording y. Hence the character table [w, (C;"); x €
Irr(K[G]),i € {0,...,d}]y: of Z(K[G]) with respect to the class sum basis
coincides with the character table of Ax with respect to the Schur basis. Thus
the character table of Z(K[G]), and hence the irreducible characters of G, can
be determined from the central structure constants.

the central structure constants of G:

(5.4) Example. Let X be the Schurian scheme on X := H\G where G := J;
and H := Ly(11) < G from (4.11). Still letting [no, . .., n4] = [1,11,110,132,12],
the intersection matrix P; € Z5*5 associated to A; € A is given as follows:

o1
1.
P=| . 10

S =

5 .

5 11

1

Hence for the minimum polynomial of b := [1,0,0,0,0] € K® with respect to
Py we have pp, p = T° — 9T% — 4273 + 19372 + 3417 — 484 = (T — 11)(T —
_7;\/5)(T— _742“/5)(T— 4)(T —1) € K[T], thus for the minimum polynomial of
Py we have pup, = pup, . Hence we have (Pj;i € No)g = (P, ..., P!k, where

{P?,..., P}} is K-linearly independent. Hence we have (P, ..., P}k = P,
and it suffices to compute the eigenspaces of P;, which are as follows:

1 1 1 11
110 +110v5  —60 — 405 20+ 615 =35-5Y5 55
110 — 110v/5  —60 4+ 40v5 20— 6v/5 =3345Y5 55
66 24 3 -4 -11
33 3 -3 111
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The character table @ is then found from inverting, transposing and normalising
the above matrix. Equivalently, it suffices to compute the eigenspaces of Pf*,
where normalising eigenvectors directly yields the character table ®:

11 110 132 12
—7-v5  5+7v5 3-9v5 —343V5

2 2 2 2
—7+v5  5-7v5  349v5 —3-35
2 2 2 2
4 5 -8 -2
1 —10 4 4

e T T T =
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