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0 Quadratic forms

(0.1) Action on polynomial algebras. Let K be a field, let n € Ny, and
let K[X] = K[X1,...,X,] be the polynomial K-algebra in the indeterminates
X = {Xy,...,Xn}. We have K[X] = D ey, K[X]a as graded K-algebras,
where K[X]; < K[X] is the subspace of homogeneous polynomials of degree d.

The general linear group GL, (K) acts naturally (from the right) K-linearly on
the K-vector space K™. Hence GL, (K) acts K-linearly by pre-composition on
the space of linear forms K[X]; < K[X], and thus by the universal property
of polynomial K-algebras we obtain graded K-algebra isomorphisms on K[X]:

For A = [a;;];j € GL,(K) we have (A X;)(z1,...,2,) = X;([z1,...,2,] - A) =
S wiai; = (i, ai Xi) (1, .., @), for z1, ..., 2, € K, saying that 41X, =
22;1 Xia;j, in other words we have X — X - A. Thus in terms of the K-basis
X of K[X]; the K-linear map induced by A is given by A% € K™*". Hence in
order to get an action of GL, (K) we let (fA)(X) := f(X - A™1), for f € K[X];
in particular the K-linear map on K [X]; induced by A is given by A™% € K™*™,

(0.2) Quadratic forms. Let K be a field such that char(K) # 2, and let n € N.
A polynomial ¢ = ¢(X) = ¢(X1,...,Xn) 1= X 1cicjc, 6 XiX; € K[X]2 is

called an (n-ary) quadratic form; we have dimg (K[X]2) = w We
may identify ¢ with the associated map K™ — K: z = [x1,...,2,] — g(x) =
q(x1,...,xy,), which with a slight abuse is also called a quadratic form; thus the

map K" x K" — K [z,y] = 3(q(z+y) —q(z) —q(y)) is a symmetric K-bilinear
form, and we have the name-giving property ¢(Ar) = A2 - g(x), for A € K.

Let KX .= {A € K™ A" = A} < K™*™ the K-subspace of symmetric

sym
matrices; we have dimg (K35") = w The quadratic form ¢ is associated
with the Gram matrix Q = Q, = [g;;]ij € K&y, where ¢j; = g, and

Gy = qj; = % - qi; for i < j. This gives rise to an isomorphism of K-vector
spaces K[X]|z — K"t ¢ = @, such that conversely ¢(X) = X - Q- Xtr,

For A € GL,(K) we get (¢A)(X) = (X -A7Y-Q - (A" - X'), thus we have
Qqa = A71- Q- A7 recall that applying A amounts to applying base change
of K™. Quadratic forms ¢ and ¢’ with associated Gram matrices @ and @',
respectively, are called equivalent if there is A € GL,(K) such that ¢A = ¢/,

or equivalently Q' = A~1.Q - A~*r,

Then A(q) := det(Q),) € K is called the discriminant of ¢ [Sylvester, 1852],
and rk(q) := rk(Qq) € {0,...,n} is called the rank of ¢. Thus applying A €
GL,(K) yields tk(gA) = 1k(q) and A(qA) = det(A~1-Q - A7) = det(A4)~2 -
det(Q) = det(A)~2 - A(g). In particular, the rank is a GL,(K)-invariant of
quadratic forms, while the the discriminant of quadratic forms is invariant with
respect to the special linear group SL, (K).

(0.3) Classification of quadratic forms. Let K be an algebraically closed
field such that char(K) # 2, and let n € N. Given a quadratic form ¢ € K[X]a,
let [¢] € K[X]2 be its equivalence class with respect to the action of SL,, =
SL,, (K), rather than GL,, = GL,,(K). These equivalence classes are as follows:

Theorem. Any n-ary quadratic form is SL,-equivalent to precisely one of:



i) qns = 0X2 + Z?;ll X2, where § # 0; we have k(g 5) = n and A(g,.5) = 6.
ii) ¢- :=>;_, X?, where r € {0,...,n—1}; we have rk(g,) = 7 and A(g,) = 0.

Moreover, all the forms g, 5 for § # 0 are GL,,-equivalent.

Proof. We show that the Gram matrix @) of any quadratic form ¢ of rank
r := rk(q) is SL,-diagonalizable: By induction we may assume that n > 2
and ¢ # 0. Since SL,, acts transitively on K™ \ {0}, we may choose a K-
basis of K™ whose first element, v say, is non-isotropic. Since any unitriangular
matrix belongs to SL,, by the standard orthogonalization procedure we may
complement this by a K-basis of the orthogonal complement (v)F < K". (So
far the argument works for any field K such that char(K) # 2.)

Hence we may assume that ¢ = Y_,_, §; X2, where 6; # 0. If r < n, letting A :=
diagler,... e, 1, ..., 1, (IT\—; &) '] € SL,,, where € = §; for i € {1,...,r}, we
get gA = S0i_ 0,6, 2 X2 = g If r = n, letting A := diagler,...,e,—1,6 1] €
SL,, where ¢ = §; for i € {1,...,n — 1}, and € := H;L:_f €, we get gA =
5n62X,2L+Z?;11 Sie; 2X? = .5, Finally, letting A := diag(1,...,1,¢] € GL,,
where €2 = 4, we get gnsA =0 2X2 + " X2 = g, 1. i

We may view the discriminant A as a regular map on the affine variety K[X]s.
Its fibre associated with § € K is the hypersurface A=1(§) C K[X],. Since
A is SL,,-invariant, we conclude that A~1(§) consists of a union of equivalence
classes. More precisely, for § # 0 the fibre A1 (d) = [g,, 5] is a single equivalence
class, while the fibre A=(0) = ]_Uf;ol [¢-] is a union of equivalence classes, for
n > 2; note that [go] = {qo} is a singleton set.

Since A is continuous with respect to the Zariski topology, we conclude that the
fibre A=1(§) C K[X]z is closed. This implies that the equivalence class [g, 5] is
closed for § # 0. But for 6 = 0 this is different, where for r € {0,...,n — 1} the
closure of [g,] equals [g,] = []._,lgs] C K[X]a:

For the time being, we are only able to present an argument which is valid for
the case K = C and C[X]; carrying the complex metric topology instead of the
Zariski topology, but we will show in (3.2) that it carries over to the Zariski
topology over any algebraically closed field. Now, since SL,, (C) acts by home-
omorphisms, [g,] is SL, (C)-invariant as well, hence is a union of equivalence
classes. Since {M € C"*"™;rk(M) < r} C C™*™ coincides with the set of all
matrices whose ((r+1) x (r+1))-minors all vanish, we conclude that the latter
set is closed. Hence {M € C<";rk(M) < r} C CX™ is closed as well, in other

sym sym

words 15—, lgs) is closed, whence [g,] € [T._,lgs]. Conversely, for r = 0 we have
[90] = [qo]- Forr € {1,...,n—1} and ¢ € Clet ¢, := eXf—&—Z::_ll X?2; in partic-
ular g,1 = ¢,. Then we have ¢, . € [g.] for € # 0, and lim¢_,¢ ¢r.e = Gr,0 = ¢r—1,
which entails [g,_1] C [g-]. This implies []._,[gs] C [g,], thus equality. il

Letting K be an arbitrary algebraically closed field such that char(K) # 2 again,
in particular we have A~%(0) = [g,_1], implying that any SL,,-invariant regular
map on A71(0) is constant, hence the equivalence classes contained in A~1(0)
cannot be separated by these maps.

This also entails that any SL,-invariant regular map F on K[X]s is constant
on the fibres of A, that is we have F(q) = f(A(g)) for some map f: K — K.



Table 1: Hyperboloids for § < 0 and § =0 and § > 0.

Moreover, A admits the section s: K — K[X]2: § — @n,5, where gn0 = ¢n_1,
that is s - A = idg. This yields F(s(8)) = f(A(s(d))) = f(4), thus f = s- F.
Since s is a morphism, f likewise is, implying that F' is a polynomial in A.

Similarly, in the case K = C and C[X]s carrying the complex metric topol-
ogy, the above argument shows that any SL,, (C)-invariant continuous complex-
valued function on A~%(0) is constant; and that any SL,,(C)-invariant contin-
uous complex-valued function F' on C[X]; is constant on the fibres of A, which
since s is continuous entails that F' is a continuous function of A.

(0.4) Binary quadratic forms. In particular, we consider binary forms,
that is the case n = 2, and let X := {X, Y} and V := K[X, Y]2. We consider the
K-bases {X?,2XY, Y2} C Vand {X?+Y?,2XY, X2-Y?} C V. Letting 4, B,C
and U, W,V be the the associated coordinate functions, using the base change

1 0 1
matrix M := |0 1 0| weget[4,B,C|=[UW,V]-M=[U+V,W,U-V]
1 0 -1

and [U,W,V] =[A,B,C]-M~! = [%, B, %] This yields identifications of

V with K3, with coordinate algebra K[V] = K[A, B, C] = K[U, W, V.

b Sym?
and thus A(q) = det(Q) = ac — b* € K [Lagrange; Gauf3, 1801]. Thus as a
regular map on V we get A = AC — B2 =U? -V? - W? c K[V)].

For § € K the fibre A=1(§) C V is, with respect to the above identifications,
given as {[a,b,c] € K3ac — b* = 6} and {[u,w,v] € K30 + w? = u? — 6},
respectively. The Jacobian [95, 28 98] = 2. [U,—W, —V] shows that A~1(5)
is smooth for § # 0, while for § = 0 we get the unique singular point go € A~1(0).

Let ¢ :== aX? + 2bXY + cY? € V, having Gram matrix Q = {a IC)} € K2x2

Geometrically, letting K = C, for § € R considering A~1(§) N R? in the second
picture, we get a single-shell hyperboloid for § < 0, a double-shell hy-
perboloid for § > 0, and a cone for § = 0; see Table 1, where the wu-axis is
the vertical one. In the ‘degenerate’ case § = 0, the cone consists of two SLo-
equivalence classes, namely [qo] = {qo} and [q1], where gy = 0 and ¢; = X2,



1 Algebraic groups

(1.1) Algebraic groups. a) Let K be an algebraically closed field. A K-
variety G endowed with a group structure, such that the multiplication map
uw=pc: GXG = G: [z,y] = xy and the inversion map t = 1g: G — G: z —
x~! are morphisms of varieties, is called an algebraic group over K. If G is

an affine variety, then G is called an affine algebraic group.

Note that, since the Zariski topology on G x G is finer than the product topol-
ogy of the Zariski topologies, multiplication is not necessarily continuous with
respect to the product topology, so that G is not necessarily a topological group.

If H is an algebraic group, then a morphism ¢: G — H of varieties which also
is a group homomorphism is called a homomorphism of algebraic groups. If ¢
additionally is an isomorphism of varieties, then it is called an isomorphism of
algebraic groups; note that here bijectivity of ¢ is necessary but not sufficient.

For example, we have the homomorphisms of algebraic groups € = eq: {lg} —
G: lg— lgand v =rg: G — {1(;}: g — lg.

b) The group laws of associativity, for the identity and for the properties of
inverses can be translated into commutative diagrams of morphisms of varieties.
Hence for affine algebraic groups these laws can be equivalently reformulated in
terms of coordinate algebras and comorphisms as follows:

i) Associativity: For z,y,z € G we have (zy)z = z(y=z).

GxGxG Y axa  KG ox KG9k KIG] <2 K[G] 9x K[G]

idxui \LM id*®#*T T#*

GXG—F—G K[G] @k K[G] - K[G]
I
ii) Identity: For x € G we have 2 - lg =z = 1g - z.
GGy q K[G] < k(G ok K[G]
idXeul \ \LM id*®(sy)*T id* Tu*
GxG——=G K[G] @k K[G] K[G]
iii) Inversion: For r € G we have z - 27! = 1g = 27! - 2.
vxid L Rid*
G- GG K[G] K[G] ©x K[G]

idXLl \ iu im,T (ev)” T#*
G
N

G xG K[G] @x K[G] <———K[G]

(1.2) Example: Additive and multiplicative groups. a) Let n € Nj.
Then K" is an affine algebraic group, having multiplication p: K™ x K® —
K": [z,y] = x + y, inversion ¢: K* — K": 2 — —z, and identity element



e: {0} — K"; hence K" is irreducible of dimension n. For n = 1, the additive
group G, := K is an irreducible affine algebraic group of dimension 1.

Going over to the coordinate algebra K[X], where X = {Xy,...,X,}, yields
p KX — KX ek KX]: X; —» (X;@1) + (1 ® X;), and *: K[X] —
K[X]: X; — —X;, as well as ¢: K[X] — K: X; — 0, where K is the coor-
dinate algebra associated with {0}.

b) The multiplicative group G,, := K\ {0} coincides with the principal
open subset Kx = {# € K; X(z) # 0} C K, and thus is an irreducible affine
variety of dimension 1. The associated coordinate algebra is given as K[G,,] =
K[X]x = K[X, X 1] := K[X, T]/(XT — 1); it can be seen as the localisation of
the coordinate algebra K[X] of K at the multiplicatively closed set generated
by X, where (X) <K[X] is the maximal ideal belonging to the point 0 € K.

Then G,, becomes an affine algebraic group with respect to multiplication
w: Gy X Gpy = Gyt [2,y] = 2y, inversion ¢: G, — Gyt 2+ 271, and iden-
tity element ¢: {1} — G,,. Going over to the coordinate algebra K[X]x yields
p  KX]x 2 KX]x @k K[X]x: X — X®X and *: K[ X]x - K[X]x: X —
Xt aswell as €*: K[X]x — K: X ~ 1. In particular this shows that inversion
indeed is a morphism.

For n € Z the map ¢,,: G, = Gy, @ — 2", thus ¢ : K[X]x - K[X]x: X —
X", is a homomorphism of algebraic groups. If char(K) = p > 0 and ¢ = p/,
for some f € N, then the Frobenius morphism ¢, is a group isomorphism,
but since ¢ is not surjective, ¢, is not an isomorphism of algebraic groups.

(It can be shown that G, and G, are not isomorphic as algebraic groups, and
that they are the only irreducible affine algebraic groups of dimension 1.)

(1.3) General and special linear groups. a) Let n € Ny. We consider the
affine variety K®*" with coordinate algebra K[X], where X := {X11,..., X}
Let det = det,, := > s (sgn(o) - [Ti_, X;,i») € K[X] be the n-th determi-
nant polynomial; in particular we have det; = X and detg = 1.

The principal open subset GL,, = GL,(K) = (K"*")qet = {4 = [aijlij €
K™ " det(A) = detn(ai1,a12,...,an,) # 0} € K**" is called the general
linear group; in particular we have GL; = G,,. Its coordinate algebra is
K[GL,] = K[X]qet = K[X,det; '], and together with its natural abstract group
structure GL,, is an affine algebraic group:

Multiplication W GLn X GLn — GLn [[aij]ij, [bjk]jk] — [Z?:l aijbjk]ik yields
pr K[Xqet — K[X]det ®x K[X]det : Xik = Z;l:l Xi; ® Xji. Moreover, using
the adjoint matrix, inversion can be written as ¢: GL,, — GL,: A — A7l =
det(A)~! - adj(A), where adj(A) := [(=1)""7 - det([ag]k£j)]i; € K™ and
we let adj([a11]) = [1]. This yields ¢*: K[X]aer — K[X]aet: Xij — (—1)7H7 -
det, 1(X) - dety, 1 ({Xpi; k # 7,1 # i}), in particular showing that inversion is a
morphism. Finally, the identity element €: {E,} — GL,, yields ¢*: K[X]qet —
K: X;; — 045, the Kronecker J-function. f

Since K™*™ is irreducible such that dim(K"*") = n?, these statements also
hold for GL,,. The map @qet: GL,, = Gy, A — det(A) is a homomorphism of
algebraic groups, such that ¢, : K[X]x — K[X]qet: X — det.



b) Similarly, SL,, = SL,(K) := V(det, —1) = {A = [a;;];; € K"*";det(A) =
det,(a11,a12, ..., ann) =1} C K™*™ is called the special linear group.

Proposition. det,, —a € K[X] is irreducible, for any n € N and a € K.

Proof. We first consider the case a = 0, and show by induction that det,, €
K[X] is irreducible, which holds for n = 1. For n > 2 assume to the contrary
that det,, is reducible. Expansion with respect to the n-th row yields det,, =
det,,—1 - Xy + 6n, where 6§, := Z:-L:_ll(—l)"_i dety 1 ({ Xk k #n, L # 1)) - X
Since degy,  (det,) = 1, and by induction det,, 1 € K[{Xp;;k # n,l # n}] C
K[X] is irreducible, this implies that det,,_; divides d,,. By specifying X,,; — 0,
for j € {1,...,n — 1} \ {i}, this yields that det,_; divides det,,—1({Xw;; ¥ #
n,l #i}), for i € {1,...,n — 1}, which is a contradiction.

Now let a # 0, and assume to the contrary that det, —a is reducible. Then we
conclude similarly that det,,_; divides §,, — a, which by specifying X,,; — 0, for
i€ {l,...,n— 1}, is a contradiction. i

This implies that (det,, —1) JK[X] is prime, for n € Ny, and thus the coordinate
algebra of SL,, is K[SL,,] = K[X]/(det,, —1); in particular K[SL,] is a domain,
or equivalently SL,, is irreducible. Moreover, since the prime ideal (det,, —1)
has height 1, we conclude that dim(SL,,) = dim(K"*") — 1 = n? — 1.

Since SL,, € GL,,, we conclude that SL,, < GL,, is a closed subgroup; alterna-
tively, this also follows from SL,, = ker(¢get) < GL,. The associated inclusion
morphism has comorphism K[X]ge, — K[X]/(det, —1): X, +— X, det; '+ 1.

(1.4) Linear algebraic groups. Let n € Ny. Any closed subgroup of GL,,
is an affine variety, such that the structure morphisms carry over from GL,,
thus is an affine algebraic group in its own right, being called a linear algebraic
group. (We will show in (2.7) that any affine algebraic group is isomorphic as
algebraic groups to a linear algebraic group, so that these notions coincide.)

Example. We have the following linear algebraic groups, where n € Ny:

i) The scalar group Z,, := {a-E, € GL,;a # 0} 2 G,,, where Z,, = Z(GL,);
and the group of diagonal matrices or torus T, := {[a;;];j € GLp;a;; =
0 for i # j} =2 (G,,)", the n-fold direct product of G, with itself.

ii) The group of upper unitriangular matrices or unipotent group U, :=
{laij]ij € GLp;a;; = 0 for ¢ > j,a;; = 1}; and the group of upper triangular
matrices or Borel group B,, := {[a;;];; € GLy;a;; = 0for¢ > j}, where
B,, = Nar,, (U,,) and B, 2 T,, x U, as abstract groups (at least).

1 =z
0 1
K[X117X127X217X22]/<X11—1’X22—1,X21> = K[X12] Thus the map @: Ga —

In particular, we have Us := { [ } € GLy;x € K}, with coordinate algebra

(1) 916 , which has comorphism ¢*: K[X12] = K[X]: X12 — X, is an
isomorphism of algebraic groups.

Ug:fE’—)

iii) The group of permutation matrices or Weyl group W,, < GL,,, where as
abstract groups W,, = §,, is isomorphic to the symmetric group on n letters;



and the group N,, < GL,, of monomial matrices, where N,, = Nar,, (T,) and
N, 2 W, x T, as abstract groups (at least).

In particular, since by Cayley’s Theorem any finite group is isomorphic to a sub-
group of a finite symmetric group, and thus to a group of permutation matrices,
any finite group can be considered as a linear algebraic group.

2 Basic properties

(2.1) Theorem. a) Let G be an affine algebraic group. Then there is a unique
irreducible component G° of G containing 1g. The identity component
G° 4 G is a closed normal subgroup of finite index, being contained in any
closed subgroup of finite index, and containing any irreducible closed subgroup.

b) The finite set G°\G := {G°g; g € G} of (right) cosets of G° in G coincides
with the irreducible components of G, which in turn coincide with the connected
components of G. In particular, G is equidimensional such that dim(G) =
dim(G®), and G is irreducible if and only if it is connected; in this case the
affine algebraic group G is called connected.

Proof. a) Let first V,W C G be irreducible components such that 1g € VNW.
Multiplication p: G x G — G yields that VW = u(V x W) C G is irreducible,
hence VW C G is irreducible as well. Since both V C VW and W C VW, we
conclude that V = VW = W. This shows that G° is well-defined.

In particular, we have G°G° = G°. Since inversion ¢: G — G is an automor-
phism of varieties, (G°)~! = 1(G°) C G is an irreducible component containing
lg, implying that (G°)~! = G°. Thus G° < G is a subgroup. For any g € G
conjugation ky: G = G: z — 29 := g~ 'zg is an automorphism of varieties,
hence (G°)? = k4(G°) C G is an irreducible component containing 1, thus
(G°)Y = G°, implying that G° < G is normal. This proves the first half of a).

b) For any g € G right translation py: G — G: = + xg is an automorphism of
varieties, hence G°g = p,(G°) C G is an irreducible component, in particular
is connected. Since G is Noetherian, G°\G is a finite set; in particular G°
has finite index in G. From G = ngGO\G G°g we conclude that all the sets
G°g C G are open and closed, hence are the connected components of G.

If V' C G is an irreducible component, then from V' =[] cgo\g(V N G°g) we
conclude that V' =V N G°g, hence V = G°g, for some g € G. This proves b).

a) (cont.) Let H < G be closed of finite index. Hence G = [[ cgy,g Hy is a

finite union of open and closed subsets. Thus we have G° = [[ 41, o (G°NHy),
and since 1g € G° N H this implies G° = G° N H, hence G° < H.

Let H < G be closed and irreducible. Then HNG® <H has finite index, hence
H =H° <HNG°, implying H < G°. This proves the second half of a). g

(1) (1)} Then Oy := {A € GLy; AJA™ = J}
be the 2-dimensional orthogonal group; hence Oy < GLs is closed. For A €
O, we have det(A4)? = 1, hence det: Oy — {£1} is a surjective homomorphism
of algebraic groups; note that J € Oy such that det(J) = —1. Thus its kernel

Example. Let K :=C and J :=



SO; := 02N SL,; <05 is a closed normal subgroup of index 2, being called the
2-dimensional special orthogonal group; in particular O is not connected.

. a b _ .
Letting A = Jl € GL;, from JAYJ = A~! = ﬁ(fl) -adj(A) we get
d b d —b . _
[c a] = i {c a ] Hence we have SOy = {diag[a,a™!] € GLo;a #

0} & G,, as algebraic groups; in particular SO is connected. Thus we have
052802 andOQZSOQUSOQ~J. ﬁ

(2.2) Lemma. Let G be an affine algebraic group.

a) Let 0 2V C G be open and W C G be dense. Then VIV =G = WV.

b) Let H < G be a subgroup. Then H < G is a subgroup as well. If moreover
H contains a non-empty open subset of H, then we have H = H.

Proof. a) Recall that a dense subset of a topological space intersects non-
trivially with any non-empty open subset. Now let g € G. Then V~!g C G
and gV ~! C G are open as well. Hence we have V~1g N W # (), implying that
there is v™'g = w € V-lgN W, for some v € V and w € W, thus g = vw.
Similarly, we have gV ~'NW # (), implying that there is gv ™' = w € gV~'NW,
for some v € V and w € W, thus g = wov.

b) We have 7t = H~! = H. Moreover, for any h € H we have Hh =
Hh = H, implying HH C H. Thus for any ¢ € H we have gH C H, implying

gH = gH C H, thus H H C H. This shows that H < G is a closed subgroup.
Moreover, if ) # U C H is open such that U C H, then H = | J{Uh;h € H} C H

is open and dense, thus H = HH = H.

Recall that any constructible subset of an affine variety contains a dense open
subset of its closure, and that the image of any morphism is constructible.

(2.3) Theorem. Let ¢: G — H be a homomorphism of affine algebraic groups.
a) Then the kernel ker(¢) < G and the image ¢(G) < H are closed subgroups,
and we have the dimension formula dim(G) = dim(ker(¢)) + dim(o(GQ)).

b) We have ¢(G°) = ¢(G)°.

Proof. a) Since {1z} C H is closed, ker(¢) = ¢ 1({1la}) C G is closed as
well. Moreover, since ¢ is a morphism of varieties, p(G) fulfills the assumptions
of (2.2)b). Hence ¢(G) < H is closed. This proves the first half of a).

b) Since ¢(G) < H is closed, it is an affine algebraic group. Since p(G°) <
©(G) is closed and irreducible, we have p(G°) < ¢(G)°. Conversely, since
G° < G is a subgroup of finite index, p(G°) < ¢(G) is a subgroup of finite
index as well, implying ¢(G)° < ¢(G®). This proves b).

a) (cont.) In order to proceed towards the dimension formula, since p(G) < H
is closed, we may assume that ¢ is surjective. Hence we have the restriction
w0 = @|lge: G° — H°, which is a surjective morphism between irreducible
varieties. The fibres of ¢g are the cosets of ker(¢g) in G°, thus are all iso-
morphic to ker(yg) as varieties. Hence the dimension formula for morphisms
yields dim(G°) = dim(ker(yg)) + dim(H®). Moreover, ker(ypg) = ker(¢) N



G° < ker(p) has finite index, hence we have ker(¢)° < ker(py), implying that
dim(ker(¢)°) = dim(ker(¢g)) = dim(ker(y)). Since dim(G°) = dim(G) and
dim(H®) = dim(H), this proves the second half of a). i

(2.4) Action on varieties. a) Let G be an affine algebraic group, and let
V # 0 be a variety. A (right) group action a: V x G — V: [z, g] — zg, such
that « is a morphism, is called a morphical or regular action, and V is called
a G-variety. If G acts morphically on W as well, then a morphism ¢: V — W
is called G-equivariant if p(zg) = ¢(x)g, for x € V and g € G.

For any g € G we have the automorphism of varieties ag: V — V: 2 = zg. If
V' is affine, then we get the associated automorphism of K-algebras aj : K[V] —
K[V]: f = (x — f(xg)), also called the induced translation of functions.
This gives rise to the associated representation of G on K[V] defined as o : G —

Autg (K[V]): g = ay =07, = (ap)~".

For any x € V we have the orbit morphism a,: G — V': g — xg, whose image
G = 0;(G) C V is called the associated G-orbit. If G acts transitively, that
is xG =V for some z € V, then V is called homogeneous.

Example. The affine algebraic group G acts morphically on itself by right
translation p = yu: G x G — G: [z,g] — zg, as well as by left translation
A: G x G — G: [z,9] = g~ 'z, where G is homogeneous for either action.

Moreover, G acts morphically on itself by conjugation or inner automor-
phisms r: G x G = G: [z,g] — 29 := g~ xg; note that £, = pyA\; = A\gp, for
g € G. For z € G the orbit & C G is called the associated conjugacy class.

(2.5) Stabilisers and fixed points. a) Let G be an affine algebraic group,
let V' be a G-variety, let U C V be a subset, and let W C V be closed.

Then the transporter Trang (U, W) :={g € G;Ug C W} =,y oz (W)
G is a closed subset. Moreover, the normaliser Ng(W) := {g € G; Wy
W} = Trang (W, W) N Trang (W, W)~! < G is a closed subgroup.

N

In particular, for any = € V the isotropy group or centraliser or stabiliser
G; = Cg(z) = Stabg(z) = {g € G;zg = 2} = Trang({z},{z}) < G is a

closed subgroup, hence Cg(U) :=(,cy Gz < G is a closed subgroup as well.

b) For any g € G the set of fixed points V9 = Fixy(g) :={z € V;zg =2} C
V is closed, implying that V& = Fixy (G) := ﬂgeG V9 CV is closed as well:

Since V' is a variety, the diagonal A(V) :={[z,2] e V xV;2 € V} CV xV is
closed; note that this is clear anyway if V' is affine. Hence using the graph of ay,
that is the morphism ~,: V' =V x V: & = [z, zg], we infer that ;' (A(V)) =
V9 CV is closed as well.

¢) Each irreducible component of W C V' is G°-invariant; in particular, if V' is
finite then G° acts trivially:

The group G, acting by automorphisms of varieties, permutes the finitely many
irreducible components of V', hence Ng (W) < G is a closed subgroup of finite
index, thus contains G°. i
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Example. For the right and left translation actions of G on itself, for x € G
the associated isotropy groups are trivial, and for g € G \ {1g} the associated
fixed point sets are empty.

For the conjugation action, the isotropy group of x € G is given as Cg(z) =
{9 € G;g7'xg = 2} = {g € G;xg = gz}, which hence is a closed subgroup of G.
Similarly, for g € G we have Fixg(g) = {x € G;g 'wg = 2} = {2 € G;2g =
gr} = Ca(g). Thus the center Z(G) := Ca(G) =(,cq Ca(z) = {g € G;zg =
grforallz € G} = {z € Gyzg = gz forallg € G} = (g Fixa(g) =
Fixg(G) is a closed subgroup of G as well.

If H < G is closed, then both Cg(H) < G are Ng(H) < G are closed.

(2.6) Proposition. Let G be an affine algebraic group acting morphically via
a on an affine variety V', and let U < K[V] be a finitely generated K-subspace.
a) Then there is a finitely generated G-invariant K-subspace of K[V] encom-
passing U; that is the G-action is locally finite.

b) The K-subspace U is G-invariant if and only if o*(U) < U @k K[G].

Proof. a) Since G acts by K-linear maps on K[V], we may assume that U =
(f)x, for some 0 # f € K[V]. Hence we have a*(f) =Y .i_, i ® g; € K[V] ®k
K[G], where r € N and f; € K[V] and ¢; € K[G]. For g € G and x € V
we have (ag(f))(z) = flag(x)) = flzg) = fla(lz,g])) = (@ (f)([z, g]) =
> iy fi(@)gi(g), which implies that o (f) = >7_; fi - gi(g) € K[V].

Hence we conclude that (a;(f);g € G)x < (f1,..-, fr)x < K[V] is a finitely
generated G-invariant K-subspace which contains f = af(f). Note that the
latter is the smallest K-subspace of K[V] having these properties, thus it is
called the G-invariant subspace generated by f.

b) If o*(U) < U®kK[G] holds, then the above computation shows that aj (U) <
U, for g € G, that is U is G-invariant.

Conversely, let U < K[V] be G-invariant. Then let {f1,..., fs, fs+1,-..} S K[V]
be a K-basis, where {f1,..., fs} C U is a K-basis and s := dimg(U) € Ny. For
f € U we have o*(f) = >0, f; ® gi, where s < r € Ny and g; € K[G].
For g € G this yields o (f) = >2i_; fi - gi(g). Since o (f) € U, from K-
linear independence we infer that g;(g) = 0 for ¢ > s+ 1. This being true
for all g € G, we deduce that g; = 0 € K[G] for i > s+ 1. Thus we have
a*(f) =321 fi® i € U @x K[G]. f

(2.7) Theorem: Linearisation of actions. Let G be an affine algebraic
group, and let V be an affine G-variety. Then there is a closed embedding
p: V — K" for some n € Ny, and a homomorphism of algebraic groups 6: G —
GL,,, such that we have G-equivariance p(zg) = ¢(z)d(g), forz € V and g € G.

Proof. Let {f1,...,fn} € K[V], where n € Ny, be a K-linear independent
K-algebra generating set such that additionally, by (2.6), the K-subspace U :=
(f1,.-+, fa)x < K[V]is G-invariant. Letting a be the action morphism, we have
a*(fi) = 251 [ ® g € K[V] @k K[G], where the g;; € K[G] are uniquely
defined. Thus we get aj(fi) = >0, f; - gji(9) € K[G], for g € G. Recall
that this yields a left G-action on U, that is we have o}, (f) = aj (ay(f)) for
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g,h € G and f € U. Thus in terms of matrices we have [gx;(h)]x; - [95i(9)]ji =
[9ki(hg)]ki. Hence we get a morphism of varieties 6: G — GLy: g — [g;i(9)];i
with comorphism K[GL,] — K[G]: X;; — g;;, such that §(g)d(h) = d(gh).
Thus § is a homomorphism of algebraic groups.

Next, Let UY := Homg (U, K) be the dual K-space of U, and let {\1,...,\,} C
UY be the K-basis dual to the K-basis {f1,..., fn} C U, that is X\;(f;) = d;;
for i,5 € {1,...,n}. In other words, we may view the evaluation map f? at
fi as coordinate functions on UY, for ¢ € {1,...,n}, hence we have K[UV] =
K[fP,..., f2]. Moreover, UV carries a (right) G-action such that g € G maps
AeUY to M f s MNaj(f)). Hence, with respect to the above K-basis of UY,
this action is given by 6.

Now let ¢: V. — UV: x +— 1%, where 1%: f — f(x) is the comorphism associated
with ¢, {x} — V. Then ¢ is a closed embedding: Fori € {1,...,n} andz € V
we have (*(£))(2) = f2(0(2)) = £205) = 2(Fi) = fi(x), hence *(£7) = fi €
K[V], showing that ¢ is a morphism; moreover, since {f1,..., fn} C K[V] is a
K-algebra generating set, from ¢*: K[UY] — K[V]: f# — f; we conclude that
™ is a surjective homomorphism of K-algebras. Finally, for ¢ € G and f € U
we have o(zg)(f) = 13, (f) = f(xg) = (ag(f)(x) = (a5 (f)) = o(z)(ag(f)) =
©(2)9(f), hence ¢(zg) = p(x)? € UV, that is ¢ is G-equivariant. il

Corollary: Linearisation of groups. Any affine algebraic group G is iso-
morphic as an algebraic group to a closed subgroup of GL,,, for some n € Nj.

Proof. We consider the right translation action p = u: G x G — G, and let
{f1,---, fn} € K[G] with associated map 6: G — GL,: g — [g;i(g)];; be as
above. It remains to be shown that ¢ is a closed embedding:

Since fi(g9) = fi(la - 9) = (P;(fi))(le) = Xi_; fi(le) - gji(9), for g € G, we
get fz = E?:l fj(lc;) *gji S K[G], implying that {gji; i,j S {1, e ,’I’L}} - K[G]
is a K-algebra generating set, thus ¢*: K[GL,] — K[G] is surjective. f

3 Orbits

(3.1) Theorem: Closed orbit lemma. a) Let G be an affine algebraic group,
let V' be a G-variety, and let O C V be a G-orbit. Then O C V is G-invariant,
O C O is open, and if O # O then dim(0O \ O) < dim(O).

b) For G-orbits O, 0’ C V such that O’ C O we write O’ < O. Then the orbit
closure relation < is a partial order on the set of G-orbits in V. Moreover,
there are <-minimal G-orbits, all of which are closed. In particular, any G-orbit
contains a closed G-orbit in its closure.

Proof. a) Letting G act via «, since a4 is an isomorphism for any g € G, from
ag(0) = O we get O = a;'(0) C ay'(0), where the latter is closed, hence
O C o, 1(0), thus a4(0) C O, hence O is G-invariant.

Let O = 2G, for some z € V, let ) # U C O be open such that U C O, and let
h € G such that h € U. Thus x € Uh™!, implying O = 2G C Usece Ug € O,

and hence O = UgEG Ug, where Ug C O is open for all g € G.
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Let O = Ui_, Wi, where r € N and the W; C O are the irreducible components.
Assume that W; N O = @ for some i € {1,...,r}, then O C Uj# W;, hence
W, C O C U; Wi, a contradiction. Hence we have O\O =U;_,(W;\ 0),
where W; \ O # W, for i € {1,...,r}. Thus if W; € O then dim(W; \ O) <
dim(W;) < dim(O), while if W; € O then W; \ O = ) anyway. Hence we get
dim(O \ O) = max{dim(W; \ O) € Ng;i € {1,...,r},W; € O} < dim(O).

b) Wg have to show that < E reflexive, trallsitive and antiﬂmmgtric: ‘We have
O CO. Moreover,ﬁO” C O’ and O’£ OimplLO” C O’ € O. Finally, let
O’ C O and O C O’, hence we have O’ C O C O/, and both 0,0’ C O = O’

being open and dense implies that O N O’ # (), thus O = O'.

The existence of <-minimal orbits follows from a) by induction on dimension. 4

Example. The natural action « of GL, on K", for n € Ny, is morphical:
We have o*: K[Xy,...,X,] = K[X1,...,X,] @k K[X11,..., Xnnldet: X; —
i, Xi ® X;j; for n =1 we recover the right translation action of G,, on G,.

Since GL,, acts transitively on the non-zero vectors in K", for n € N, we get
the orbits Og := {0} and Oy := K™\ {0}, where Oy is closed of dimension 0, and
01 is open of dimension n. Since Oy C 01 = K™ we conclude that Oy < Oy.

(3.2) Proposition. Let G be an affine algebraic group, let V be a G-variety,
and let 0,0’ C V be G-orbits. Moreover, let ¢: K — V be a morphism such
that there is ) # U C K open fulfilling ¢(U) C O, and ¢(a) € O for some
a € K. Then we have O’ C O, that is O’ < O.

Proof. Recall that for a continuous map f: X — Y between topological spaces,
and a subset S C X, we have f(S) C f(S5): Indeed, we have S C f~!(f(S)) C
F7L(f(S)), where the latter is closed in X, implying S C f~1(f(S)).

Letting G act via a, we get the morphism 5 := (p X id)a: Kx G -V x G —
V. Writing G = J[ cgo\g G°9, We get U x G = [[ cgoa(U x G°9) C
[lcco\a® x G°g) = K x G. The irreducibility of K x G° implies that U x
G°g C K x G°g is dense, hence U x G C K x G is dense. Hence we haveg’ =
2(a)G = B({a} x G) C B(K x G) = BT x G) C f(U x G) = p(0)G = 0. ¢

Most often, this is applied for U := K\ {a}, in which case, by abuse of notation,
we also write limy;_,, ¢(t) := p(a) € V.

(3.3) Proposition. Let G be an affine algebraic group, let V' be a G-variety,
and let x € V. Then G consists of finitely many G°-orbits, all of which are
irreducible, and open and closed in xG; the closure of the latter are precisely the
irreducible components of G, in particular G is equidimensional such that
dim(zG) = dim(zG°). Finally, we have dim(Cg(z)) = dim(Cg-(z)), and we
have the orbit-stabiliser dimension formula dim(G) = dim(Cg(z)) + dim(zG).

Proof. Since G° < G has finite index, we have 2G = [[;_, z¢,G°, for some
gi,---,9- € G and r € N, where the z¢g;G° = zG° - g; are G°-invariant,
pairwise isomorphic irreducible subsets. Hence we get G = U:Zl xg;G°, where
the xg;G° = G° - g; are G°-invariant, pairwise isomorphic irreducible closed
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subsets. Considering dimensions shows xg;G° A xg;G° whenever j # 4, hence
we get 2g;G° Nxg;G° = (. This yields 2¢;G° N G = 2¢;G°, showing that
2g;G° C =G is closed; since ]_[j# 29;G° C =G is closed, we conclude that
rg;G° C zG is open as well. Moreover, this also shows that G = |J|_, z¢,G°
is irredundant, hence the xg; G° are precisely the irreducible components of *G.

Moreover, since Cgo(z) < Ca(z) is a closed subgroup of finite index, we have
dim(Cg(x)) = dim(Cge(x)). Hence to show the last assertion, we may assume
that G is connected. Letting G act via o, then the orbit map a,: G — zG is a
dominant morphism between irreducible varieties. Hence there is ) # U C 2G
such that U C zG, and such that dim(a; *(y)) = dim(G) — dim(zG) for y € U.
For any y € U we have o ! (y) = {h € G;zh =y} = Cg(z)g C G, where g € G
is fixed such that y = zg, implying dim(a; *(y)) = dim(Cg(x)). i

(3.4) Example: Matrix equivalence. For n € Ny let M := K"*" and G :=
GL,,. Then G acts by conjugation on M, that is via M x G = M: [A,T] —
T—1AT. Matrices A, B € M are called equivalent if they belong to the same
G-orbit; recall that this holds if and only if their Jordan normal forms coincide.
Note that since G = Z,SL,,, where Z,, acts trivially on M, the G-orbits and
the SL,,-orbits on M coincide.

For A € M let x(A) := det(XE, — A) = X"+ 3" (-1)'(A) X" € K[X]
be the associated characteristic polynomial. Here, ¢;(A) coincides with the i-th
elementary symmetric polynomial in the eigenvalues of A. Thus, in terms of
the coordinate algebra K[X11,...,X,,] of M, we have ¢; € K[X11,..., Xpnli
for i € {1,...,n}; in particular, we have e; = Y"1, X;; and €, = det,,.

This gives rise to the morphism e: M — K": A — [e1(A), ..., €, (A)]. Moreover,
we have the morphism ~v: K" — M mapping z = [z1,...,z,] € K" to

1

1
(_1)n_1xn (_1)n_2xn71 cee TX2 T

note that in particular J, = J,(0) := ~(0) is a Jordan block of size n with
respect to the eigenvalue 0. From ~y(x) being a companion matrix, we infer
x(v(z)) = X"+ 3" (—1)'z; X", entailing that e(y(z)) = [z1,...,2,]. Hence
we have ve = idg=, in particular € is surjective.

Since the characteristic polynomial of a matrix is invariant under base change,
we conclude that e is G-invariant, that is constant on G-orbits. Hence for
x € K" the fibre e 1(x) C M is a closed union of G-orbits.

Since the eigenvalues of a matrix, together with their multiplicities, are uniquely
determined by its characteristic polynomial, the fibre ¢~!(z) consists of only
finitely many G-orbits, being parametrised by the possible Jordan normal forms.
In particular, any fibre e 1(x) contains a unique semisimple G-orbit, that is
a G-orbit consisting of diagonalisable matrices.
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Proposition. For any G-orbit O C M we have: o
a) There is a unique semisimple G-orbit contained in O.
b) The G-orbit O is closed if and only if it is semisimple.

Proof. a) We first consider A := aF,, +tJ, € M, for a,t € K. Hence we have
X(A) = (X —a)™, where A is semisimple if ¢ = 0. Moreover, whenever t # 0 we
have tk((A — aE,)") = 1k(t'J.) =n —i for i € {0,...,n}. Thus in this case A
is equivalent to a Jordan block of size n with respect to the eigenvalue a.

Now, considering Jordan normal forms shows that there is matrix D + N € O,
where D € M is a diagonal matrix, and N = @2:1 Iy, = diag[Jx,,...,Jx] €
M, where | € Ny and \; € N such that 22:1 A; = n. This gives rise to the
morphism ¢: K — M: ¢t +— D+tN. The above observation shows that ¢(t) € O
whenever t # 0, while the G-orbit containing lim;_,o ¢(t) = D is semisimple.
Hence by (3.2) we conclude that the G-orbit of D is contained in O.

To show uniqueness, let V := ¢! (¢(0)) € M be the fibre of € containing O.
Since ¥V C M is closed we have O C V, where we have already seen that V
contains a unique semisimple G-orbit.

b) Let O be closed, that is we have O = O. By a) there is a semisimple G-orbit
contained in O, hence O is semisimple.

Conversely, let O be semisimple. Then by the closed orbit lemma there is a
closed G-orbit Oy contained in O, where we have just seen that Oy is semisimple.
Hence we have OUQ, C O, where by a) the latter contains a unique semisimple
G-orbit. Thus O = Oy is closed. g

This facilitates a description of the G-invariant regular maps ¢: M — K; recall
that G-invariance is equivalent to being constant on G-orbits:

Firstly, any such ¢ is constant on the fibres of €; hence the G-orbits contained
in one and the same fibre of € cannot be separated by G-invariant regular maps:

For x € K" let V := e !(z) C M be the associated fibre, and let Oy C V be
the unique semisimple G-orbit. Then for any G-orbit O C V we have Oy C O.
Recalling that ¢(0O) is a singleton set, from O C ¢~1(¢(0O)), where the latter
is closed, we get Og C O C ¢~ (p(0)). Hence we have p(0O) = ¢(Op). f

Now, it follows that ¢ is a polynomial in {ej,...,€,}: Since ¢ is constant on
the fibres of €, there is a map @: K® — K such that ¢ = ep, where from
® =1idgn - ® = yep = v we infer that ¢ is regular.

(3.5) Dominance order on partitions. a) We will need some combinatorics
of partitions, which we collect next: We consider the set P(n) of partitions of
n € Ny. For a partition A := [A1,..., N] F n with [ € {0,...,n} parts we let
A; =0 for ¢ > [, thus we may write A = [A1,...,\;]. Then P(n) is partially
ordered by dominance <, where A = [A1,...,\,] b n is said to dominate
= (11, pin) FnifoZlui < 25:1)‘1’ for all k € {0,...,n}.

It is immediate that reflexivity and transitivity hold. Moreover, from p <A and
A< we get Zle i = Zle A; for k € {1,...,n}, which successively entails
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w; =\ for k € {1,...,n}. Hence we have antisymmetry as well, showing that
dominance < indeed is a partial order.

b) We describe the associated covering relation: Given p - n, we have p <<
that is p <t v < X\ already implies v = A, if and only if

A= [va N 1 N 1Y (TS PR [N By Ve B /T ’/’Ln]?

where 1 < r < s < n such that pus > psy1, and p.—1 > p,- if r > 1, and such
that either s=r+1,or s >r+1 and u, = ps:

If p< A, then let r := min{i € {1,...,n};pu; # A} and s := min{k € {r +
1,... ,n};Zle i = Zf;l Ai}, thus 1 < r < s < n. Hence we have p, < A,
and A, < Ap_1 = pp—q if 7 > 1, as well as ps > As > Asy1 > ps1. This yields

v = [/‘17‘-‘7/‘7"717/17‘""_17,U/r+17-"7/15717ﬂs_17,U/s+17'~-7,un]§)\7

hence v = A. It remains to show u,. = us whenever s > r + 1: Assume to the
contrary that g, > pg, and let 7 < ¢ :=min{i € {r+1,...,s};pi—1 > pi} < s.
If t = s then

/~L<][:ula"'MUJT—IHU‘T'+17/J“T‘+17"'7/J‘s—27us—1 _1a,u‘37"'a,u‘7l} <]V:Aa

while if ¢t < s then

n< [:U‘la"'vﬂrv"w,ut—lmuft + 17Mt+17"'7.u“8—1ﬂ,u‘8 - 1,#5—&-1,---,,“%} v = )‘a
a contradiction.

Let conversely A be as asserted, and let v = [v1,...,v,] F n such that p<iv <A
Hence fori & {r,...,s} we have v; = ;. Thusif s = r+1 we conclude v, = p,+1
and vy41 = fpy1 — 1, thus v = A, If s > r + 1 and hence p, = ps, then there
are r < 1’ < ¢’ < s such that v; = y; for i & {r', s’} as well as v,» = p,» + 1 and
Vg = lg — 1. Since ppr = vV — 1 < vp_1 —1 = g1 — 1 < pr—1, whenever
v >1,and pgy = vy +1 > vei1 + 1= pes1 + 1> pgy1, this implies 7/ = r
and s’ = s, hence v = )\ in this case as well. f

For example, we have A < [n] and [1"] < A for all A - n and n € Ny, and
[n—1,1]<[n] for n > 2, and [13] < [2,1] < [3] and [1?] < [2,1?] < [2?] < [3,1] < [4]

2,1] <
and [11] < [2,1%] < [22,1] < [3,2] < [4,1] <

1
1] < [5], and

0] <(2, 1] < [2%, 1] < {[3,1°], [2°]} < [3, 2, 1] < {[4, 1], [3°]} <[4, 2] <[5, 1] < [6],
where {[3,13],[23]} and {[4,1%],[3%]} are non-comparable.

c) Identifying a partition A\ = n having [ parts with the set {[i,j] € N?;i €
{1,...,1},7 € {1,...,\}}, it can be depicted by a Young diagram, that is
rectangular array of boxes consisting of [ rows, where row i contains A; boxes.
Using this, the conjugate partition ' - n is defined as the partition belonging
to the diagram obtained by reflecting the original one along its main diagonal.
Formally, if A = [A1,...,A\,] F n then letting X, := [{j € N;\; > i}| € Ny for
i €N, we have \] >--- > A >0 and

ixg :i|{ie (1,....,n}i < A} :anxj —n,
i=1 j=1 j=1
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hence indeed N :=[)\],..., ] F n is a partition of n.

Moreover, conjugating twice yields \” = n, where A/ = [{j € N;\} > i}| =
G e N [{k e Ns Ay > 5} > i} = [{7 € Ni{1,...,i} C{k € N} )\, > j}}| =
H{ieN; X\ >4} =1{1,..., A} = s, that is we indeed have N = A.

Recalling that in terms of multiplicities we also write A = [n®, ... 1], where
a; = a;(N) = |{j € {1,...,1};\; = i}| € Ny, the fastest way to compute
conjugate partitions is given as follows: Writing X' = [n%,...,1%] + n, for
i€{1,...,n} we have

a; = {jeN;X) =i}

= |7 eN[{k e N; A 2 5} =4}
= {ieN{keN; ), >4} ={1,....,i}}
= HJeN; A >4, A1 < J}

= [{Aim + 1,0

= )\i_)\i+1.

For example, we have [n]’ = [1"] for n € Ny, and [n—1,1)' = [2,1"72] for n > 2,
as well as [22]" = [2%] and [3,2]' = [22,1] and [3,1?]' = [3,1?].

d) Then we have <\ if and only if N’ <9/, in other words conjugating partitions
inverts the dominance partial order:

To show this, it suffices to assume to the contrary that x4 <A but X A p'.
Then for some k € N we have > 7_ N, < >1  pf for j € {1,...,k— 1}, and
Zle A > Zle p;. Hence we have X, >y and Y07 0 Np < 350, . Now

we have
A\,
n k

YooN= D HeNi< =D (N —k),

i=k+1 i=k+1 j=1
and similarly we get > " ., puf = ?/il(uj — k); note that A\; > k for j €
{1,...,\;}. This implies that 0% (u; — k) > Y08 (O — k) = S0 (A — k),
thus we have p 4 A, a contradiction. f

(3.6) Example: Nilpotent matrices. a) We keep the notation of (3.4) and
(3.5), and let N := e 1(0) = {4 € M;x(A) = X"} ={A e M; A" =0} C M
be the nilpotent variety. Hence the G-orbits in N are parametrised by the
Jordan normal forms with respect to the eigenvalue 0, that is block diagonal
matrices @._, Jy,, where [ € Ny and ); € N such that Y/, \; = n.

Assuming that Ay > --- > \;, we infer that the Jordan normal forms in turn are
parametrised by the partitions A := [A1,...,A] F n. Thus A can be written
as a disjoint union of G-orbits as N' = [],,,, N, where Ny, .\, contains
@221 Jx,- The orbit closure relation on N induces a partial order on P(n). We
are going to show that the latter coincides with the dominance partial order <
on P(n), and thus has a purely combinatorial description:

i) We show that Ny C Nq) := HMSU\NM C N: For a Jordan block J; € C**?, for
some i € Np, we have tk(J¥) =i —k for k € {0,...,i}. Thus for A € Ny, where
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A= [n%, ..., 1] F n, we have rk(A*) = Yo (i —R)ai =31, Z;;l a; =

n n n k
D ikl Zj:i()\; —Aig1) = 2imppa i == 2oy Apy for k€ {0,...,n}. Hence
A and thus NV, are uniquely determined by the rank sequence [rk(A*) € Ng; k €
{0,...,n}]; note that we have rk(A%) = n and rk(A") = 0 anyway.

Now let 41+ n and B € N,,. Then we have g < X if and only if \ </, hence in
terms of matrices this holds if and only if rk(A*) > rk(B¥) for all k € {0,...,n}.
Thus we have B € Nay if and only if tk(B¥) < n—Y"F | X forall k € {0,...,n}.
In other words, letting N<j := {C € N;1k(C) < k} C N, we have B € Nq, if
and only if B¥ € N<(n_2§71 ay forall k € {0,... n}.

Recall that rk(C') € Ny equals the smallest k € No such that all ((k+1)x (k+1))-
minors of C' € M vanish; in this case all larger minors of C' vanish as well. Hence
we conclude that N<; C N is closed, for k € Ny. Thus, since taking matrix
powers is a morphism, we conclude that Nqy C A is closed as well. From this,
since Ny contains Ny, we infer that Ny C Nay.

ii) For the converse Nq) C Ny, we have to show that u < A implies N, C Ny.
In order to do so, by the transitivity of the closure relation we may assume that

M= [)\17"'7>\T’717A7‘ - ]-7)\7“4»17"'7)\8717)\8+17>\8+17'~'7>\TL} <>\7

for some 1 < r < s <n. Letting a := A\, and b := Ag, hencea—1 > b+1 > 1, we
have J,®J,®N € Ny and J,—1®Jy11 ®N € N, where N € K(n—a—b)x(n—a=b),
Hence we may assume that A = [a,b] Fn and p = [a — 1,b+ 1] F n, and let

€ 1

for € € K, where the upper left and lower right hand corners have size a x a and
b x b, respectively. We show that N, € Ny if € # 0, while lim_,g Ne = Ny € N,

If b = 0, then for € # 0 the unit vector e; € K" has minimum polynomial
X € K[X] with respect to N, hence N, has Jordan normal form J,,; moreover,
Ny has Jordan normal form J,_1 & J;. Hence we may assume that b > 0.

If € # 0 then, since a > b, the unit vector e; € K™ has minimum polyno-
mial X* € K[X] with respect to N.. Moreover, the unit vector e,+1 € K"
has minimum polynomial X° € K[X]. From (est11)n. = (€at1,---,en)x and
(er)n. N {eqt1,---,en)k = {0} we conclude K™ = (e1)n. @ (€q+1)n., hence N,
has Jordan normal form J, ® Jp.

If ¢ = 0 then ez € K" and e; € K" have minimum polynomials X%~ € K[X]
and X+ € K[X], respectively, with respect to No. From (e2)n, = (€2, - - -, €a)K
and (e1)n, = (€1, €a+1,---,€n)k We conclude K™ = (ea)n, ® (e1)n,, hence Ny
has Jordan normal form J,_1 @ Jpi1. i
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b) We show that N is irreducible such that dim(N) = n(n — 1):

We may assume that n > 1. We have A < [n] for all A - n. Hence we have
Nin =N, thus J, - G = N, € N is open and dense; the elements of N,
are called regular nilpotent. In particular, since G is connected, ./\/[n] is
irreducible, and thus A is as well.

Moreover, we have dim(N) = dim(G) — dim(Cg(J,)) = n? — dim(Cg(J,))-
Let C := Cpm(Jy) := {A € M; AJ,, = J, A}, which is both a closed subset and
a K-subalgebra of M, thus dim(C) = dimg(C). Since Cg(J,) =CNG C C
is open, we conclude that dim(Cg(J,)) = dim(C). Thus we have dim(N) =
n? — dimg (C), and it remains to be shown that dimg(C) = n:

Let A := K[J,,] 2 K[X]/(X™) be the K-subalgebra of M generated by .J,,; recall
that J,, has minimum polynomial X” € K[X]. Since (J,) < A is nilpotent, we
conclude that A/rad(A) = A/(J,) = K, so that the unique simple A-module
is given by J, + 0 € K*!. Now the A-module K" is generated as an A-
module by the unit vector e;, and since dimg(A) = n we conclude that K" is
isomorphic to the regular A-module, the latter being the projective cover of the
unique simple A-module. Thus we have C = End 4(K") = A°, the opposite
K-algebra of A, and since A is commutative we get C = A. (Indeed, the latter
being a local K-algebra, we have Cg (J,,) = C\rad(C), thus choosing the K-basis

{Bp, Jpy ., J271 CCwe get Ca(Jy) = {00 aiJi € Msa; € K,ag #0}.) 4

4 Representations

(4.1) Representations. Let G be an affine algebraic group, and let §: G —
GL,,: g — [9:j(9)]ij, where n € Ny, be a (matrix) representation, that is
a group homomorphism. Hence we get an action of G on the affine variety
V := K" by K-linear maps by letting a: V x G — V: [z, g] — zd(g).

The map ¢ is a morphism of varieties if and only if 6*: K[X11,..., Xpnldet —
K[G]: X;; + gi; defines a homomorphism of K-algebras, which in turn holds if
and only if the coordinate functions g;; are regular maps, for i, j € {1,...,n};
note that det,,(g11, ..., 9gnn) # 0 anyway. Recall that in this case ¢ is called an
algebraic or rational representation of G of degree n. For example, for
n =1, letting G — G,;,: g — 1 defines the trivial representation.

Moreover, let K[V] = K[X] = D ey, KlX]d = Dyen, K[V]a be the coordinate
algebra of V, where X := {Xy,...,X,}. In order to determine the comor-
phism associated with «, for i € {1,...,n} we observe X;([x1,...,2,]-d(g)) =
X0 5950 ())) = S0y 0,g5:(9) = (S0, X, © g30) (@1, .03 ), for all
z1,...,2, € Kand g € G. This entails o*: K[V] — K[V] @k K[G]: X; —
Z;;l X; ® gji- Hence we conclude that ¢ is algebraic if and only if o is a mor-
phical action. In this case V becomes a G-variety, on which G acts by K-linear
maps, and as such is called a G-module.

(4.2) Homomorphisms. a) Let G be an affine algebraic group, and let V
and W be G-modules, with associated algebraic representations §: G — GL,
and ¢': G — GL,,, respectively. Then a K-linear map ¢: V — W which is G-
equivariant in the sense of p(2d(g)) = w(x)d’(g), for x € V and g € G, is called
a homomorphism of G-modules; in particular ¢ is a morphism of varieties.
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The G-modules V and W are called isomorphic if there is a bijective homomor-
phism ¢: V — W of G-modules; in this case, ¢ ~': W — V is a homomorphism
of G-modules as well, and we write V' = W. In terms of representations, this
is equivalent to saying that there is a € GL,, such that §(g) = a~1§(g)a, for
g € G; in this case § and 0’ are called equivalent.

Let Homg (V, W) be the K-vector space of all G-equivariant K-linear maps
from V to W. Similarly, we get the K-vector space Endg (V) := Homg(V, V)
of all G-equivariant K-endomorphisms of V', and the (affine algebraic) group
Autg (V) := Endg (V) N GL(V)) of all G-equivariant K-automorphisms of V.

b) Let U <V be a G-invariant K-subspace; for example, U = {0} and U = V.
Then, by choosing a K-basis of V' containing a K-basis of U, and going over
to an equivalent representation, we get algebraic representations G — GL(U)
and G — GL(V/U) on the K-subspace U of V, and the associated quotient
K-vector space V/U, respectively, such that the natural maps ¢y: U — V and
vy: V. — V/U are G-equivariant. Note that the G-submodule U and the
quotient G-module V/U are only determined up to G-isomorphism.

In particular, given ¢ € Homg(V, W), the kernel ker(¢) < V and the image
o(V) < W are G-submodules, such that V/ker(p) = ¢(V) as G-modules.

c) If {U; < V;i € I} are G-submodules, where Z # () is an index set, then so
are their intersection ;. U; <V and their sum ), . U; < V.

If S C V is a subset, then (S)g := ({U < V G-submodule; S C U} < V is
called the G-submodule generated by .S; note that since S C V the inter-
section is taken over a non-empty set. In particular, if {U; < V;i € T} are
G-submodules then we have (Us;i € T)a = > ;o7 Us.

(4.3) Constructions. a) Let G be an affine algebraic group, and let V' and
W be G-modules, with associated algebraic representations 6: G — GL,, and
§': G = GL,,, respectively. Then V & W becomes a G-module with respect to
the algebraic representation G — GLy 1 : g — 0(g) B’ (g) := diag[d(g), ' (g)].

b) Let H be an affine algebraic group, and let U be an H-module, with associ-
ated algebraic representation e: H — GL,. Then V ®g U becomes a (G x H)-
module, with respect to the algebraic representation G x H — GLy,..: [g, h] —
5(g) ® e(h), the latter denoting the Kronecker product, having coordinate func-
tions [0(g) ® €(h)]ij ki = 0(9)ir - €(h)ji, for i,k € {1,...,n} and j,l € {1,...,r}.

In particular, V ®g W becomes a (G x G)-module. Thus, restricting along the
diagonal embedding G — G x G of algebraic groups, it becomes a G-module
with respect to the algebraic representation G — GLym,: g — 6(g) ® 6'(g).

¢) The dual K-space V"V := Homg (V, K) of V becomes a G-module with respect
to the G-action such that ¢ € G maps A € VY to \: x — A(xg~!). With
respect to the K-basis BY C VV dual to the standard K-basis B C V, the
G-action is given by the algebraic representation §¥: G — GL,: g — d(g9)™";
recall that inversion is an automorphism of G as a variety. The representation
8V is called the representation contragredient to 4.

More generally, Homg (V, U) becomes a (G x H)-module by letting [g, h] € GxH
act by mapping ¢ € Homg(V,U) to PV 5 U: 2 — - g Tph. In other
words, in terms of the standard K-bases B C V and C' C U, respectively, we
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get p(pl9") e = 6(g)~'- ppc - €(h), in particular showing that this indeed is an
algebraic representation.

Employing the natural isomorphism Homg (V,U) = V'V ®g U of K-vector spaces,
in terms of the standard K-basis BY @ C C V'V @k U the action of [g,h] € G xH
translates into the Kronecker product §(g) " ®e(h). Thus in conclusion we have
Homg (V,U) 2 VY @k U as (G x H)-modules.

In particular, Homg (V, W) becomes a (G x G)-module. Thus, restricting along
the diagonal embedding G — G x G of algebraic groups, Homg (V, W) becomes
a G-module, for which we have Homg(V,W)G = {p € Homg(V,W);p9 =
@ for all g € G} = {9 € Homg(V,W); gp = ¢g for all g € G} = Homg(V, W).

(4.4) Simple modules. a) Let G be an affine algebraic group, and let V' # {0}
be a G-module, with algebraic representation §. Then V is called simple, and
d is called irreducible, if {0} and V are the only G-submodules of V.

The property of being simple is an invariant of the G-isomorphism class of V.
Hence let X ¢ be the set of G-isomorphism classes of simple G-modules; note
that X is not necessarily finite.

Proposition: Schur’s Lemma. Let V and W be simple G-modules.
i) If V22 W then we have Homg (V, W) = {0}. ii) We have Endg (V) = K-idy.

Proof. i) Assume there is 0 # ¢ € Homg (V,W). Then {0} # o(V) < W is a
G-submodule, hence W being simple we have ¢(V') = W. Moreover, ker(¢) < V
is a proper G-submodule, hence V' being simple we have ker(¢) = {0}. Hence
© is bijective, and thus a G-isomorphism, a contradiction.

ii) Let ¢ be a G-endomorphism of V. Since K is algebraically closed, ¢ has
an eigenvalue a € K. Hence ¢ := ¢ — a - idy is a G-endomorphism, such that
ker()) # {0}. Hence V being simple we have ker(¢)) = V, that is ¢ = a-idy. {

b) In order to give a characterisation of simple G-modules, let Ag v € Endg (V)
be the (finite dimensional) K-algebra generated by §(G) < GL(V). Then V is
simple if and only if Ag v = Endg(V):

If V is simple, then since Endg (V) = K- idy it follows from Wedderburn’s
Theorem (which we are not able to prove here) that Ag v = Endg(V). Con-
versely, the equality Ag,v = Endg(V) implies that V' cannot possibly have a
proper non-zero G-invariant K-subspace, hence V' is simple. i

¢) We show that V is simple if and only if V' is so; note that Ag vy = Endg (V)
if and only if Ag yvv = Endg(V"Y), but here is a direct proof:

Since VVV = V as G-modules, it suffices to show that if V' is not simple
then VV neither is. Hence letting U < V be a G-submodule, the natural G-
monomorphism ¢: U — V induces the G-epimorphism ¢*: VV — UY: X = 1,
where we only have to show that ¢* indeed is G-equivariant: Since ¢ is G-
equivariant, for ¢ € G and y € U we have (y.- g )\ = yg~! - ), thus
(A9) = - A9 = (LN)9 = *(A)9. Finally, by a consideration of K-dimensions we
have {0} # U < V if and only if {0} # ker(¢*) < VV. i
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(4.5) Semisimple modules. a) Let G be an affine algebraic group, and let
V be a G-module, with associated algebraic representation §. Then V is called
semisimple, and § is called completely reducible, if V = @;_, V; is the
direct sum of simple G-submodules V; < V', for some r € Nj.

Proposition. The following statements are equivalent:

i) V is semisimple. ii) V is a (possibly empty) sum of simple G-submodules.
iii) For any G-submodule U < V there is a G-invariant complement W < V|
that is we have V =U & W as G-modules.

Proof. The implication i)=-ii) is trivial. For ii)=-iii) we proceed by induction
on dimg (V) —dimg (U) € Ng, where the case U = V is trivial. Hence let U < V.
Since V is generated by simple G-submodules, there is a simple G-submodule
S < V such that § £ U. Since S is simple, we have U NS = {0}, and hence
U@ S < V. By induction the latter has a G-invariant complement W < V,
thus we get V =U @ (S & W) as G-modules.

To show iii)=-ii) let U < V be a maximal semisimple G-submodule, and assume
that U < V. Then U has a G-invariant complement {0} # W < V. Let S < W
be a simple G-submodule. Then we have U & S < V, where the latter is a
semisimple G-submodule, a contradiction. Hence we conclude that U = V,
that is V' is semisimple. f

In particular, if V' is semisimple and U < V is a G-submodule, then both U and
V/U are semisimple again: If U’ < U is a G-submodule, then letting W < V
be a G-invariant complement for U’ we get U = U’ @ (W N U); and since V is
a sum of simple G-submodule this also holds for the quotient G-module V/U.

b) For a G-isomorphism class 0 € g let V, := > {S <V G-submodule; S €
o}. Thus V, <V is a semisimple G-submodule, being called the o-isotypic
socle of V. In particular, the isotypic socle associated with the trivial G-module
is {v € Vi;vg = for all g € G} = VG, that is the set of G-fixed points in V.

Proposition. Let S € 0. Then V, = S” as G-modules for some r € Ny,
and the map es: S @x Homg(S,V) = V,: v ® ¢ — ¢(v) is a G-isomorphism,
where G acts trivially on Homg (S, V) = Homg (S, V). Moreover, any simple
G-submodule of V, is G-isomorphic to S.

Proof. Let U <V, be a maximal G-submodule with respect to being a direct
sum U = @)_, S;, such that S; = S for all i € {1,...,7}, and assume that
U < V5. By the definition of V, there is S & 5,11 <V, such that S £ U, thus
Ua S <V,, a contradiction. Hence U =V, showing the first assertion.

For any 0 # ¢ € Homg(S,V) we have S = ¢(S) < V,. Hence ¢g is well-
defined and K-linear. Moreover, for ¢ € G we have eg((v ® ¢)g) = es(vg ®
v) = p(vg) = p(v)g = es(v ® v)g, showing that eg is G-equivariant. Now
we have Homg (S, V) = Homg(S,V,) = @._, Endg(S) as K-vector spaces,
thus dimg (Homg (S, V)) = r, hence dimg (S ®x Homg (5,V)) = dimg(S) - r =
dimg (V5). Thus it suffices to show that eg is surjective: Letting V,, = @._; S;
be a fixed direct sum decomposition, for any i € {1,...,r} there is an associated
G-embedding ¢;: S — S;, entailing eg(S ® ¢;) = S;.



22

Finally, in order to show the last assertion, let 7' < V; be a simple G-submodule.
Then we have {0} # Homg (T, V,) = @;_, Homg (7T, S), implying T = S. i

Let soc(V) = > v Vo = > {8 < V G-submodule} < V' be the largest
semisimple G-submodule of V| being called the socle of V.
If W is a G-module and ¢ € Homg (V, W), then we have p(soc(V)) < soc(WW).

Actually, since for simple G-modules S and T we have Homg(S,T) # {0} if
and only if S =T, we conclude that (V,) < W,, for 0 € ¥g.

Proposition. We have the direct sum decomposition soc(V) = @
with only finitely many non-zero summands.

VU7

g

Proof. Letting {o1,...,01} C X, we show by induction on k € Ny that the
sum W := Zle Vo, < soc(V) is direct; since soc(V') is the sum of its isotypic
components and a finitely generated K-vector space, this implies the assertion:

The case k = 0 being trivial, let k¥ > 1. For any j € {1,...,k} by induction
we have Wj = @, cq1, 4y Voo < W. Assume that W; NV, # {0}, then
there is a simple G-submodule S < W; such that S € o;. Hence we have
{0} # Homa (S, W;) = @, sieq1,. 1y Homa (S, V5,), thus there is V5, having a
G-submodule isomorphic to S, where j # i € {1,...,k}, a contradiction. Hence
we infer W; NV, = {0}, so that the sum defining W is direct. il

In particular, V' is semisimple if and only if soc(V) = V. In this case, V =

D,exe Vo, where V5 is called the o-isotypic component of V, and [V: 5] :=
dimg (V)

Tme(8) © Ny is called the multiplicity of S € ¢ in V. Moreover, if W is a
semisimple G-module, then we have Homg (V, W) = @JEEG Homg (V,, W,).

(4.6) Action on coordinate algebras. a) Let G be an affine algebraic group,
let V be an affine G-variety, and let K[V] be the coordinate algebra of V. Hence
G acts from the left on K[V], by K-algebra automorphisms. Thus pre-composing
with inversion yields a (right) G-action on K[V]; recall that the latter is not
finitely generated as a K-vector space. Given a finitely generated G-invariant
K-subspace U < K[V], the proof of (2.7) shows that G-acts morphically and
K-linearly on U. Hence, U is a G-module, and by abuse of terminology it is
called a G-submodule of K[V]. Moreover, by (2.6), G acts locally finitely on
K[V], so that K[V] is the union of its G-submodules.

Now let V' be a G-module, with associated algebraic representation G —
GL,,: g — [gi;(9)]ij, and let K[V] = K[X;,...,X,]. Since we have X; —
Z;;l X, ®gji, for i € {1,...,n}, we conclude that all the homogeneous com-
ponents K[V]; < K[V], for d € Ny, are G-submodules. In particular, for d = 0
we have K[V]y = K, on which G acts by the trivial representation. For d = 1,
with the respect to the K-basis X C K[V]; the matrix of the action of g € G
is given by d(g)", hence K[V]; is a G-module via g — §(g) ", thus carries the
contragredient representation associated with 9.

b) In particular, G acts on itself and thus on K[G] by right translation; in
this sense, again by abuse of terminology, K[G] is called the (right) regular
G-module. This is of importance in view of the following:
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Theorem. Let VY = (Ay,...,\.)q, where 7 € Ng. Then V is isomorphic to a
G-submodule of the r-fold direct sum K[G]" of the regular G-module.

Proof. Let A € VY. Then for z € V let py ,: G — K: g — N (z) = A(xzg™?).
Since the orbit map associated with x is a morphism and X is a regular map, we
conclude that ¢y , € K[G]. Then the map ¢y: V — K[G]:  — ¢, is K-linear
and G-equivariant: For ¢ € G and z,y € V and a € K we have ) qz14(9) =
M(az +y) = aN(z) + N (y) = apx 2(9) + @A,y(g)v thus O az+y = @Px 2+ Pry;
and for h € G we have ¢y zn(9) = Mzh-g71) = XMz - hg™!) = pr.(gh™!) =
(‘p)\,:v)h(g)a thus Pr,zh = (‘p)\,w)h-

Now, for i € {1,...,r} let ¢; be the map associated with \; as above, and
let o :=@D_,0::V = K[G]": 2 — [014,...,¢r.). Hence ¢ is K-linear and
G-equivariant. Finally, ¢ is injective: If ¢(z) = 0, then we have A\ (z) = 0
for all ¢ € {1,...,r} and g € G; hence from (\/;i € {1,...,r},g € G)g =
(A1, .-y Ar)a = V'V we conclude that VV(z) = {0}, implying z = 0. f

In particular, if V' is simple then V'V = (A)g for any 0 # A € V'V, so that in this
case V is isomorphic to a G-submodule of the regular G-module K[G].

5 Linear reductivity

(5.1) Linear reductivity. An affine algebraic group G is called linearly re-
ductive if any G-module is semisimple; this is equivalent to saying that any
algebraic representation of G is completely reducible.

We look for examples: Recall that if G is a finite group, then the associated co-
ordinate algebra K[G] is the set of all maps from G to K, that is K[G] coincides
with the conventional group algebra of G. Hence any conventional represen-
tation of G is algebraic. Thus from representation theory of finite groups the
following is well-known:

Theorem: Maschke. Let G be a finite group. Then G is linearly reductive if
and only if char(K) 1 |G]. f

As a generalisation of this, the following theorem says that in positive charac-
teristic there are not too many linearly reductive groups either. Actually, in
(5.7) we show that the question whether G is linearly reductive can be reduced
to the identity component G° and the finite quotient G/G°, and in (5.2) we
show that tori are linearly reductive in any characteristic; recall that a torus is
an algebraic group isomorphic to (G,,)", for some n € Ny:

Theorem: Nagata [1961]. Let char(K) = p > 0. Then G is linearly reductive
if and only if G° is a torus and p 1 [G: G°]. i

The situation is completely different if char(K) = 0, where there are many
more linearly reductive groups: For example, GL,, and SL,, where n € N, are
linearly reductive; unfortunately, we are not able to prove this here for n > 2,
while SL; = {1} is trivial, and GL; = Gy, is covered in (5.2). Actually, in
any characteristic linearly reductive groups are necessarily group theoretically
reductive, see (6.6), where for char(K) = 0 the latter property is also sufficient,
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and thus provides a rich source of linearly reductive groups. In (6.6) we indicate
that in any characteristic the groups GL,, and SL,, are reductive indeed, while
the following are typical examples of non-reductive groups:

Example. Let n > 2, and let G := B,, or G := U,; recall that in particular
U; 2 G,. Let V := K" be the natural G-module. Then U := (e,,) < V is a
G-submodule. We show that U does not have a G-invariant complement in V,
so that V is not semisimple and thus G is not linearly reductive:

Assume to the contrary that V = U @ W as G-modules. Let J := J,(1) € G
be a Jordan block of size n with respect to the eigenvalue 1. Then J has
characteristic polynomial x(J) = (X —1)" € K[X], and thus has 1 € K as its
only eigenvalue on both U and W. But we have kery (J — E,,) = (e,) = U, so
that kery (J — E,,) = {0}, a contradiction. i

(5.2) Example: Tori. We consider the torus T,, = (G,,)", where n € N. We
show that it is linearly reductive, and determine its simple modules:

a) In order to show that T, is linearly reductive, let V' be a T,-module with
associated algebraic representation §: T,, — GL,,, where m := dimg (V') € Ny.
We show that § is not only completely reducible, but even diagonalisable, that
is equivalent to an algebraic representation ¢’ such that §'(T,) C T,,:

Since T,, & (G,,)" is commutative, it is sufficient to show that T; = G,,
is diagonalisable, that is to consider the case n = 1. To this end, let H :=
{t € G,;t* = 1 for some k € Z such that ged(p,k) = 1}, where p := 1 if
char(K) = 0, and p := char(K) otherwise; in other words H consists of all
elements of G, of finite order coprime to p. Since G,, is commutative we infer
that H < G,, is a subgroup. Since K is algebraically closed, we conclude that
H is infinite, thus H C G, is a closed subset (actually a subgroup) of non-zero
dimension. Hence, since G,, is connected of dimension 1, we have H = G,.
(Note that for K = C this does not work with respect to the metric topology.)

Let t € H of order k € N. Then the minimum polynomial of §(¢) divides T*—1 €
K[T], and thus is multiplicity-free. Hence 6(¢) € GL,, is diagonalisable. Since H
is commutative it follows that §(H) is diagonalisable, thus we may assume that
§(H) € T,, C GL,,, where the latter is closed. From H C 6 '(6(H)) C Gy,
where since § is continuous the latter is closed, we infer that H C 6—(6(H)),
that is §(H) C §(H). This yields §(G) = §(H) C §(H) C T,. i

b) We proceed to determine the simple T,-modules, where by the above we
already know that these are precisely those of K-dimension 1. We first stick to
the case n = 1, and continue to consider T = G,,:

Recalling that any simple module is a submodule of the regular module, we
consider the coordinate algebra K[G,,] & K[X]x = K[X, X !]. The latter is
Z-graded, where letting Sy := (X %)k, for d € Z, we have K[Gp,] = @ e, Sa
as K-vector spaces. The right translation action G,, X G,, = Gy, : [z,t] — at
has comorphism K[G,,] = K[G,,] ®kx K[G,,]: X — X ® T. Hence we have
X% - X4® T for d € Z, from which we conclude that the K-subspaces
Sy < K[G,,] are G,,-submodules, with respect to G, — GL; = G,,: t > t4.
Hence the above direct sum decomposition of K[G,,] holds as G,,-modules,
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where the Sy are pairwise non-isomorphic simple G,,-submodules.

We show that Yq,, = {04;d € Z}, where Sq € o4; in other words, g, can
be naturally identified with Z: To this end let S < K[G,,] be a simple Gy,-
submodule. Since S is finitely generated, there is a finite subset Z C Z such that
S <@ eS¢ =:U. Since U is semisimple with isotypic components Uy, = S,

for d € Z, we conclude that S = Sy for some d € 7. f

Let now n € N be arbitrary. Then any simple T,,-module is uniquely determined
by its weight [dy,...,d,] € Z™, where the action is given as T, & (G,,)" —
GL = Gy, [t1,.. ., t0] — [T, tfi; in other words, for the associated simple
Ty,-module we have Sy, ... 4,] = S4, ®x -+ Ok Sa,. Conversely, any choice of
a weight in Z" gives rise to a simple T,,-module by way of the above formu-
lae. Moreover, simple T,-modules are isomorphic if and only if their weights
coincide, so that in conclusion Xt can be naturally identified with Z".

(5.3) Action on coordinate algebras again. a) Let G be an affine algebraic
group, and let V' be an affine G-variety. We consider the associated G-action
on the coordinate algebra K[V] of V. Recall from (4.6) that K[V] = [J{U <
K[V] G-submodule} is the union of its G-submodules.

Note first that for G-modules U < U’ and any subset ¥ C Yg we have
(B,cx Us)NU =@, 5, Us; in particular for o € ¥ we have U, NU = U,: We
only have to show that < holds; but the left hand side is semisimple, where any
of its simple submodules is contained in U and has an isomorphism type in 3.

Hence for 0 € g we have K[V], = J{Us;U < K[V] G-submodule} =
S H{U,; U < K[V] G-submodule} = > {S < K[V] G-submodule; S € o}. Thus
K[V]s < K[V]is a G-invariant K-subspace, being called the o-isotypic socle of
K[V]; if it is finitely generated, then letting S € o we have K[V], = S”, for some
r € No. Let soc(K[V]) := > v K[V], = > {5 < K[V] G-submodule} =
> {soc(U); U < K[V] G-submodule} = |J{soc(U);U < K[V] G-submodule} <
K[V] be the socle of V.

Note that for any G-submodule U < K[V] and any subset ¥ C ¥ we have
(X pex K[V]o)NU = @, cx, Us; hence in particular soc(K[V])NU = soc(U): We
only have to show that < holds; but since ) s K[V]e = U{> ,cx Ul U <
K[V] G-submodule} the left hand side is semisimple, where any of its simple
submodules is contained in U and has an isomorphism type in X.

Moreover, we have the direct sum decomposition soc(K[V]) = @,cx, K[V],,
with possibly infinitely many non-zero summands: Assume there is o € X such
that K[V]o N>, 4 exne K[V]r # {0}, then there is a G-submodule U < K[V]
such that Uy N Y_, . 5 Ur # {0}, a contradiction.

In particular, if V' is a G-module, then the decomposition K[V] = @y, K[V]4
into homogeneous components is a direct sum of G-submodules. Thus we have
K[V], = @deNo K[V]4,, for o € T, and soc(K[V]y) = ®aezc K[V]4,o, for
d € Ny, hence we get soc(K[V]) = @ e, s0c(K[V]a) = Dyen, KlV]e =
@deNo ®UEZG K[V]dvg = ®UEEG @deNo K[V]dvg'

b) If U < K[V] is a G-invariant (not necessarily finitely generated) K-subspace,
then both U and K[V]/U carry locally finite G-actions. Hence the natural K-
linear map vy: K[V] — K[V]/U is G-equivariant, and for 0 € Xg we have
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vy (K[V]y) <vp(K[V))e = (K[V]/U)s and U, = U NK[V],.

In particular, if W is an affine G-variety and ¢: W — V is a G-equivariant
morphism, then ¢*: K[V] — K[W] is a G-equivariant homomorphism of K-
algebras: For f € K[V] and g € G we have o*(f9)(w) = f9(p(w)) = f(e(w) -
g1) = flp(wg™) = " (Nwg") = " (f)9(w), for w € W, thus ¢*(f9) =
©*(f)9. Hence the above applies with U := ker(¢*) and K[V]/U = o*(K[V]) as
K-algebras, entailing that ¢*(K[V],) < K[W],.

c) Now assume that K[V] = soc(K[V]) = @D, 5, K[V]s, or equivalently that
soc(U) = U for all G-submodules U < K[V]; hence in particular this holds
whenever G is linearly reductive. Then K[V], is called the o-isotypic com-
ponent of K[V]. If K[V], is finitely generated, then K[V], = S", where S € o,
and [K[V]: S| :=r = %ﬁg”) € Ny, is called the multiplicity of S in V;
otherwise we let [K[V]: S] := oo.

If U < K[V] is a G-invariant K-subspace, then local finiteness implies that
U =soc(U) = D,exe Us = Boes, (UNK[V]y). Moreover, if S < K[V]/U
is a simple G-submodule, then picking a K-vector space complement of U in
1/[}1(5), by local finiteness there is a simple G-submodule T' < K[V] such that
S = vy (T). This entails vy (K[V],) = (K[V]/U),, hence we get (K[V]/U), =
K[V],/(UNK[V],) = K[V],/U,, for o € £g, and thus K[V]/U = soc(K[V]/U).

In particular, if W is an affine G-variety and ¢: W — V is a G-equivariant
closed embedding, then for the associated epimorphism ¢*: K[V] — K[W] of
coordinate algebras we have ¢*(K[V],) = K[W],.

(5.4) Invariant algebras. Let G be an affine algebraic group, and let V be an
affine G-variety. The isotypic socle of K[V] associated with the trivial module
is given as {f € K[V];f9 = f for all g € G} = K[V]©, that is the set of G-
invariant regular maps on V’; recall that the latter are the regular maps being
constant on G-orbits.

Since the constant maps are contained in K[V]%, and for f, ' € K[V]¢ we have
ff € K[V]€ as well, we conclude that K[V]¢ is a K-subalgebra of K[V], being
called the associated invariant algebra.

Then any isotypic socle K[V], of K[V], for ¢ € Yq, is a K[V]%-module: For
the K-linear multiplication map py: K[V] — K[V]: b — hf associated with
f € K[V]® we have (hf)? = h9f9 = h9f, for g € G, showing that p; is
G-equivariant, entailing that indeed K[V], - f < K[V],.

Moreover, if G is linearly reductive, then letting K", where n € Ny, be a G-
module such that there is a G-equivariant closed embedding ¢: V' — K", then
for the associated epimorphism ¢*: K[X] — K[V] of coordinate algebras we have
¢*(K[X]9) = K[V]©. Thus the determination of invariant algebras arising from
arbitrary affine G-varieties can be reduced to the case of G-modules.

(5.5) Coordinate algebras of affine algebraic groups. Let G be an affine
algebraic group. Then G acts on itself both by right and by left translation.
Hence G acts on K[G] both by right and by left translation, where K[G] becomes
the regular G-module with respect to the former action, while with respect to
the latter K[G] is called the left regular G-module.
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We consider both actions at the same time: From h~1(zg) = (h~lz)g, for
x,9,h € G, we conclude that G x G acts morphically on G by [h,g]: G —
G:z — h'xzg. Hence we get an induced action of G x G on the coordinate
algebra K[G] by [h, g]: K[G] = K[G]: f — (z — f(hag™")); in view of this
K[G] is also called the bi-regular G-module.

We proceed to describe the o-isotypic socle K[G], < K[G] explicitly; recall that
any simple G-module occurs as a G-submodule of K[G], so that K[G], # {0}:

Theorem. Let o € ¥g and S € 0. Then K[G], < K[G] is a (finitely generated)
(G x G)-submodule, and we have K[G], = S¥ @k S = Endk(5) as (G x G)-
modules; in particular we have K[G], = $4m=(5) as G-modules.

Proof. We provide an explicit (G x G)-equivariant embedding of SV ®x S into
K[G]: For z € S and A € SY let pr.: G — K: g = N(x) = Aag™!); see
also (4.6). Since the orbit map associated with z is a morphism and A is a
regular map, we conclude that ¢y, € K[G]. Then the map ¢: S¥ ®x S —
K[G]: A® z — @), is K-linear and (G x G)-equivariant:

Firstly, for g € G and z,y € S and A\, p € SV and a € K we have ¢ qz44(9) =
M(ax+y) = aX () + A (y) = apxr2(9) +ry(9), thus ©x azty = are+ry,
and aripa(9) = (ad + p)?(z) = (aM + p9)(z) = apxa(g) + Ppe(g), thus
Gartpz = APxz + Yuz, showing K-bilinearity of f on SV x S. Secondly, for
h,t € G we have oyt .n(g) = N(zh- g7 1) = AMzhg™1t71) = Az - (tgh™)71) =
M (1) = ora(tgh™) = (22.2)"")(g), thus we have preon = (pa.0) .

Hence ¢(SY ®x S) < K[G] is a (G x G)-submodule. We show that the image
©(SY ®k S) only depends on the isomorphism class o of S: To this end, let
a: S — T be a G-isomorphism. Then the map o*: TV — SV:7 — a7 is a
G-isomorphism as well. Thus for y € T we have 79(y) = 79(a(a"(y))) =
(Tg)a* (ail(y)) = (Ta*)g(ail(y))v showing that Pry = Pax(r),a"1(y) € K[G]
Hence we have (T @x T) < ¢(SY @k 9), by symmetry entailing equality.
Next, S¥ ®k S is a simple (G x G)-module: Given a G-module V, let Ag v C
Endg (V) be the K-algebra generated by the K-endomorphisms of V' afforded
by G; then V is a simple G-module if and only if Agy = Endg(V). Now,
since S and SV are simple G-modules, we have Ag s = Endg(S) and Ag gv =
EHdK(S\/), entailing that AGXG,S\/@KS = AG7S\/ XK .Ac;)s = EndK(Sv) (294
Endg(S) =2 Endg(SY ®x ), thus SY ®k S is a simple (G x G)-module.

Now, choosing x € S and A € SV such that A(z) # 0 shows that ¢ # 0.
Hence, by simplicity, ¢ is injective. Moreover, restricting along the embedding
of algebraic groups G — G x G: g — [lg,g] yields SY @ S = §4mx(S) a5
G-modules, thus ¢(SY ®k S) < K[G],.

Finally, if 7' < K[G] is a G-submodule such that T2 S, then let 7 € TV be
defined by 7: T — K: y — y(lg). Then for y € T and we have ¢, ,(9) =
T(y) =y ) =y (la) = y(la - g) = y(g), for g € G, thus y = ¢, €
o(TY @k T), and hence T' < o(TV @k T'). Thus, since ¢(SY ®x S) only depends
on the isomorphism class o, we indeed have p(SV ®k S) = K[G],. i

An alternative description of the (G x G)-equivariant map ¢ defined above, using
the (G x G)-isomorphism SY ®x S = Endg(S), is given as follows: Let B :=



28

{z1,...,2,} C S be a K-basis, where n := dimg(S), let BY := {\1,..., A} C
SY be the associated dual K-basis, that is A\;(z;) = d;; for 4,5 € {1,...,n},
and let 6: G — GL,: g — [g;;(g)];; be the algebraic representation associated
with S, with respect to the K-basis B. Then for ¢;; := ¢y, o, € K[G] we have
@ij(9) = Ni(zjg7") = gji(g™"), for g € G.

Let o € Endg(S), having matrix pap = [a;j];; € K"*™. Then « can be identi-
fied with 37, >0 aij\i®@x; € SY@kS, thus we have o, = 3211, D77 aijpij,
entailing @q(9) = Yoim; Y5y aijg5i(97") = Yo (ad(g™")u = Tr(ad(g™)),
for g € G. Note that this again shows that the image of ¢ only depends on the
isomorphism class o of S. g

Theorem. The group G is linearly reductive if and only if K[G] = soc(K[G]).

Proof. If G is linearly reductive, then any G-submodule U < K[G] is semisim-
ple, and thus we have K[G] = Y {U < K[G] G-submodule} = Y {soc(U) <
K[G] G-submodule} = soc(K[G]).

Let conversely K[G] = soc(K[G]). Then for any G-submodule U < K[G] we
have soc(U) = U Nsoc(K[G]) = U, that is U is semisimple. Next, for any n € N
and any G-submodule U < K[G]" there are G-submodules Uy, ..., U, < K[G]
such that U < @, U; < K[G]", where @;._, U; being semisimple entails that
U is semisimple as well. Finally, recall that any G-module is isomorphic to a
G-submodule of K[G]" for some n € N. f

In this case we have the decomposition K[G] = soc(K[G]) = P, 5, K[G], into
isotypic components, with multiplicities [K[G]: S] = dimg(S5), for S € o.

(5.6) Theorem. Let G be an affine algebraic group. Then G is linearly re-
ductive, if and only if for any G-epimorphism ¢: V' — W, where V and W are
G-modules, the induced map ¢ : V& — WG is surjective as well.

Proof. Note first that for any ¢ € Homg(V, W) we have ¢(VE) < WS, so
that % is well-defined in any case. Now let G be linearly reductive. Then we
have Homg (V, W) = @, 5, Homa (V,, W), implying that ¢ € Homg(V, W)
is surjective if and only if all its components ¢, : V, — W, are so, where ¢ is
the component of ¢ associated with the trivial G-module.

Let conversely G have the asserted property, let V be a G-module, and let
U <V be a G-submodule. We show that U has a G-invariant complement
in V: To this end, we consider the G-modules Homg (V,U) and Endg (U), and
the G-equivariant map ®: Homg(V,U) — Endg(U): a — a|y. Choosing a
K-vector space complement of U in V' shows that ® is surjective.

Hence ®¢: Homg (V,U) = Homg(V,U)¢ — Endg(U)¢ = Endg(U) is surjec-
tive as well. Thus in particular there is ¢ € Homg(V,U) such that p|y = idy €
Endg(U). Hence we have U Nker(p) = {0}. Moreover, for v € V we have

P(p(v) = idu(p(v)) = @(v), thus p(v —¢(v)) = 0, hence v — p(v) € ker(p),
thus v € U + ker(p). This shows that V = U @ ker(p) as G-modules. g
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Corollary. The group G is linearly reductive, if and only if any G-module V
has a (unique) G-submodule V'’ < V such that V = VE @V’ and (V'V)¢ = {0}.

Proof. Let G be linearly reductive, and let V' be a G-module. Then V being
semisimple we have the isotypic decomposition V = V& @ V', where V' :=
69062;; Vs, where in turn ¥ C X is the union of the isomorphism classes of
simple G-modules being non-isomorphic to the trivial G-module K.

Assume that (V'V)G # {0}, then there a G-monomorphism ¢: K — V'V, Hence
the induced map ¢*: V' = V'VV — K" = K is a G-epimorphism, which since
Homg (V',K) = @aezﬁg Homg (V,,K) = {0} is a contradiction.

Note that V'’ < V is unique: If V = VE@U as G-modules, where we may assume
that U # {0}, then letting S < U be a simple G-submodule we conclude that
S 2 K, entailing S < V’. Hence we infer that U < V', which entails equality.

Let conversely G have the asserted property, and let V =VS @V’ and W =
WS aW' be G-modules, where (V/V)¢ = {0}. Assume that Homg (V/, WE) #
{0}. Then, since W& = K" for some r € N, we get (V'V)¢ = Homg(V',K)¢ =
Homg (V’,K) # {0}, a contradiction. Hence we have Homg (V/, WS) = {0}.

Now let ¢: V — W be a G-epimorphism, let y € WS, and let € V such that
o(z) = y. Writing = Z + 2/, where T € V¢ and 2/ € V', we get ¢(Z) € WE
and ¢(2') € W’. Thus from ¢(Z) +p(z') = y € W& we conclude that p(2') =0
and y = ¢(Z) € (VE). Hence p&: VG — WE is surjective. i

(5.7) Theorem. Let G be an affine algebraic group.

a) Let G be linearly reductive. Then any closed normal subgroup of G and any
homomorphic image of G are linearly reductive as well.

b) Let 7: G — H a homomorphism of affine algebraic groups. If both ker(7)<G
and 7(G) < H are linearly reductive, then G is linearly reductive as well.

Proof. a) Let ¢: G — H be an epimorphism of affine algebraic groups, and let
V be an H-module with action o. Then V becomes a G-module via (idy x ¢)a.
Since the G-submodules of V' coincide with its H-submodules, the semisimplic-
ity of V' as an H-module follows from its semisimplicity as a G-module.

Let M < G be a closed normal subgroup. We show that soc(K[M]) = K[M],
to which end we let U < K[M] be an M-submodule, and proceed to show that
U is semisimple: Now we observe that p: K[G] — K[M]: f — f|m is an M-
equivariant epimorphism of K-algebras, with respect to the right translation
action of M on K[G], where ker(p) = Z(M) <KJ[G] is the vanishing ideal of M.

Picking a K-vector space complement of ker(p) in p~1(U), and using local
finiteness of the G-action on K[G], we conclude that there is a G-submodule
W < K[G] such that U < p(W). Hence it suffices to show that W is semisimple
as an M-module. By assumption, W is semisimple as a G-module, thus is a
sum of simple G-modules. Hence it suffices to show that the restriction of any
simple G-module S to M is semisimple:

Let T' < S be a simple M-submodule. From M < G we conclude that Tg < S
is M-invariant as well, thus is a simple M-submodule, for g € G. Moreover,
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{0} # > yeq T'g < S is a G-submodule, which implies equality, and thus shows
that S as an M-module is a sum of simple M-submodules.

b) We may assume that 7(G) = H, and let M := ker(7) < G. Letting p: V —
W be a G-epimorphism, by assumption the induced map ™: VM — WM jg
surjective. Moreover, VM = {z € V;xh = x for all h € M} <V is G-invariant
and carries the trivial M-action, hence the G-action factors through the group
homomorphism 7, so that VM carries a K-linear H-action. We show that thus
VM becomes an H-module, that is H acts morphically:

Identifying H with the set M\ G of right M-cosets in G, it follows from the
linear reductivity of M and (8.3) (which actually is proven in this case), that
the epimorphism 7: G — H coincides with the quotient morphism associated
with the left translation action of M on G. Hence the associated injective co-
morphism 7*: K[H] — K[G] fulfills 7*(K[H]) = K[G]M = {f € K[G]; f(hg) =
f(g) for all g € G,h € M}; note that since 7 is M-invariant it is immediate
that 7*(K[H]) € K[G]M, but equality is not.

Let {x1,...,7,} € VM be a K-basis, where n := dimg(VM) € Ng, and let
G — GL,: g — [gii(9)]i;; be the associated algebraic representation, with
matrix coordinate functions g;; € K[G]. Then letting X := {X1,...,X,,} be the
associated coordinate functions, the G-action on V™ has comorphism K[X] —
K[X] @k K[G]: X; — 2;21 X, ® gj;- Since M acts trivially on VM, we have
gij(hg) = gij(g), for g € G and h € M, that is g;; € K[G]M = 7*(K[H]), for
i,j € {1,...,n}. Thus we have a comorphism K[X] — K[X] ®k =*(K[H]), in
other words the matrix coordinate functions give rise to regular maps on H.

This proves that V™ is an H-module. Similarly WM < W is, and ¢™ is
H-equivariant. Hence by assumption the induced map & = (oM)H: V& =
(VMYH 5 (WM)H — /G is surjective. Thus G is linearly reductive. f

We will show in (8.3) that for any linearly reductive closed normal subgroup
M < G the quotient group G/M carries the structure of an affine algebraic
group, such that the natural map G — G/M is a homomorphism of algebraic
groups. Thus b) actually is the converse of a), saying that if M <G is any closed
normal subgroup such that both M and G/M are linearly reductive, then G is
linearly reductive as well.

Corollary. The group G is linearly reductive if and only if G° is linearly re-
ductive and char(K) t [G: G°].

Proof. Since G° <G has finite index, H := G/G?® is an affine algebraic group,
and the natural quotient map ¢: G — H is a morphism. Moreover, since ¢ is
constant on G°-orbits we have 7*(K[H]) C K[G]". Since H is finite, K[H]
is the set of all maps from H to K. Now any element of K[G]®" naturally
induces such a map, hence it directly follows (without referring to (8.3)) that
7 (K[H]) = K[G]G". Then the assertion follows from Maschke’s Theorem.
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6 Reductivity

(6.1) Reynolds operators. We proceed to a further rephrasement of linear
reductivity. To this end, we need a couple of new notions. In order to introduce
the first one let G be an affine algebraic group.

Let V be an affine G-variety. Then a Reynolds operator on K[V] is a G-
equivariant K-linear projection R = R v : K[V] — K[V]¢ onto K[V]€, that
is Rlxpje = idgpyje. Recall that hence K[V]¢ Nker(R) = {0}, and for f €
K[V] we have R(f — R(f)) = 0, thus f € K[V]% + ker(R), showing that
K[V] = K[V]¢ @ ker(R) as G-invariant K-subspaces.

Example. If G is finite such that char(K) { |G|, then a Reynolds operator is
given by averaging R: f — ﬁ Y geq f9 For g € G and f € K[V] we have
R(f)9 = ﬁ Shea [ = ﬁ >nea ' = R(f), showing that R(f) € K[V]%;
moreover, we have R(f9) = ﬁ Shea fU = ﬁ Shee [T =TR(f) = R(f)Y,
showing that R is G- equivariant' finally, for f € K[V]¢ we have R(f) = ﬁ :

ZhEG fh = % ZhEGf = @ f f, Showmg that R|]K[V G = ldK[ V)G

Example. We consider the multiplicative group G,,,, having coordinate algebra
K[T,T~!]. For an affine G,,-variety V with action a: V x G,,, — V we get the
comorphism o*: K[V] — K[V] @k K[T,T71]: f — iz fi ® T?, with uniquely
determined coefficients f; € K[V], that is f' (z) = f(zt) = f(a(z,t)) =
a*(f)(x,t) = O ,en fi ® T (x,t) = Yiez fi(x)t!, for x € V and t € G,

Then a Reynolds operator is given as R(f) := fo € K[V], for f € K[V]:

For z € V and s € G, we have ZzGZfZ<mt) = f(zt-s) = flx-ts) =
ez fi(x)t's', showing that (f;)' = fit™" for i € Z and t € G,y,; in particular
we have R(f) = fo € K[V]G~ Moreover we have Y7, (f)i(z)s" = f'(xs) =

flas-t71) = flz-st™!) = Ztez fi(z)t~'s", showing that (f'); = fit™* = (fi)%
in particular we have R(f*) = (f*)o = (fo)t = R(f)!, thus R is G,,-equivariant.
Finally, for f € K[V]Sm we have 3., fi(z)t™" = f(at) = f(z) = X,z fi(2),
showing that f; = 0 for i # 0, hence we have R(f) = fo = f. i

(6.2) Characterisation of linear reductivity. Let G be an affine algebraic
group. Before proceeding we introduce a second new notion:

The group G is called linear-geometrically reductive, if for any G-module
V and any 0 # v € VE there is f € (V)& = K[V]€ such that f(v) # 0.

Theorem. The following are equivalent:

i) The group G is linearly reductive, that is any G-module is semisimple.

ii) For any affine G-variety V there is a (unique) Reynolds operator on K[V].
iii) The group G is linear-geometrically reductive.

Proof. i)=ii): Since any G-module is semisimple, any G-submodule U < K[V]
has a decomposition U = US@U’, where U’ = @Uez,e U,. Hencelet Ry: U —

US be the associated G-equivariant projection onto U, that is Ry|ye = idye
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and ker(Ry) = U’. Then, whenever W < K[V] is a G-submodule such that
U < W, we have Ry|y = Ry: We have US < W& and U’ < W', hence
RWlUG = idUG = RUlUG and RW|U’ =0= RU|U’~

Thus we may define a K-linear map R: K[V] — K[V] as follows: For any
f € K[V] there is a G-submodule U < K[V] containing f, and we let R(f) :=
Ru(f). Indeed, by the compatibility property shown above this is independent
of the choice of U. Then R is a Reynolds operator on K[V]:

Since Ry is G-equivariant, for all G-submodules U < K[V], we conclude that
R is G-equivariant as well. From Ry (U) = U® we conclude that R(K[V]) <
K[V]E, from which, since K[V]€ is the union of such U, we infer equality.
Finally, since Ry|ye = idye we get RlK[V]G = idK[V]G.

Note that R is the only possible choice how a Reynolds operator might look
like: Let R’ be a Reynolds operator on K[V], and let U < K[V] be a G-
submodule. Then R’|g[yje = idg[y|e implies that R'|ye = idye. Moreover, we
have R/ (U’) < K[V]%, where R'(U’) has zero isotypic component with respect
to any non-trivial simple G-module, thus we have R'(U’) = {0}. This shows
that R'|y = Ry, and since K[V] is the union of such U we infer R’ = R.

ii)=iii): Let V be a G-module. Then we have V & VVV = K[VV]; as G-
modules, where v € V is identified with the evaluation map v*: VV — K: XA —
A(v). For 0 # v € VE, that is v* € K[VV]¥, we may choose a K-linear form
A: K[VV]E — K such that A(v®) # 0. Then the Reynolds operator R yields the
G-equivariant map f :=*-R-\: V = K[VV]; = K[VV]¢ — K. Hence we have
f € (V)G such that f(v) = A(R(v*)) = A(v®) # 0.

iii)=1i): Recall that for v € V and A € VV and g € G we have \(v) = A\(vg™1).
Hence for any G-submodule U < V we get the G-submodule ~U := {\ €
VVi:U < ker(\)} < VV, and similarly for any G-submodule W < VV we get the
G-submodule W+ := {v € V; W < ker(v*)} < V. Recall that as G-modules we
have (V/U)Y = +U and UY =2 VV /LU, as well as (VV/W)Y = (WL)* = Wt
and WV = (V/WH)s =2 v/W.

We consider the G-equivariant K-linear map p: (VV)¢ — (VE)V: A = A|ye.
Then, by applying the assumption to V'V, we get ker(p) = (VV)¢ N )
{0}, that is p is injective. For the associated map p*: V€ — ((VV)

(v*: A = A(v)), by applying the assumption to V, we get ker(p*) = V&
(VV)G)+ = {0}, that is p* is injective, or equivalently p is surjective.

Now we have VV = (VV)& @ +(V4) as G-modules: We have already seen that
(VVYENL(VE) = {0}, so that the sum is direct; moreover we have V'V /+(VEG) =
(VG =2 (VV)G as G-modules, so that the sum equals V.

In order to show the required fixed point property of +(V'&), we first observe that
similarly V = V& @ (VV)9)+ as G-modules: We have VE N ((VV)S)+ = {0},
so that the sum is direct; moreover we have V/((VV)S)+ = ((VV)G)Y = VE as
G-modules, so that the sum equals V.

Thus we have (+(VE))Y = (V/VE)VWVW =2 V/VE = (VV)S)L, where the latter
is a complement of V& in V| so that ((+(VE))V)G = (VV)S)HE ={0}. 4

Corollary. If K[V] = soc(K[V]) then the Reynolds operator R exists, and
viewing K[V] as a K[V]%-module then R is a K[V]¥-module homomorphism.
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Proof. The first assertion is what is actually proved in the implication i)=-ii).

Then note that we have shown that any G-submodule U < K[V] is R-invariant,
and R|y = Ry: U — U% is the G-equivariant projection onto U%, along the
unique complement U’ = 690622; U, of U in U.

Next, recall that any f € K[V]€ entails the G-equivariant K-linear multiplica-
tion map py: K[V] — K[V]: h+— hf. Hence U f < K[V] is a G-submodule such
that (Uf)S =USf and (Uf) =U'f, thus Uf = USf @ U’ f as G-modules.

Now we show that R(hf) = R(h)f, for any f € K[V]® and h € K[V]: Let
U < K[V] be a G-submodule containing h. If h € US then we have hf € (Uf)S,
and thus R(hf) = Rus(hf) = hf =Ry(h)f = R(h)f. If h € U’ then we have
hf e (Uf), and thus R(hf) = Rus(hf) = 0 = Ru(W)f = R(h). :

(6.3) Theorem: Hilbert’s Finiteness Theorem [1890]. Let G be linearly
reductive. Then K[V]€ is a finitely generated K-algebra, for any G-module V.

Proof. Let I := (@ cyK[V]F) < K[V] be the Hilbert ideal, that is the
(homogeneous) ideal of K[V] generated by the maximal homogeneous ideal of
K[V]€. Since K[V] is Noetherian, there are elements f; € K[V]F, where d; € N,
forie {l,...,r} and r € Ny, such that I = (fy,..., f,) <K[V]. We show that
any element of K[V]$, where d € Ny, is a polynomial in {fi,..., f. }:

We proceed by induction on d € Ny, the case d = 0 being trivial we let d >
1. Letting h € K[V]§, we may write h = >_._, g;fi € I, with homogeneous
elements g; € K[V]4—4,. Applying the Reynolds operator yields h = R(h) =
Rz 9ifi) = 21 R(gifi) = 3211 R(gi) fi- Since K[V]g_q, <K[V] is a G-
submodule, we conclude that R(g;) € R(K[V]4—a,) = K[V]F ;. is homogeneous
of degree < d, and thus by induction is a polynomial in {f,..., f.}. f

Corollary. Let V be an affine G-variety V with coordinate algebra K[V].
a) Then K[V is a finitely generated K-algebra.
b) For any ¢ € ¥q, the component K[V], is a finitely generated K[V]S-module.

Proof. a) Let K", where n € Ny, be a G-module such that there is a G-
equivariant closed embedding ¢: V' — K™. Then for the G-equivariant surjec-
tive comorphism ¢*: K[X] — K[V] we have ¢*(K[X]%) = K[V]€. Hence, since
K[X]C is finitely generated, K[V]< is so as well.

b) Recall that K[V] has an isotypic decomposition, with K[V]%-invariant com-
ponents. Let S € o be a simple G-module. Since G acts locally finitely on K[V],
the map eg: S ®x Homeg (S, K[V]) = K[V]s: v ® ¢ — ¢(v) is a G-equivariant
bijection, with trivial G-action on Homeg (S, K[V]). Moreover, Homg (S, K[V])
becomes a K[V]S-module by ¢ — ppy, for ¢ € Homg (9, K[V]) and f € K[V]C;
recall that py: K[V] — K[V]: h — hf is G-equivariant. Hence eg is an isomor-
phism of K[V]%-modules, K[V]¢ = K @k K[V]¢ acting ‘trivially’ on S.

Now we have K[S] = D ¢y, K[S]a, with G-invariant homogeneous components.
Then S x V is an affine G-variety with respect to diagonal action, so that
K[S x V]¢ = (K[S] ®x K[V])€ is a finitely generated K-algebra. We have
(K[S] @k K[V])G = @ en, (K[Sla @x K[V])€ as graded K-algebras, so that in
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particular (K[S]; ®x K[V])© is a finitely generated (K[S]o ®x K[V])S-module,
with module structure inherited from multiplication in K[S] ®x K[V]. Finally,
we have (K[S]p ®x K[V])¢ = K[V]€, and thus (K[S]; ®@x K[V])¢ = (SY @k
K[V])€ = Homg (S, K[V])¢ = Homg (S, K[V]) as K[V]€-modules.

)G

Despite appearance, and actually essentially being Hilbert’s 14th problem,
the invariant algebra associated with an affine G-variety is not necessarily
finitely generated, not even for G-modules for char(K) = 0; see Exercise (9.33)
for the famous counterexample by [Nagata, 1959].

(6.4) Geometrical reductivity. An affine algebraic group G is called geo-
metrically reductive, if for any G-module V and any 0 # v € V& there is
f € K[V]$, for some d € N, such that f(v) # 0.

Hence if G is linearly reductive then it is geometrically reductive. But if
char(K) > 0 the converse does not hold, so that in this case geometrical re-
ductivity is a genuine generalisation of linear reductivity. To see this we observe
below that any finite group G is geometrically reductive, but recall that G is
linearly reductive if and only if char(K) t |G]|.

Theorem: Nagata—Miyata [1963]. If char(K) = 0, then G is geometrically
reductive if and only if it is linearly reductive. f

The relevance of the notion of geometrical reductivity is elucidated by the follow-
ing theorem, whose ‘only if’ direction generalised Hilbert’s Finiteness Theorem,
while its ‘if’ direction provides the converse of the generalised version; for the
proof of the ‘only if’ direction by [Nagata] see [2, Sect.3.2]:

Theorem: Nagata [1963]; Popov [1979]. The group G is geometrically
reductive if and only if K[V]© is finitely generated for any affine G-variety V. #

At least we are able to prove the following:

Theorem. Let G be a finite group. Then G is geometrically reductive, and
K[V]€ is a finitely generated K-algebra for any affine G-variety V.

Proof. i) Let V be a G-module and 0 # v € V. Letting K[V] be the associated
coordinate algebra, we apply Dade’s trick to find a homogeneous invariant f
of positive degree such that f(v) # 0:

Let A € K[V]; such that A(v) # 0. Then we have A9(v) = A(vg™!) = A(v), for
g € G. Moreover, for f\ :=[[,cqA? € K[V] g we get = (Iyeq N =
[yeq NI = [I,egA? = fa, for h € G. Hence we conclude that f € K[V]\GGI
such that fy(v) = A\(v)I¢l £ 0.

ii) Let V' be an affine G-variety, and let {f1,..., fn} C K[V] be a K-algebra
generating set, for some n € Ny. Then letting G act trivially on K[T], let
pi = yee(T = (f)9) = TV + C)25" ayT7 € KIV][T] = K[V] g K[T], for
i € {1,...,n}. Hence we get (pi)? = [[}cc(T — (foh)e = [hea(T - (foho) =
e (T — (£)") = pi, for g € G, implying that p; € K[V, T]¢ = (K[V]F)[T].
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Hence we have a;; € K[V]¢, and let A := K[a;;;i € {1,...,n},j € {0,...,|G| -
1}] € K[V]¢ C K[V]. Since p; is monic, we infer that f; is integral over A.
Thus K[V] is a finitely generated A-module. Since A is a finitely generated
K-algebra, it is Noetherian. Hence K[V] is a Noetherian A-module, and thus
K[V]¢ C K[V] is a finitely generated A-module. From this we conclude that
K[V]€ is a finitely generated K-algebra. f

Note that this also shows that K[V] is a finitely generated K[V]“-module, thus
K[V] is a finite algebra extension of K[V]%.

(6.5) Example. We consider a couple of examples, which are not linearly
reductive: Firstly, let char(K) =p > 0 and let G = (g) = C), be the finite cyclic
group of order p, which hence is geometrically reductive. Then V := K? becomes

a G-module by letting g — J := Ll) ﬂ ; recall that JP = E5. Hence g actson V

by [z, y] = [z,y+ ], for z,y € K. Moreover, we get V¢ = ker(J — Ey) = (e2)k-
We show that there is a homogeneous invariant of degree p not annihilating es,
but there is no such invariant of smaller positive degree:

Let K[V] = K[X, Y] be the associated coordinate algebra, with coordinate func-
tions {X,Y}, on which g acts (from the right) by X — X and ¥ — Y — X.
Then Dade’s trick yields fy € K[X,Y]S as fy = [[/2, Y9 = [[\2 (Y —iX) =
XP TP (X - =Xx7- (¥ - X)) =y? - YXP! € K[X,V]x.

Thus we have fy(ez) = 1. To see that we cannot do better we show that
K[X,Y]Y = K[X, fy]; then, since K[X,Y]® C K[X,Y] is a finite algebra ex-
tension, we have dim(K[X,Y]%) = dim(K[X,Y]) = 2, hence {X, fy} are alge-
braically independent, so that K[X, fy] actually is a polynomial algebra:

To show that K[X,Y]¢ C K[X, fy], for d € N let f := Z?:o a; X'Ydt ¢
K[X,Y]§, where a; € K. If ag = 0, then f = X - f/, where ' € K[X,Y]$ ,.
Hence we may assume that ag = 1, implying f = X ((%)d—i—Z?:l a;i(¥)47) =
Xxd. Hf:1(§ —a;) = Hle(Y—aiX) € K[X,Y]x, for suitable o; € K. Now we
have f = f9 = Hle (Y = (o + 1)X). Hence there are 3; € {a,...,aq} such
that f = [[5_; fy—p,x, for some k € N, where fy_px = [['-(Y — BX)9" =
[Ty (Y = (8 +9)X) = [Ii5 (Y ~ BX) —iX) = fr(X,Y = X) = (¥ ~
BX)P — (Y —BX)XP~L = (YP —YXP~1) — (BP — B)XP = fy — fy (X, BX), for
B € K. This shows that f = [[}_; (fy — fv(X,3,X)) € K[X, fy]. #

Example. Secondly, we show that the additive group G, is not even geomet-
rically reductive; note that this is contrary to the behaviour of the finite cyclic
group C), of order p, which if char(K) = p > 0 is a subgroup of Gg:

We use the isomorphism G, — Us: t — {(1) ﬂ of algebraic groups. Hence let

V := K? be the natural G,-module, on which t € K acts by [z,y] — [z,y + tz],
for z,y € K. In particular, we have VGe = (e5)x.

Let K[V] = K[X,Y] be the associated coordinate algebra, with coordinate
functions {X,Y}, on which ¢ € K acts (on the right) by the K-algebra au-
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tomorphism defined by X — X and Y — Y — tX. We proceed to show that
K[X, V]G = K[X]; then we have f|yc. =0 for all f € K[X,Y]$* and d € N:

For d € N let f := Z?:o a; XYt € K[X,Y]q, for a; € K. Then we have
FEO = YL aX (Y + tX)4 = S S aatd (1) XY iod. Hence
letting k =i+ j we get 0 =0 (S8 aith 1 (421)) XFyd—F € K[X, Y],
Thus we have f € K[X, Y]dG“ if and only if Z?:o ai(Z:i)T’“*i = a3 € K[T].
This is equivalent to ai(gj) =0 for 0 < i < k < d; note that the summand for
i = k indeed equals aj. Choosing k = d this entails a; = 0 for i € {0,...,d—1},
in other words f = agX? € K[X]4 C K[X, Y]ga. f

Hence there are affine G,-varieties whose associated invariant algebra is not
finitely generated; see Exercise (9.32) for an example of a non-linear G,-action
on K® where char(K) = 0 [Daigle-Freudenburg, 1999]. Still, in many cases
the invariant algebra associated with an affine G,-variety is finitely generated,
for example, this is the case for any G,-action on K™ where n < 3 [Zariski,
1954], and any G,-module where char(K) = 0 [Weitzenbock, 1932].

(6.6) Reductivity. We proceed to rephrase geometrical reductivity in terms
of group theory. To this end, we recall a few notions and facts (without proofs)
from general theory of affine algebraic groups:

Let G be an affine algebraic group. For g,h € G let [g,h] := g *h~1gh € G be
their commutator. For subgroups U, H < G let [U, H] := {[u,h];u € U,h €
H) < G be the associated commutator subgroup.

The weakly descending derived series of normal subgroups of G is defined as
GO = G, and G® := [GU~D GOV QG for i € N. Then G is closed
indeed, and if G is connected then so are all the subgroups G(®). Moreover, G
is called solvable if there is I € Ny such that G = {1}.

Let the (solvable) radical R(G) of G be the subgroup generated by all closed
connected solvable normal subgroups of G. Then R(G) < G is the unique
maximal closed connected solvable normal subgroup of G.

Then G is called (group theoretically) reductive if R(G) is a torus, that is
isomorphic to (G.,)" for some n € Ny. In particular, G is called semisimple
if R(G) = {1}. Hence, since R(G) < G° and thus R(G) = R(G®), we conclude
that G is reductive (semisimple) if and only G° is reductive (semisimple); note
that we do not assume G to be connected here.

For example, any torus is reductive, and any finite group is semisimple, while
G, = U, is not reductive; recall that G, is not isomorphic to G,,, see Exercise
(9.8). We have already noted that GL,, and SL,, for n € N, are linearly reduc-
tive if char(K) = 0, hence are geometrically reductive, or equivalently reductive
by the theorem below; reductivity of GL,, and semisimplicity of SL,, hold in ar-
bitrary characteristic, and can be verified straightforwardly, see Exercise (9.39).

Theorem: Mumford’s Conjecture; Nagata—Miyata [1963]; Haboush
[1975]. The group G is geometrically reductive if and only if it is reductive.
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7 Quotients

(7.1) Algebraic quotients. a) Let G be an affine algebraic group and let V'
be an affine G-variety. We first observe the following:

If W is an affine variety and ¢: V — W is a morphism, then ¢ is constant on
G-orbits if and only if p*(K[W]) C K[V]®

If o is constant on G-orbits, then for f € K[W] and g € G we get o*(f)9(v) =
e (f)lvg™) = flplvg™)) = f(p(v)) = ¢*(f)(v) for v € V, showing that
@*(f)? = ¢*(f). Conversely, if ¢*(K[W]) C K[V]¥ then we get f(p(vg™")) =
e (fwg™") = ¢*(f)?(v) = *(f)(v) = f(p(v)) for f € K[W], which says that
o(vg™) = ¢(v), forv €V and g € G. f

b) Now we assume additionally that the invariant algebra K[V]€ is a finitely
generated K-algebra. Recall that this is always the case if G is (geometrically)
reductive or even linearly reductive (where we have only proved this here for
the latter case), or if G is finite.

Then there is an affine variety Z, such that there is a morphism 7: V — Z
whose associated comorphism 7*: K[Z] — K[V] is an embedding with image
7*(K[Z]) = K[V]€. Then 7 is dominant and constant on G-orbits; in particular,
if V' is irreducible then so is Z. Moreover, Z is uniquely determined up to
isomorphism, being called the (algebraic or categorical) quotient variety of
V' with respect to G. Then Z has the following universal property:

Proposition. If ¢: V — W is constant on G-orbits, then there is a unique
morphism @: Z — W such that ¢ = 7:

Proof. Since ¢ is constant on G-orbits we have ¢*(K[W]) C K[V]¢ C K[V].
Letting (7*)": K[Z] — K[V]€ be the isomorphism induced by 7*, we thus get
the K-algebra homomorphism ¢*(7*)'~1: K[W] — K[Z]. Thus let p: Z — W

be the morphism with associated comorphism p* = ¢*(7*)’~!. Then we have
1—1,__*

(mp)* =P " = " (n")' " in" = ", that is 70 = ¢.
We show uniqueness: Let ¢: Z — W be a morphism such that 7@ = ¢, then
o = p* = p*r*, since ™ being injective, implies p* = @*, that is ¢ = p.

In particular, if 7’: V — Z is any morphism as above, there are unique mor-
phisms v, v': Z — Z such that 7’ = mp and 7 = #'¢)’, where ©’ = 7/)’) =
7w’ -idyz and m = Y’ = 7 -idz imply that )’ = idz = 7, thus ¥ is an iso-
morphism such that ¢’ = ¢~!. Hence, denoting the quotient variety by V/ G,
the quotient morphism 7: V — V// G is unique up to a unique isomorphism,
and we may identify 7* with the natural embedding K[V]¢ C K[V].

Example. We consider a non-reductive example: The additive group G, acts

onV :=K?viaG, = GLy: t — that is t € K acts by [z, 9] — [z, y+tx],

1t

o i
for z,y € K; see (6.5). Thus the G,-orbits in V are uniquely given as [a,0]-G, =
{la,y] € V;y € K} for a € K\ {0}, where dim([a,0] - G,) = dim(G,) = 1; and
[0,8]- G, = {[0,b]} for b € K, where dim([0, b]-G,) = 0 and indeed VG = (e)k.
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Let K[V] = K[X, Y] be the associated coordinate algebra, on which ¢ € K acts
by X + X and Y +— Y —tX. We have already shown that K[X,Y]% = K[X].
Since the latter is a finitely generated K-algebra (although G, is not reductive)
the quotient exists: Indeed, K[X,Y]%e being a univariate polynomial algebra
the quotient variety is V// G, 2 K, and its embedding into K[X, Y] shows that
the (surjective) quotient morphism is given as 7 = X: V — K: [z, y] — z. Note
that dim(V) — dim(V )/ G,) = 1, which coincides with the maximum dimension
of a Gg-orbit occurring.

Hence for a € K\ {0} the fibre 771(a) = {[a,y] € V;y € K} = [a,0] - G,
consists of a single G,-orbit, which hence is closed. But the fibre 771(0) =
{[0,y] € V;y € K} = VG =], {[0,b]} consists of infinitely many G,-orbits,
which are all closed. In particular, © does not separate the G,-orbits. i

(7.2) Properties of quotients. a) We first collect some general observations:
Let G be an affine algebraic group, and let V' be a G-variety. Recall that any
G-orbit O C V is open in its closure O C V, so that we have dim(O) = dim(O).

Lemma. If all G-orbits have the same dimension, then all G-orbits are closed.

Proof. Assume there are orbits O # O’ in V such that O’ < O, then we have

O’ C 0\ O, hence dim(al) < dim(0), a contradiction. Hence we conclude that
all G-orbits are <-minimal, thus are all closed. i

Proposition. The (G-invariant) subset V™ := {v € V;dim(G,) > n} C V
is closed, for any n € Nj.

Proof. Recall first Chevalley’s Theorem on upper semicontinuity of di-
mension: Given a morphism of varieties ¢: W — U, and for x € W letting
dimg (¢~ 1(p(z))) be the maximal dimension of an irreducible component of
¢ Y(p(x)) containing x, then for n € Ny the set {z € W;dim, (¢~ (¢(z))) >
n} C W is closed. (Note that this is typically stated for W irreducible and ¢
dominant, but the general case follows straightforwardly from this.)

Now, considering the graph morphism v: VxG — VxV: [v, g] — [v,vg], we get
the closed subset V := v~ 1(A(V)) = {[v,g] € V x G;vg = v} C V x G. Letting
v: V = V be the projection onto the left hand factor, we get v~ (v([v, 1g])) =
{v} x G,. Since the irreducible component of the latter containing [v, 1g] equals
{v} x (G,)°, from dim(G) = dim(G°) we conclude that {[v,g] € V:dim(G,) >
n} C V is closed. Finally, using the section morphism o: V — V: v — [v,1c]
of v, we infer that VZ™ = 6=1({[v, g] € V;dim(G,) > n}) C V is closed. 4

In particular, if m € {0,...,dim(G)} is minimal such that V(2™ = ), then the
(G-invariant) stratum V(™) := {v € V;dim(G,) = m} = V\ V&™) C Vv,
consisting of the G-orbits of maximal dimension, is open.

b) Using this, we get a dimension formula for quotients: Let V' be an affine G-
variety such that K[V]€ is a finitely generated K-algebra, and let 7: V — V// G
be the associated quotient.
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Proposition. Let V be irreducible. Then we have
dim(V) — dim(V/ G) > max{dim(O) € No; O C V G-orbit}.

Moreover, if 7 is geometric in the sense of (7.3) then we have equality.

Proof. By the dimension formula for morphisms, there is an open subset @) #
U C n(V) C V)G, such that dim(V) — dim(V/ G) = dim(r (7 (v))) for
ven Y U) C V. Letting V™ C V be the open stratum as above, we have
dim(7 = (7(v))) > dim(vG) = dim(vG) = dim(G) —m for v € V™). Since V is
irreducible, we have 7= ()N V(™) £ (), hence for v € 7~ 1(U) NV (™ we obtain
dim(V) — dim(V/ G) > dim(G) — m = max{dim(0) € Nyp; O C V G-orbit}.

Moreover, if v € 7= (/)N V™ can be chosen such that 7! (7 (v)) C V consists
of a single G-orbit, then we have equality dim(V) —dim(V/ G) = dim(G) — m.
In particular, this condition is fulfilled if 7 is geometric. i

c) Finally, we observe that quotients behave well with respect to affine open
subsets: Let 7: V' — V// G be a quotient as above. Given 0 # f € K[V]E,
then Vy C V and (V) G)y C V// G are affine varieties with coordinate algebras
K[V]; and (K[V]¥), respectively; moreover, V; C V is G-invariant.

Proposition. Let V be irreducible, and 0 # f € K[V]%. Then we have
Y (V) G)g) = Vs and |y, : V§ = (V// G); is a quotient.

Proof. For v € V with associated maximal ideal I, <K[V], and z € V) G with
associated maximal ideal J, < K[V]¥, we have v € 7~ 1(2) if and only if J, =
I,NK[V]€. Moreover, the maximal ideals of K[V]; and (K[V]%)¢, respectively,
can be identified by localisation with the maximal ideals of K[V] and K[V],
respectively, not containing f. Hence we have 771 ((V/ G)f) = V¢, so that 7
restricts to a G-equivariant morphism V; — (V/ G)y of affine varieties.

Since K[V] is an integral domain, the associated comorphism is the natural
embedding (K[V]%); C K[V]; C K(V), where actually (K[V]%); C (K[V];)C.
If h € K[V] and i € Ny such that £+ € (K[V];), then we have & = (¢ = }Ji—q,
that is h = h9, for g € G. Hence we infer h € K[V]%, so that fi € (K[V]S);. ¢

(7.3) Geometric quotients. a) Let G be an affine algebraic group, let V be
an affine G-variety such that K[V]© is a finitely generated K-algebra. and let
m: V — V// G be the associated (algebraic) quotient.

Then 7 is called geometric if it induces a bijection between the G-orbits in V'
and the points of V/ G, that is 7 is surjective and any fibre of 7 consists of a
single G-orbit. In particular, if 7 is geometric then all G-orbits are closed.

Proposition. Let V' be irreducible and let 7 be geometric. Then all (closed)
G-orbits in V' have one and the same dimension.
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Proof. Since the G-orbits coincide with the fibres of 7, the dimension formula
for G-orbits yields dim(7~!(7(v))) = dim(vG) = dim(G) —dim(G,), for v € V.

We apply Chevalley’s Theorem on upper semicontinuity of dimension: Since
the irreducible component of 7=!(7(v)) = vG containing v equals vG°, from
dim(vG) = dim(vG°) we conclude that V(=" := {v € V;dim(G,) < n} C V
is closed, for n € Ny. Since the subset V(2™ C V is closed anyway, we conclude
that the stratum V" = V(ED AV (0 = [y € V;dim(G,) = n} C V is closed.

This yields the finite decomposition V = ]_[il;no(g) V(") of V into open and closed
subsets. Since V is irreducible, and hence connected, we conclude that there is
a unique m € {0,...,dim(G)} such that V("™ £ §, thus V = V(™ says that
for all v € V' we have dim(G,) = m, or equivalently dim(vG) = dim(G) —m. §

Example. Let G be connected, and let V' be irreducible possessing a G-fixed
point v € V; note that the latter conditions are fulfilled if V' is a G-module for
v := 0. Then V has a geometric quotient if and only if G acts trivially on V:

If G acts trivially on V then we have K[V]¢ = K[V], implying that idy is
a (geometric) quotient. Conversely, if V' has a geometric quotient, then from
G, = G we infer that V = V(4m(&)) thus all G-orbits are finite, and hence by
connectedness of G consist entirely of G-fixed points. f

b) An element v € V is called G-regular if there is 0 # f € K[V] such that
veVyC V() for some n € Ny; in other words orbit dimension is constant on
an open neighbourhood of v € V. Letting V&7 C V be the set of G-regular
clements, we have VGeg — [[(G) (1 Grez /() where VETes NV (M) C V i
open; in particular VG C V is open. Since the stratum V(™) C V| consisting
of the G-orbits of maximal dimension, is open, we have () # V(™) C yGreg,

Letting v € V78 such that there is w € vG \ vG, then from dim(wG) <
dim(vG) and any open neighbourhood of w intersecting vG we infer that w &
VGreg Hence the G-orbits in VG 78 are closed in V&8, Thus affine open
subsets of V&8 should be good candidates to possess a geometric quotient.

Now let V be irreducible. Then V&7 is dense and hence irreducible as well,
implying that V&8 = V(™) Moreover, if 0 # f € K[V]% such that the
quotient V; — (V// G); is geometric, then we have V; C V(™ where n € N
is the common dimension of the G-orbits in Vy, and hence in this case we
necessarily Vy C Y Greg — 1/ (m)

(7.4) Quotients for linearly reductive groups. In order to collect the
‘good’ properties of quotients in this case, we first consider the relationship
between the ideals of a coordinate algebra and the ideals of an associated in-
variant algebra. To this end, let G be an affine algebraic group and let V' be an
affine G-variety such that K[V] = soc(K[V]), which in particular entails that the
Reynolds operator R: K[V] — K[V]® exists. (For a moment we do not assume
that G is linearly reductive, and neither that K[V] is finitely generated.)

Lemma. a) If I JK[V] is G-invariant, then K[V]¢/(INK[V]¢) = (K[V]/I)C.
b) If J JK[V]C is an ideal, then we have (J - K[V]) NK[V]¢ = J.
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c) If {I; <K[V];j € J}, where J is an index set, are G-invariant ideals, then
we have (3 ¢, ;) NK[V]® = 3./ (I; NK[V]S) <K[V]G

Note that, since K[V] is Noetherian, it follows from b) that K[V]€ is Noetherian.

Proof. a) The natural G-equivariant K-epimorphism K[V] — K[V]/I implies

K[V]S/(INK[V]®) = K[V]®/IE = R(K[V])/R(I) = R(K[V]/I) = (K[V]/1)€
b) Since J < K[V]® is G-invariant, so is J - K[V] < K[V]. Hence we have
(J-K[V])NK[V]E = (J-K[V])¢ = R(J-K[V]) = J-R(K[V]) = J-K[V]C = J.

c) The ideals I; being G-invariant, we get (3_,c 7 I; HNK[V]G = (Xjes i )G =
R(ZJGJ ) ZJGJR( ) Z]GJ IJG :ZJGJ(I QK[V} ) ﬁ

Theorem: ‘Good’ properties. Assume additionally that K[V]® is finitely
generated, so that the quotient 7: V' — V// G exists. (In particular, all assump-
tions are fulfilled whenever G is linearly reductive.)

a) Closedness. If W C V is a G-invariant closed subset, then the subset
(W) C V) G is closed as well, and 7|y : W — 7(W) is a quotient.

In particular, 7 is surjective and V// G carries the associated quotient topology.

b) Separation. If {W; C V;j € J} are G-invariant closed subsets, where J
is an index set, then we have ([, W;) = ;7 7(W;).

In particular, for G-invariant closed subsets W, W’ C V such that W NW’ = ()
we have 71(W) N7 (W') = §); and any fibre of w contains a unique closed G-orbit.
Hence 7 induces a bijection between the closed G-orbits and the points of V// G.

Proof. Recall that 7*: K[V G] = K[V]® — K[V] is the natural embedding.

a) Let Z(W) < KJ[V] be the vanishing ideal of W C V; hence we have K[WW]
K[V]/Z(W). Then the vanishing ideal of #(W) C V// G is given as Z(w(W))
()L Z(W)) = Z(W) N K[V]¢ S K[V]C, from which we get K[r(W)]
K[V]S/(Z(W) N K[V]S). Thus we conclude that the comorphism associated
with 7|y : W — w(W) is given as the natural embedding (7|w)*: K[m(W)]
K[V]S/(Z(W) nK[V]¥) = K[V]/Z(W) = K[W].

Since W is G-invariant, the ideal Z(W) is G-invariant as well: We have f9(w) =
flwg™) = 0, for w € W, hence f9 € Z(W), for f € Z(W) and g € G.
Thus we get K[V]¢/(Z(W) N K[V]¢) = (K[V]/Z(W))E. This shows that
(mlw)*: (K[V]/Z(W))E — K[V]/Z(W), thus 7|w: W — m(W) is a quotient.

Thus to show closedness, it suffices to consider the case W = V and to show
that 7 is surjective: Let z € V// G, with associated maximal ideal J, < K[V]¢
Then from (J, - K[V]) N K[V]© J we infer that J, - K[V] <K[V] is a proper
ideal. Hence there is v € V such that for the associated maximal ideal we have
J.-K[V] C I, < K[V], thus (7*)"1(I,) = I, NK[V]E = J,, that is 7(v) = 2.

Finally, we have to show that a subset U C V// G is open if (and only if)
~1(U) C V is open: To this end, by going over to complements, let W C V) G
such that 7 =1 (W) C V is closed. Then, since 7 is constant on G-orbits, 7~1(W)

is G-invariant. Hence, by the closedness property and the surjectivity of w, we
infer that W = (7= 1(W)) C V/ G is closed.

Il

I

Il
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b) Let I, := Z(W;) < K[V] be the vanishing ideal of W; C V, for j € J. Since
the W; are G-invariant, so are W := (,c ; W; C V, as well as [; JK[V] and [ :=
W)= Zjej I; <K[V]. Thus, recalling that the preimage with respect to 7* of
a radical ideal is a radical ideal again, we get m(W) = m(W) = V((ﬂ'*)*l(l)) =
V(INKV]G) =V((3,cr LINKV]G) = V(3,7 (LAKV]S)) = Ne s V(LN
K[V]) = Nyes V(@) 11) = Njey 7(W)) = Nje s 7(W)).

In particular, for z € V) G let W := ﬂ_l(zlg V, a G-invariant closed subset.
Hence if O C W is a G-orbit, then we have O C W as well, thus any <-minimal

G-orbit in O is a closed G-orbit in W. And letting O,0" C W be closed
G-orbits, then 7(O N O’) = 7(0) Nw(0’) = {z} # () implies that O = O’. il

(7.5) Quotients for reductive groups. Let G be (geometrically) reductive,
and let V be an affine G-variety. Then the invariant algebra K[V]© is a finitely
generated K-algebra (where we have only proved this here for the linear reduc-
tive case), so that the quotient 7: V' — V// G exists. First of all we get:

Proposition. Let W, W’ C V be G-invariant closed subsets such that W N
W’ = (). Then there is f € K[V]® such that f(W) = {0} and f(W’) = {1}. In
particular, we have 7#(W) N w(W') = 0.

Proof. First, there is f; € K[V] such that f;(W) = {0} and f1(W’) =
The embedding W U W’ — V entails the epimorphism K[V] — K[W U
hence we may assume that V. = W U W’. Then we have Z(W) N Z(W’
IWUW') =Z(V) ={0} and ZW) + Z(W') = Z(W N W') = Z(0) =
implying K[V] =2 K[V]/Z(W) @ K[V]/Z(W') = K[W] & K[W']. Hence may take
fi= [Ow, IW/] € K[W] S5 K[W’]

Let U := {(f1)? € K[V];¢9 € G)k. Then, by local finiteness, U < K[V] is a
G-submodule, such that for all h € U we have h(W) = {0} and h(W’') is a
singleton set. Let {f1,...,fn} C U be a K-basis, where n := dimg(U) € Ny
and f; is as above. Then, by linearisation of G-actions, the evaluation map
oi=1[ft, 2V > K" v~ [fi(v),..., fn(v)] is a homomorphism of G-
modules. Then we have (W) = {[0,...,0]} and o(W') = {z}, where 0 # z €
K™. Since W’ is G-invariant, z € K" is G invariant as well. Hence by geometric
reductivity there is a homogeneous invariant h € K[X] of positive degree such
that h(z) = 1, thus h(0) = 0 anyway. Then f := p*(h) € K[V] is as desired. #

{1}:
Wi,
) =
K[V,

Actually, 7 has all ‘good’ properties of quotients listed in (7.4), but (apart from
the linearly reductive case, and the above separation property) we are not able
to prove this here; see [2, Sect.3.2, 3.3]. In particular, 7 is surjective, m maps
closed G-invariant subsets to closed subsets, V) G carries the quotient topology
afforded by 7, any fibre of 7 contains a unique closed G-orbit, and 7 induces a
bijection between the closed G-orbits and the points of V// G. This yields:

Corollary. Let O C V be a G-orbit; hence 7(O) C V// G is a singleton set.

i) Then the closure O C V contains a unique closed G-orbit.

ii) Let O be closed, and let W := 7= *(w(0)) C V be the associated fibre. Then
we have W = {v € V;0 CvG} = {v € V;0 2 vG}, and W C V is the largest
G-invariant closed subset containing O as its unique closed G-orbit.
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Proof. i) Any <-minimal G-orbit in O is closed, where uniqueness follows from
OCOCW:=aYr(0)CV.

ii) Let w € W, then m(O) = n(w) = m(wG), hence 7(O N wG) = 7(0O) N
7(wG) # 0, thus O NwG # 0, hence O C wG. Conversely, let v € V such that
O C vG, then vG C vG C 71 (w(v)) C V implies 7(0)N7(vG) = 71(ONvG) =
7(0) = m(vG) = 7(v), thus v € W.

Moreover, W contains a unique closed G-orbit, which hence coincides with O.
Finally, let U C V be a G-invariant closed subset containing O as its unique
closed G-orbit, and assume that U € W. Then there is 7(0) # z € V// G such
that U N 7w~ 1(2) # (. Since the latter set is G-invariant and closed, it contains
a closed G-orbit, which hence is distinct from O, a contradiction. f

8 Good quotients

(8.1) The nullcone. Let G be (geometrically) reductive, and let V be a G-
module. Then the fibre N (V) = Ng(V) := 7~ 1(n(0)) = {v € V;0 € vG} =
{v € V;{0} 2 vG} C V is called the associated (Hilbert) nullcone. In can
be characterised as follows:

Let Iy < K[V] be the maximal ideal associated with 0 € V. Then the max-
imal ideal J.(o) < K[V]€ associated with 7(0) € V/ G is given as Jrq) =
IyNK[V]E = @,y K[V]F <K[V]E, where the latter is the maximal homoge-
neous ideal. Hence we have 7= (7(0)) = V(J(0)-K[V]), that is the zero set of the
Hilbert ideal. In other words, we have N' (V) = V(Jx0)) = V(X 4en KIVIF) =
Naen VK[V]F) C V, that is the elements of V' being annihilated by all homo-
geneous invariants of positive degree.

The elements of the closed subset N (V') are called unstable, while the elements
of the open subset V' \ N (V) are called semistable; in other words the latter
is the set of v € V such that there is f € K[V]$, for some d € N, such that
f(v) # 0. In particular, geometric reductivity amounts to say that the non-
zero G-fixed points in V are semistable. Letting V(") C V be the open stratum
consisting of the G-orbits of maximal dimension, the elements of the open subset
VM \ N (V) are called stable; in other words, since V is irreducible, these are
the G-regular semistable elements.

The relevance of the nullcone for the structure of the invariant algebra is further
elucidated by the following:

Proposition: Hilbert [1893]. Let fi,..., f, € K[V]S, for r € Ny, such that
V(fi,-- fr) =N (V). Then K[fi,..., f;] € K[V]< is a finite algebra extension.

Proof. Let J := (fi,..., f)<JK[V]® be the ideal generated by f, ..., fr. Then
we have 771 (V(J)) = V(J - K[V]) = V(f1,..., fr) = N(V) = =71 (x(0)) C V.
Since 7 is surjective, we infer that V(J) = 7(0). In other words v/.J = Jy (o) <
K[V] is the maximal homogeneous ideal.

Now let hy,...,hs € K[V]E be homogeneous of positive degree, where s € No,
such that K[V]¢ = K[hq,...,hs]. Hence we have h; € Jr(0), so that there is
e € N such that h{ € J, for i € {1,...,s}. Thus the finite set {[[_, h' €
K[V]S;e; € {0,...,e — 1}} generates K[V]¢ as a K[f1, ..., f]-module. il
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In view of (8.7), if G is connected then it follows that K[V] is the integral
closure of K[f1,..., fr] in K[V].

(8.2) Geometric quotients for reductive groups. a) Let G be (geomet-
rically) reductive, let V' be an affine G-variety, and let 7: V. — V// G be the
associated quotient. The ‘good’ properties yield the following characterisation:

Then 7 is geometric if and only if all G-orbits are closed. Moreover, if V is
irreducible, then 7 is geometric if and only all G-orbits have the same dimension.

If 7 is geometric then the quotient variety V/ G can be identified as topological
spaces with the orbit space of the G-action on V', where the latter carries the
quotient topology afforded by identifying points in the same G-orbit.

b) It appears that the existence of a geometric quotient is quite restrictive. To
remedy this, we consider suitable open subsets:

The G-orbits in the open subset V&G C V of G-regular elements are closed
in V&g, Thus if V&8 is affine again then it possesses a geometric quotient.
But if V&8 contains a G-orbit which is not closed in V, then it is not the
preimage with respect to 7 of an (open) subset of V/ G.

Similarly, letting V(™) C VG C V be the open stratum consisting of the
G-orbits of maximal dimension, the latter are closed in V(™). Thus if V(™
is affine again then it possesses a geometric quotient. But if V(™) contains a
G-orbit which is not closed in V, then V(™ is not the preimage with respect
to m of an (open) subset of V/ G. Recall that if V' is irreducible then we have
V(m) = yGreg which is a dense subset of V.

Instead, we consider V := {v € VM yG C V closed} C V, that is the union
of the closed G-orbits amongst all G-orbits of maximal dimension; hence Vs
G-invariant, but possibly V is empty. Moreover, let Z := (V/J G)\ «(V \ V(™).
Since V\ V(™) C V is a G-invariant closed subset, 7(V\ V(™)) C V// G is closed
as well, hence Z C V) G is open. Now V and Z are related as follows:

For v € V we have vG = vG C V(™ hence vG N (V \ V(™) = § implies that
7(vG)NT(V\V ™)) = ), that is 7(v) € Z. Next, for v € V\V ™ by construction
we have 7(v) € Z. And for v € V such that vG # vG, letting w € vG \ vG we
have dim(wG) < dim(vG), hence w € V \ V™, thus 7(v) = m(w) € Z. Hence
we have m(v) € Z if and only if v € V, that is 7= 1(Z) = V.

In particular, it follows that 1% C V(™) C V is open. Moreover, 7r|‘7: V> Z
induces a bijection between the (closed) G-orbits in V and the points of Z.
Since the affine variety V) G carries the quotient topology induced by 7, we
conclude that Z is the orbit space of the G-action on V. Thus, if V is affine
again, then it has a (geometric) quotient, which hence coincides with 7|g; in

particular, this happens if VCVisa principal open subset.

(8.3) Regular action. Let G be an affine algebraic group, and let H < G be
a closed subgroup. Then G is an H-variety with respect to the left translation
action G x H — G: [g,h] — h~'g. The set of H-orbits coincides with the
set H\G of right H-cosets in G. Since H < G is closed, and G acts by
automorphisms of varieties on itself, we infer that the coset Hg C G is closed
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as well, and isomorphic as varieties to H. Hence we conclude that all H-orbits
on G are closed, and have one and the same dimension.

Let H additionally be (geometrically) reductive. Then we conclude that the
quotient variety of the left translation action of H on G can be identified with the
orbit space H\G, such that the map 7: G — H\G: g — Hg is the associated
(geometric) quotient. In particular, the orbit space H\G carries the structure
of an affine variety. (Actually, if G is reductive then the converse holds as well,
saying that if the orbit space H\G carries the structure of an affine variety then
H necessarily is reductive; but we are not able to prove this here.)

If H<G is a (geometrically) reductive closed normal subgroup, the orbit space
G/H = H\G is an affine variety as well, and thus naturally becomes an affine
algebraic group such that the natural map 7: G — G/H is a homomorphism
of algebraic groups. For example, this happens if G is reductive and H < G is
a closed normal subgroup: From R(H) < H being characteristic we infer that
R(H) < R(G), thus H is reductive as well. (Actually, the assumption of H
being reductive can be dispensed of, but we are not able to prove this here.)

(8.4) Finite groups. Let G be a finite group. Then (we have shown that) G
is geometrically reductive, and is linearly reductive if and only if char(K) 1 |G|.
If V is an affine G-variety, then (without referring to geometrical reductivity we
have shown that) K[V]“ is a finitely generated K-algebra. Hence the quotient
m: V = V// G exists, and actually has all ‘good’ properties:

Since K[V]¢ C K[V] is a finite algebra extension,  is a finite morphism. Thus in
particular 7 is surjective, and maps (arbitrary) closed sets to closed sets, so that
V| G carries the quotient topology with respect to . Moreover, (we have shown
that) 7 separates G-invariant closed subsets, so that any fibre of 7 contains a
unique closed G-orbit. Since all G-orbits in V' are finite, thus closed, we conclude
that 7 is geometric. We have dim(V)—dim(V)/ G) = dim(K[V])—dim(K[V]%) =
0, which of course coincides with the maximal dimension of the G-orbits.

Example. Let char(K) = p > 0, the cyclic group G = (g) = C, of order
1

0 1)
[,y + z], for z,y € K. Thus the G-orbits in V' are non-uniquely given as
[a,b] - G = {[a,b+ia] € V;i € {0,...,p—1}} for a € K\ {0} and b € K, and
[0,0] - G = {[0,b]} for b € K; recall that indeed V& = (e3)x.

Let K[V] = K[X,Y] be the associated coordinate algebra, on which g acts
by X — X and Y — Y — X. We have already shown that the invariant
algebra K[X,Y]¢ = K[X,Y? — YXP~!] is a polynomial algebra. Hence the
quotient variety is V/ G =2 K2, and its embedding into K[X, Y] shows that the
(surjective) quotient morphism is given as m: V. — K2: [z, y] — [z, yP — yaP~1].

Hence for 8 € K we get 7=1([0,8]) = {[0,y] € V;4P = B} = {[O,ﬁ%}} More-
over, for a € K\ {0} and 8 € K we get 7~ 1([a, 8]) = {[a,y] € V;y? —yaP~! = B},
where since Y? —aP~'Y — 3 € K[Y] has non-zero constant derivative we conclude
that there are p pairwise distinct roots in K, showing that 7= ([a, 8]) consists of
a single G-orbit; indeed for y, z € K, recalling that y? —ya?~! = a? ((g)p — ﬂ) =

a a

p acts on V = K2 via g — J := that is g acts on V by [x,y]
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a? - [Ty (Y — i) = [102y (y — ia), we get y? — yaP~' = 2P — za?~" if and only if
(y —2)P — (y — 2)aP~1 = 0, if and only if y — 2z = ia for some i € {0,...,p—1}.

(8.5) Example: Quadratic forms. i) Recall that G := SL,,, for n € N, is
semisimple, thus (geometrically) reductive, hence linearly reductive if char(K) =
0. Letting char(K) # 2, let V := K[X7, ..., X, ]2 be the K-vector space of n-ary
quadratic forms, being an G-variety via base change. Then by (0.3) we have
K[V]¢ = K[A], where A € K[V] is the discriminant.

We show that K[A] is a univariate polynomial algebra: Let s: K — V: § — gp,_s,
where g, 5 == 0X2 + Y "' X2 € V, with associated comorphism s*: K[V] —
K[T]. Then we have s (A)((S) = A(s(9)) = A(gn,s) = 6 for § € K, thus
s*(A) = T. This shows that A € K[V] is algebraically independent.

Hence the quotient exists (without referring to the reductivity of G), the quo-
tient variety is V/ G = K, and the (surjective) quotient morphism is given as
A:V — K. We have already seen that for § € K\ {0} the fibre A7(8) = [gn,6]
consists of a single G-orbit, which hence is closed. But the nullcone N (V) =
ATY0) = [1"Z4lgr), where ¢, :== S7_, X? € V, consists of finitely many G-
orbits, n to be precise, where [qo] < [q1] = -+ < [gn—1] and only [go] is closed;
in particular, A is geometric if and only if n = 1, where G = {1}.

ii) Then A: VA — (V) G)a = K\ {0} is a quotient, which since the G-orbits in
Va are closed is geometric. Since dim(Va) —dim(K\ {0}) = dim(V) —dim(K) =
in(n+1)—1=1(n—1)(n+2), we infer that dim([g,, s]) = 2(n —1)(n+2) for
6 € K\ {0}, or equivalently dim(Gy, ;) = dim(G) — dim([g,5]) = (n* = 1) —

in?P+n—-2)=1in?—n)=in(n-1)=m.

This implies that VA C V(m)7 and thus V(™) C V is the dense open stratum of G-
regular elements, the maximal orbit dimension indeed being equal to dim(V) —
dim(V// G). In order to determine V(™ we proceed to determine the dimension
of the isometry groups G, , := G,. < G; we have G, o = G anyway:

Note first that letting én :={A4 € GL,; A~! = A"} = O,, be the orthogonal
group, then G, := G, , = G,NG = SO, is the special orthogonal group,
fulfilling [én G,] = 2; we have G; = {1} and G2 = SO, = G, see (2.1).

Now, for r € {1,...,n — 1}, letting M := { é g ] € G, where A € K™*",

B e K= ¢ e K"=%" and D € K"=)%("=7) then
E, |0] [A]|B E |0 A|B" [ A4 | AC™
ojo| [C|D] | 0ofo] [C|D| ~— |CA™|CCY

says that M € G, , if and only if C = 0 and A € ér and D € GL,,_, such
that det(AD) =1

Hence we get dim(G,,, T) = dim(G ) + dim(K™ (=) + dim(SL,,_,.) = ir(r —
D+r(n—r)+((n—r)>—1) = 1(r? = (2n+ 1)r +2n? — 2); note that the latter
formula also holds for dim(Gyg). The right hand side is strictly decreasing for
r € {0,...,n — 1}, as expected from the orbit closure relation. For r = n — 1
we get equality dim(G, n—1) = gn(n — 1) = dim(G,,). Hence we infer yim) —

VA U [gn_1] € V; note that [g,_1] is the unique unstable G-orbit in V(™).
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Let now n > 2. Then [g,—1] C V is not closed. If V(M) were an affine variety
(which we do not discuss here), then it had a geometric quotient, but V(™) does
not coincide with A='(A(V(™)) = V. Next, since VA contains all closed G-
orbits in V(™) we have V= Va, coinciding with the set of stable elements of V.
Hence V is an affine variety having the (geometric) quotient A: YV — K\ {0}.

iii) Finally, we consider the nullcone A(V) C V, which is an irreducible closed
subvariety. Hence A: N'(V) — A(N(V)) = {0} is a quotient, which is not geo-
metric. Since [g,—1] € N (V) is the unique open G-orbit, we conclude that the
latter coincides with the open stratum N (V)™ C N (V) of G-regular elements;
in particular we have N/(V) = . Hence the maximal orbit dimension equals
dim(A(V)) — dim(N(V)/ G) = dim(N(V)) = dim(gn_1]) = dim([gn1]) =
1(n —1)(n +2). If [g,—1] were an affine variety (which we do not discuss
here), then it had the geometric quotient [g,—1] — {0}, but note that [g,—1]

does not coincide with A1 (A([g,—1])) = N.

(8.6) Example: Matrix equivalence. i) Recall that G := GL,,, for n € Ny,
is (geometrically) reductive, hence is linearly reductive if char(K) = 0. We
consider M := K"*" being a G-variety via conjugation. Then by (3.4) we
have K|M|% = Kley,...,€,], where the regular maps ¢;: M — K are given
as the coefficients of the characteristic polynomial x(A) := det(XE,, — A) =
X"+ 53" (1)l (A) X" € K[X] of A € M, so that €;(A) coincides with the
i-th elementary symmetric polynomial in the eigenvalues of A. We show that
Kleq, ..., €] is a polynomial algebra:

To this end we consider the morphisms e: M — K": A+ [e1(A),...,e,(A)] and
o: K" = M: [z1,...,2,] — diag[z1,...,2,]. Then the morphism oe: K" —
K"™: [z1,...,2n] = [e1(T1,--.Zn), ... €n(X1,...,25)] yields the comorphism
(ce)*: K[X] = K[X]: X; — €(X), where X := {X4,...,X,}. It is well-known
that the elementary symmetric polynomials {e;(X),...,€,(X)} C K[X] are al-
gebraically independent, hence (o€)* is injective. From (o€)* = €*o* we con-
clude that the comorphism €*: K[X] — K[M]: X; — ¢; is a injective as well,
hence {e1,...,e,} C K[M] is algebraically independent. i

Hence the quotient exists (without referring to the reductivity of G), the quo-
tient variety is M/ G = K", and the (surjective) quotient morphism is given as
€: M — K" For z € K" the fibre e (z) C M, that is the set of all matrices
having one and the same characteristic polynomial with coefficients given by =z,
consists of finitely many G-orbits, amongst which precisely the unique semisim-
ple G-orbit is closed. Moreover, the nullcone ¢ 1(0) = A" C M consists of the
nilpotent matrices. In particular, € is geometric if and only if n < 1, where
G = {1} and G = G,,, respectively. Hence let now n > 2.

ii) We show that the any isotropy group Cg(A4), where A € M, has dimension at
least n, with equality if and only if the characteristic and minimum polynomials
of A coincide; in other words, if and only if K™ has an A-cyclic vector:

We may assume that A = @2:1 JIn,; (a;), where | € Ny, and a; € K, and

n; € N such that Zi:l n; = n. Since G C M is open and dense, we have
dim(Cg(A)) = dim(Cr(A)) = dimg(Cr(A)). Moreover, Crq(A) maps the
generalised eigenspaces ker((A — aE,)") < K", for a € K, to themselves.
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For a Jordan block J,(a), where a € K we have Caq(J,(a)) = Cum(Jn(a) —
aE,) = Cpm(Jyn), hence from (3.6) we get dimg(Caq(Jn(a)) = n. Moreover,
letting A := K[X]/{((X — a)™), then K™, for m € {1,...,n}, becomes an A-
module via X ~ J,,(a); and since the unique simple A-module is given by
X + Ji(a), we infer Hom 4(K™,K") # {0} and Hom 4 (K", K™) # {0}. Recall
that the characteristic and minimum polynomials of J,(a) coincide.

Thus we conclude dimg(Cag(A)) > 34, dimg (Cnixn (Jn, (a3))) = S0ty 0 =
n, with equality if and only if the eigenvalues ay, ..., a; are pairwise distinct. §

Hence the dense open stratum of G-regular elements is given as M™) = {A €
M; A has a cyclic vector} C M, where the associated (maximal) orbit dimen-
sion is dim(G) —dim(Cg(A)) = n?> —n = n(n —1), where A € M. Note that
dim(M) — dim(M G) = n? — n = n(n — 1), which indeed equals the maximal
orbit dimension; and that j\/[n] is the unique unstable G-orbit in M, If M (™)
were an affine variety (which we do not discuss here), then it had a geometric
quotient, but M) does not coincide with e~ (e(M ™)) = M.

iii) For A € M, the associated orbit A- G C M is closed if and only if A is
semisimple; using the above notation that is n;, = 1 for all ¢ € {1,...,l}, or
equivalently [ = n. Thus the open subset M = {A € M™); A semisimple} C
M of regular semisimple elements, that is those whose centraliser has minimal
dimension, is given as M = {4 € M; A has n pairwise distinct eigenvalues};
note that for A := diagfas, ..., an] € M we have Cg(A) = T,,.

Actually, M C M is a principal open subset, and hence is an affine vari-
ety: Let A: M — K: A — disc,(x(A)) be the matrix discriminant, where
disc: K[X],, — K denotes the polynomial discriminant. Writing x(A) = X™ +
S (—1)e(A) X" € K[X] we conclude that A(A) is a polynomial in the
elementary-symmetric polynomials €;(A), hence A € Kley,...,e,] = KIM]C.
Since disc(f) # 0 if and only if f € K[X], has n pairwise distinct eigenvalues,
we get M ={A e M;A(A) #0} = Ma C M.

Hence, since €1, . . ., €, are the coordinate functions on the quotient M G = K®
of M, we conclude that the (geometric) quotient of Mis e: M A = (K™")gisc-

iv) Finally, we consider the nullcone, that is the irreducible closed nilpotent
subvariety N' C M. Hence e: N' — €(N) = {0} is a quotient, which is not
geometric. Since the set N, = J, - G € N of regular nilpotent elements is
the unique open G-orbit, we conclude that the latter coincides with the open
stratum N C N of G-regular elements; in particular we have N = §). Hence
the maximal orbit dimension is dim(G) — dim(Cg(J,)) =n? —n=n(n—1) =
dim(N) = dim(N) — dim(N/ G). If NV}, were an affine variety (which we do
not discuss here), then it had the geometric quotient NVj,) — {0}, but note that
Njn) does not coincide with e~ (e(N,)) = N

(8.7) Invariant fields. Let G be an affine algebraic group, and let V' be an
irreducible affine G-variety such that K[V]© is a finitely generated K-algebra.

Since K[V]¢ C K[V] are integral domains, we may consider the associated
fields of fractions, the fields K(V) := Q(K[V]) and K(V/ G) := QK[V/) G]) =
Q(K[V]) of rational maps on V and V/ G, respectively. The natural embed-
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ding K[V]¢ C K[V] induces an embedding Q(K[V]%) C K(V).

Since G acts by K-algebra automorphisms on K[V], by the universal property of
fields of fractions, there is an induced G-action on K(V') by field automorphisms
given by (%)g = %» for f,h € K[V] such that h # 0, and g € G. Hence
the associated set of fixed points K(V)& := {f € K(V);f9 = fforallg €
G} CK(V) is a subfield, being called the associated invariant field. Hence in

particular we have Q(K[V]%) C K(V)<, but equality does not necessarily hold.

Proposition. a) If K[V] is integrally closed in K(V'), then K[V]€ is integrally
closed in K(V)&. Thus in particular K[V]¢ is integrally closed in Q(K[V]%),
and Q(K[V]9) is algebraically closed in K(V)&.

In particular, this says that if V' is a normal variety then so is V// G. Recalling
that any factorial domain is integrally closed in its field of fractions, we observe
that the assumption made is fulfilled whenever V' is a G-module.

b) Let G be connected. Then K[V]€ is integrally closed in K[V], and K(V)©¢
is algebraically closed in K(V').

Proof. a) Let f € K(V)© be integral over K[V]%. Then f € K(V) is integral
over K[V], hence f € K[V]. Thus we conclude that f € K[V]NK(V)& = K[V]E.

Let f € K(V)© be algebraic over Q(K[V]¥). Letting G act trivially on K[T], let

p=Y1o BT € QUK[V]®)[T], where d € N and p;, ¢; € K[V]S such that g; # 0

and pg # 0, fulfilling p(f) = 0. Multiplying with H?:o ¢i, we may assume that
p = opiT" € (K[V]®)[T]. Then py~" - p = (paT)* + =) pipy ' (paT)' €
(K[V]S)[T] shows that paf € K(V)© is integral over K[V]¢. Thus we have
paf € K[V], and hence f = }?—df € Q(K[V]S).

b) Let f € K[V] be integral over K[V]“, and let p € (K[V]%)[T] be monic such
that p(f) = 0. Let S C K[V] be the finite set of zeroes of p; hence there is a
G-submodule of K[V] containing S. For h € S we have p(h9) = p(h)? = 0, for
g € G, showing that S is G-invariant. Thus G acts morphically on .S, which
since G = G implies that G acts trivially. Hence we have f € K[V]G.

Let f € K(V) be algebraic over K(V)S, and let 0 # p € (K(V)%)[T] be such
that p(f) = 0. Let S C K(V) be the finite set of zeroes of p; hence there is
0 # h € K[V] such that S C K[V];, which is an affine K-algebra, thus there
is a G-submodule of K[V];, containing S. As above we conclude that G acts
morphically and thus trivially on S, entailing f € K(V)©. f
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9 Exercises (in German)

(9.1) Aufgabe: Binire quadratische Formen.

Es sei ¢ eine binére quadratische Form iiber K € {C,R} mit Diskriminante A.
Man zeige:

a) Ist K = C, so ist genau dann A = 0, wenn ¢ Quadrat einer Linearform ist.
b) Ist K = R, so ist genau dann A = 0, wenn ¢ oder —q ein Quadrat ist.

(9.2) Aufgabe: Kongruenz von Euklidischen Dreiecken.

Man betrachte die Euklidische Ebene R2. Ein Dreieck A(Py, P>, P3) C R2
ist durch Angabe seiner Ecken P; = [z;,y;] € R? eindeutig bestimmt. Also
kann die Menge der Dreiecke via A(Py, P2, P3) — [21, Y1, T2, Y2, T3, y3] mit dem
Zustandsraum RS identifiziert werden.

a) Ein Dreieck A'(P{, P}, P}) mit P/ = [z},y}] heit zu A kongruent, falls
es eine Permutation m € Sz und eine Euklidische Bewegung « auf R? gibt mit
[, yi] = [Tir, Yin)® fir i € {1,2,3}. Man beschreibe die Struktur der genannten
Symmetriegruppe, G, und zeige, dafl Kongruenz eine Aquivalenzrelation ist.

b) Man zeige, dal G in natiirlicher Weise durch Automorphismen auf den R-
Algebren A := Abb(R® R) und R := ANR[X, Y1, Xo, Ys, X3, Y3] operiert.

Eine geometrische Grofle ist eine G-invariante Funktion F' € A, das heifit,
es gilt F9 = F fiir alle ¢ € G. Man zeige: Die Mengen A% und R® aller
G-invarianten (polynomiellen) Funktionen sind R-Unteralgebren von A.

¢) Man zeige: Durch

X1 Y1 1
F(A) := |det To Yo 1
x3 y3 1

und U(A) := Si2 + Si3 + Sa3, wobei S;;(A) = \/(Jcz — ;)% + (yi —y;)?, wer-
den geometrische Gréflen definiert. Sind sie polynomiell? Welche geometrische
Bedeutung haben sie? Sind die S;; selbst geometrische Grofien?

d) Eine Menge von geometrische Grofien, die Kongruenzklassen eindeutig fest-
legt, heiflt ein System von Bestimmungsstiicken. Man zeige: Die drei elemen-
tar-symmetrischen Polynome in S1s, S13, S23 sind ein System von Bestimmungs-
stiicken, ebenso die drei elementar-symmetrischen Polynome in S%,, S%;, S2,.
Welche geometrische Aussage verbirgt sich dahinter?

e) Man zeige: Ein R-Algebren-Erzeugendensystem von R® ist ein System von
Bestimmungsstiicken. In der Tat bilden die drei elementar-symmetrischen Poly-
nome in S%y, %5, 52, solch ein Erzeugendensystem von R“. (Konnen Sie das
beweisen?) Man stelle F? als Polynom in diesem Erzeugendensystem dar.

(9.3) Aufgabe: Geometrische Grofien.

Wie in Aufgabe (9.2) betrachte man die Euklidische Ebene R?, und bestimme
Systeme von Bestimmungsstiicken sowie die R-Algebren der invarianten (poly-
nomiellen) Funktionen fiir i) die Punkte in R? und ii) die Strecken in R?.
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(9.4) Aufgabe: Affine algebraische Gruppen.

a) Es seien G und G’ affine algebraische Gruppen. Man zeige: Das direkte
Produkt G x G’ ist ebenfalls eine affine algebraische Gruppe.

b) Es seien H < G eine abgeschlossene Untergruppe mit Einbettung ¢: H — G.
Man zeige, dal H in natiirlicher Weise eine affine algebraische Gruppe ist, so
daB ¢ ein Homomorphismus algebraischer Gruppen wird.

(9.5) Aufgabe: Untergruppen algebraischer Guppen.

Es sei G eine affine algebraische Gruppe.

a) Es sei H C G eine abgeschlossene Teilmenge, die abgeschlossen unter Pro-
duktbildung ist und 1g enthélt. Man zeige, dal H eine Untergruppe ist.

b) Es seien H, U < G abgeschlossene Untergruppen mit H < Ng(U). Man
zeige: Das Komplexprodukt HU C G ist eine abgeschlossene Untergruppe.

c) Es sei H < G eine abelsche Untergruppe. Man zeige, da8 H < G ebenfalls
eine abelsche Untergruppe ist.

(9.6) Aufgabe: Normalteiler algebraischer Guppen.

Es sei G eine affine algebraische Gruppe.

a) Man zeige, dal G° < G eine charakteristische Untergruppe ist.

b) Es sei ¢: G — G ein surjektiver Homomorphismus algebraischer Gruppen.
Man zeige, dafl ker(¢) < G eine endliche Untergruppe ist.

c¢) Es sei G zusammenhéngend. Man zeige: Jede endliche normale Untergruppe
von G ist zentral.

(9.7) Aufgabe: Homomorphismen algebraischer Gruppen.
Es seien ¢: G — H ein Homomorphismus affiner algebraischer Gruppen, und
H < G eine Untergruppe. Man zeige: Es gilt o(H) = ¢(H).

(9.8) Aufgabe: Automorphismen algebraischer Gruppen.

Es sei K ein algebraisch abgeschlossener Korper. Man zeige:

a) Die Abbildungen G, — G,: z — axz, fir a € K\ {0}, sind die einzigen
Automorphismen der additive Gruppe G, als algebraische Gruppe.

b) Die Abbildungen id: G,, = G,,: ¢ = z und ¢: G, = Gyt z = 21 sind
die einzigen Automorphismen der multiplikativen Gruppe G,,.

¢) Die Guppen G, und G,, sind als algebraische Gruppen nicht isomorph.

(9.9) Aufgabe: Lineare algebraische Gruppen.

Es seien K ein algebraisch abgeschlossener Korper, und n € Ny. Man zeige, dafl
die folgenden Gruppen lineare algebraische Gruppen sind, und bestimme jeweils
die Koordinatenalgebra und die Dimension. Welche sind zusammenhéngend?
a) Z, == {a- E, € GLy;a # 0} und T, := {[a;;] € GLyp;a;; = 0 fiir i # j}.
Man zeige: Es gilt Z, = Z(GL,), sowie Z,, =2 G,, und T, = (G,,)" als
algebraische Gruppen.

b) U, := {[a;;] € GLy;a;; = 0fliri > ja; = 1} und B, = {[a;;] €
GL,;a,; = 0 fir ¢ > j}. Man zeige: Es gilt B,, = Ngr, (Uy,). Man schreibe
B,, als abstraktes semidirektes Produkt.

¢) Die Gruppen W,, < GL,, der Permutationsmatrizen und N,, < GL,, der
monomialen Matrizen. Man zeige: Es gilt N,, = Ngr,,, (T5). Man schreibe N,
als abstraktes semidirektes Produkt.
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d) Jede endliche Gruppe kann als lineare algebraische Gruppe aufgefafit werden.

(9.10) Aufgabe: Multiplikationsoperation.

a) Es sei G eine affine algebraische Gruppe. Fiir die Operation von G auf
sich durch Rechtsmultiplikation p zeige man: Die Koordinatenalgebra K[G] ist
Vereinigung endlich-erzeugter p*(G)-invarianter K-Teilrdume.

b) Man betrachte auerdem die Operation von G auf sich durch Linksmultip-
likation A. Es sei U < K[G] ein endlich-erzeugter K-Teilraum. Man zeige: Es
gibt einen endlich-erzeugten (A*(G) x p*(GQ))-invarianten K-Teilraum von K[G],
der U umfafit.

(9.11) Aufgabe: Translation von Funktionen.
Es seien G eine affine algebraische Gruppe, H < G eine abgeschlossene Unter-

gruppe und Z(H) < K[G] das zugehorige Verschwindungideal. Man zeige: Es
gilt H={g € G;p3(Z(H)) CI(H)} = {g € G; \;(Z(H)) C Z(H)}.

(9.12) Aufgabe: Linearisierung linearer Gruppen.

Es seien K ein algebraisch abgeschlossener Korper, sowie G := GL,, fiir n € Ny,
und K[G] = K[X11, ..., Xnn]det die Koordinatenalgebra von G.

a) Man betrachte die Operationen von G auf sich durch Rechtsmultiplikation
p und Linksmultiplikation A. Man bestimme den kleinsten p*(G)-invarianten
K-Teilraum V von K[G], der X717 enthélt, sowie die analogen Teilrdume U fur
A(GQ), und W fiir \*(G) x p*(G).

b) Man wihle natiirliche K-Basen dieser Teilrdume, und gebe die Koordinaten-
funktionen der zugehorigen Matrixdarstellungen von G bzw. A(G) := {[g,9] €
G X G;g € G} als Ausdriicke in den Koordinatenfunktionen von G an. Wie
héngen die Matrizen fiir V', U und W miteinander zusammen?

(9.13) Aufgabe: 2-dimensionale projektive spezielle lineare Gruppen.
Es seien K ein algebraisch abgeschlossener Korper. Man betrachte die Koordi-
natenalgebra R := K[X11, X192, X1, X22]/(deta —1) von SLy. Es seien S C R
die von {X;; X € R;i,j,k,1 € {1,2}} erzeugte K-Unteralgebra, und PSL, die
affine Varietdt mit Koordinatenalgebra S. Man zeige:

a) Ist char(K) # 2, soist S = {f € R; f(x) = f(—=) fiir alle z € SLy}.

b) Die Varietat PSLy triagt in natiirlicher Weise die Struktur einer algebraischen
Gruppe, so dafl es einen surjektiven Homomorphismus algebraischer Gruppen
¢: SLy — PSLs mit ker(¢) = {£FE>} gibt. Ist PSLy zusammenhéngend?
Welche Dimension hat PSLy?

c) Ist char(K) = 2, so ist ¢ bijektiv, aber kein Isomorphismus.

(9.14) Aufgabe: Projektive lineare Gruppen.

Es seien K ein algebraisch abgeschlossener Korper sowie G := GL,, und H :=
SL,,, wobei n € Ny. Ziel dieser Aufgabe ist es, den Gruppen G/Z(G) und
H/Z(H) die Struktur affiner algebraischer Gruppen zu geben.

a) Man zeige: Die Gruppe G operiert reguldr auf K®*” durch Konjugation
A T7YAT, fir T € G und A € K®*". Man gebe den Operationsmorphismus
und den zugehorigen Comorphismus an.
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b) Man zeige: Dadurch erhdlt man eine algebraische Darstellung o: G —
GL,2: T — T™% @ T. Man gebe den zugehorigen Comorphismus o* an, und
beschreibe die Unteralgebra im(a*) C K[G]. Wie sieht sie im Falle n = 2 aus?
¢) Die affine algebraische Gruppe PGL,, := «(G) wird als projektive volle
lineare Gruppe bezeichnet. Man zeige PGL,, < SL,,2 und ker(a) = Z(G) =
(K\ {0}) - E\. Ist PGL,, zusammenhingend? Welche Dimension hat PGL,,?
d) Nun sei 8 := a|ug die Einschrankung von « auf H. Man beschreibe die
Unteralgebra im(8*) C K[H]. Fiir n = 2 vergleiche man mit Aufgabe (9.13).
e) Die affine algebraische Gruppe PSL,, := S(H) wird als projektive spezielle
lineare Gruppe bezeichnet. Man zeige: Es gilt ker(5) = Z(H) = {aE,;a €
K,a™ = 1} und PSL, = PGL,; also ist H/Z(H) ¢ PSL,, = PGL, &
G/Z(G) als abstrakte Gruppen.

(9.15) Aufgabe: Bahnenabschlu8.

a) Man zeige: Die affine algebraische Gruppe G := G,,, X G, operiert regulér
auf V := K2 durch [x,9] - [a,b] := [xa,yb], fir 2,y € K und a,b € G,.

b) Man betrachte die Einbettungen v: G,, — G: g — [g, 1] sowie : G,, —
G: g+ [g,glund e: G,, — G: g — [g,97!]. Man bestimme die Bahnen von G
sowie 7(G,), 6(Gp,) und €(Gy,) auf V. Welche Dimension haben sie jeweils?
Man gebe zugehorige Isotropiegruppen an. Wie lautet die <-Relation?

(9.16) Aufgabe: Ahnlichkeit.

a) Man zeige: Die affine algebraische Gruppe G := GL,, x GL,,, wobei m,n €
No, operiert reguliar auf V := K™*" durch A4 - [P,Q] := P71AQ, fir A € V
sowie P € GL,, und @Q € GL,,. Zwei Matrizen heiflen &hnlich, wenn sie in der
gleichen G-Bahn liegen.

b) Man bestimme die G-Bahnen auf V. Welche Dimension haben sie jeweils?
Man gebe zugehorige Isotropiegruppen an. Wie lautet jeweils die <-Relation?

(9.17) Aufgabe: Aquivalenz von (2 x 2)-Matrizen.

Es seien K ein algebraisch abgeschlossener Korper und G := GLs.

a) Man zeige: Die Abbildung ¢: K2*2 — K2: A s [tr(A), det(a)] ist ein sur-
jektiver G-invarianter Morphismus; also ist ¢ konstant auf G-Bahnen.

b) Es sei A := V(X? —4Y) C K% Man zeige: Fiir 2 € K* \ A besteht ¢~1(2)
aus einer G-Bahn; fiir z € A besteht ¢~1(2) aus zwei G-Bahnen. Man gebe
Représentanten und die Dimension der Bahnen an. Wie lautet die <-Relation?
c) Man zeige, dal W := {A € K**%tr(A) = 0} C K2*2 eine G-invariante
abgeschlossene Teilmenge ist. Man beschreibe die Fasern der Einschrankung
von ¢ auf W algebraisch und geometrisch.

(9.18) Aufgabe: Aquivalenz von (3 x 3)-Matrizen.

Es seien K ein algebraisch abgeschlossener Kérper und G := GLsg.

a) Man zeige: Die Gruppe G operiert regulir durch Konjugation auf der Va-
rietit V = {A € K3*3;tr(A4) = 0}.

b) Man zeige: Durch ¢: V — K2: A — [af8 + ay + B, aBy], wobei a, 3,7 €
K die Eigenwerte von A sind, wird ein surjektiver G-invarianter Morphismus
definiert; also ist ¢ konstant auf G-Bahnen.

c) Es sei A := V(4X3 4 27Y?) C K?. Man zeige: Fiir 2 € K? \ A besteht
¢ 1(2) aus einer G-Bahn; fiir z € A\ {0} besteht ¢~!(z) aus zwei G-Bahnen;
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fir 2 = 0 besteht p~1(2) aus drei G-Bahnen. Man gebe Repriisentanten und
die Dimension der Bahnen an. Wie lautet die <-Relation?

(9.19) Aufgabe: Newton-Identitaten.

a) Man betrachte den Polynomring K[Xq,...,X,] iiber dem Korper K, wobei
n € Ng. Fur ¢ € {1,...,n} seien ¢, € K[Xq,...,X,] das i-te elementar-
symmetrische Polynom in {X;,...,X,}, und o; := Z;‘L=1 X; € K[Xy,...,X,]
die i-te Potenzsumme. Man zeige die Newton-Identitiaten

i—1
g; + Z(—l)jﬁjdi,j = (—1)i+1’i€i.
j=1

b) Daraus folgere man: Ist char(K) = 0 oder char(K) > n, so gilt fir die von
den elementar-symmetrische Polynomen bzw. den Potenzsummen erzeugten K-
Unteralgebren Kley,...,e,] = Klo1,...,0,] C K[X1,...,X,].

c) Nun sei K algebraisch abgeschlossen mit char(K) = 0 oder char(K) > n.
Man betrachte die Konjugationsoperation von GL,, auf M := K"*™. Man zeige:
Jede GL,-invariante regulare Abbildung auf M ist ein Polynom in {7y, ..., 7,},
wobei 7;: M — K: A+ tr(AY).

(9.20) Aufgabe: Zentralisatoren nilpotenter Matrizen.

Es seien K ein algebraisch abgeschlossener Koérper und M := K™*™ fiir n € Nj.
Fiir eine nilpotente Matrix A € Ny, wobei A = [A1,..., N] F n mit A\; > 0, sei
Cm(A) = {C € M; AC = CA} < M. Man zeige: Es gilt dimg(Cpa(A4)) =
n+2- Zi‘:l(i — 1)\;. Dies benutze man, um dim(Cgr,, (A)) zu bestimmen.

(9.21) Aufgabe: Dominanzordnung.

a) Das Hasse-Diagramm der Dominanzordnung < auf der Menge P(n) der
Partitionen von n € Ny ist definiert als der gerichtete Graph mit Eckenmenge
P, der genau dann eine gerichtete Kante A — p hat, wenn p < A ist. Man gebe
die Hasse-Diagramme fiir n < 8 an. Fiir welche n is < eine Totalordnung?

b) Man zeige, daf die lexikographische Ordnung auf P,, eine Totalordnung
ist, die die Dominanzordnung verfeinert.

(9.22) Aufgabe: Lemma von Schur.
Es sei G := (4, B) < GL4(R) die Quaternionengruppe, wobei

0 0 1 0 0 1.0 0
0 0 0 1 100 0
A=19 0 o o W B=y g0
0 -1 0 0 0 01 0

a) Man zeige: Es ist |G| = 8; also ist G eine algebraische Gruppe. Der R-
Vektorraum V := R* wird in natiirlicher Weise zu einem einfachen G-Modul.
b) Es sei H C R*** die von {4, B} erzeugte R-Unteralgebra. Man gebe eine
R-Basis von H an, und zeige, da3 H ein nicht-kommutativer Schiefkorper ist.
c) Es sei O := Endg(V) C R**4. Man gebe eine R-Basis von C an, und zeige,
daB C ein nicht-kommutativer Schiefkorper ist. Man bestimme H N C C R**4,
Sind H und C als R-Algebren isomorph?
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(9.23) Aufgabe: Halbeinfache Moduln.
Es seien G eine affine algebraische Gruppe und V ein halbeinfacher G-Modul.
Man zeige: Dann ist V'V ebenfalls halbeinfach.

(9.24) Aufgabe: Darstellungen direkter Produkte.

Es seien G und H affine algebraische Gruppen, sowie V' ein G-Modul und W ein
H-Modul. Man zeige: Es ist V ®@g W genau dann ein einfacher (G x H)-Modul,
wenn V ein einfacher G-Modul und W ein einfacher H-Modul sind. Auflerdem
bekommt man jeden einfachen (G x H)-Modul auf diese Weise.

(9.25) Aufgabe: Irreduzible GL,-Darstellungen.

Es sei n € N. Man zeige:

a) Fir k € Z ist det”: GL,, — G,,,: g — det(g)" eine algebraische Darstellung.
Wie schrinkt det® auf SL,, ein?

b) Die natiirliche Darstellung von GL,, bzw. SL,, ist irreduzibel.

c¢) Jede irreduzible Darstellung von GL,, schrankt irreduzibel auf SL,, ein, und
man bekommt jede irreduzible Darstellung von SL,, auf diese Weise.

(9.26) Aufgabe: SLo-Darstellungen.
Es sei K ein algebraisch abgeschlossener Korper.
a) Man zeige: Die Gruppe SLy wird erzeugt von

{[(1) ﬂﬁ ﬂ[(t) tol}?“’bJEK,t#O}.

b) Fir d € Ny betrachte man die homogene Komponente K[V]; der Koor-
dinatenalgebra des natiirlichen SLo-Moduls V' 22 K2. Man gebe darstellende
Matrizen der Operation der obigen Erzeuger von SLy auf K[V]4, beziiglich der
natiirlichen K-Basis aus Monomen, an.

¢) Man zeige: Ist char(K) = 0 oder d < char(K), so ist K[V]; ein einfacher
SLy-Modul. Was passiert im Falle 0 < char(K) < d?

(9.27) Aufgabe: Gewichte von SLy-Darstellungen.

a) Man zeige: Die Abbildungen G,, — SLg:t > diag[t,t"!] und Ty —
GLy: [t1,t2] — diag[t1, t2] sind injektive Homomorphismen algebraischer Grup-
pen; also kann man so jede SLo-Darstellung auf G,,,, und jede GLs-Darstellung
auf T, einschranken.

b) Nun sei V = K2 der natiirliche SLy-Modul. Man zeige, da8 V zu einem
GL3-Modul fortgesetzt werden kann, siche Aufgabe (9.25).

c) Fiir d € Ny sei K[V]q < K[V] die zugehérige homogene Komponente wie in
Aufgabe (9.26). Man bestimme die isotypischen Komponenten von K[V]y als
G,,-Modul und als T>-Modul. Welche Gewichte kommen jeweils vor?

(9.28) Aufgabe: Tori.

Ziel dieser Aufgabe ist ein alternativer Beweis der linearen Reduktivitdt des
Torus T, fir n € N. Dazu schreibe man die Koordinatenalgebra K[T,,] ex-
plizit als direkte Summe einfacher T,,-Teilmoduln. Was sind die isotypischen
Komponenten? Wie kann man damit die einfachen T,,-Moduln klassifizieren?
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(9.29) Aufgabe: Multiplizitéiten.

Es seien G eine linear reduktive Gruppe, V eine affine G-Varietét, die eine
dichte G-Bahn G C V besitze, und S ein einfacher G-Modul. Man zeige:

a) Es gilt [K[V]: S] < dimg(95).

b) Ist G, < G der Stabilisator von z, so gilt sogar [K[V]: S] < dimg((SV)S=).

(9.30) Aufgabe: Koordinatenalgebra der additiven Gruppe.

Man betrachte die Koordinatenalgebra der additiven Gruppe G,.

a) Man bestimme die einfachen G,-Moduln und den Sockel von K[G,].

b) Die multiplikative Gruppe G, operiert in natiirlicher Weise auf G,. Man
bestimme die isotypischen Komponenten von K[G,] als G,,,-Modul.

(9.31) Aufgabe: Ein unzulissiges Gegenbeispiel.
Man betrachte die natiirliche Operation der additiven Gruppe G, = Uy =

{ Ll) ﬂ € GLy;t € K} auf K2 und der Koordinatenalgebra K[X,Y].

a) Man gebe den zu obiger G,-Operation gehérenden Comorphismus an, und
zeige, daB (X?) <K[X,Y ein G,-invariantes Ideal ist.

b) Es seien R := K[X,Y]/(X?) und ~: K[X,Y] — R der natiirliche Epimor-
phismus von K-Algbren. Wie operiert G, auf R? Ist R eine affine K-Algebra?
c) Man zeige: Die Fixpunktmenge RS+ C R ist eine K-Algebra, und wird als
solche von {XY™ € R;n € Ny} erzeugt. Man folgere, dal R« nicht Noethersch
ist, also insbesondere als K-Algebra nicht endlich erzeugt ist.

(9.32) Aufgabe: Ein zulissiges, aber nicht-lineares Gegenbeispiel.

Es seien K ein algebraisch abgeschlossener Korper mit char(K) = 0, und G, die
additive Gruppe. Man zeige:

a) Durch

1 1 1
[a,b,2,y, 2] = [a,b,x +ta®, y +t(ax +b) + itza?’, z+ty+ §t2(aa: +b)+ étgag],
fir t,a,b,z,y, 2 € K, wird V := K® zu einer G,-Varietit.
b) Der Invariantenring K[V]%« ist als K-Algebra nicht endlich erzeugt.

(9.33) Aufgabe: Nagatas Gegenbeispiel.
Es seien K := C, und {a;; € C;i € {1,...,16},5 € {1,...,3}} paarweise ver-
schiedene, iiber QQ algebraisch unabhéngige Zahlen. Auflerdem sei G C GL35 die

Menge aller Blockdiagonalmatrizen der Form @}il [%Z Clcbi} , wobei Hgil ¢ =
1und Y12, biag; = 0, fiir j € {1,...,3}. Man zeige:

a) Es ist G eine abgeschlossene Untergruppe von GL3s. Also ist G eine affine
algebraische Gruppe, und V := C32 wird zum natiirlichen G-Modul.

b) Der Invariantenring C[V]€ ist als C-Algebra nicht endlich erzeugt.

(9.34) Aufgabe: Noethersche Gradschranke.

Es seien G eine endliche Gruppe, K ein algebraisch abgeschlossener Korper
mit char(K) = 0 oder char(K) > |G|, und V ein G-Modul. Man zeige: Die
K-Algebra K[V]¢ wird von homogenen Invarianten mit Grad < |G| erzeugt.

Hinweis. Man verwende Dade’s Trick und Aufgabe (9.19).
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(9.35) Aufgabe: Lineare Reduktivitit.

Man zeige: Eine affine algebraische Gruppe G ist genau danm linear reduk-
tiv, wenn fiir jeden G-Modul V und jedes G-invariante Ideal I < K[V] stets
K[V]G /(I nK[V]E) = (K[V]I/)€ gilt.

(9.36) Aufgabe: Geometrische Reduktivitat.

Man zeige: Eine affine algebraische Gruppe G ist genau dann geometrisch reduk-
tiv, wenn es fiir jeden unzerlegbaren G-Modul V und jeden Vektor 0 # v € V€
eine Invariante f € K[V]$, fiir ein d € N, gibt mit f(v) # 0. Gilt eine analoge
Eigenschaft auch fiir lineare Reduktivitét?

(9.37) Aufgabe: Starrheit von Tori.
Es seien G eine affine algebraische Gruppe, und T < G eine abgeschlossene
Untergruppe, die ein Torus ist. Man zeige: Es gilt Ng(T)° = Cg(T)°.

Hinweis. Wie operiert Ng(T)° auf den Elementen endlicher Ordnung in T?

(9.38) Aufgabe: Reduktive Gruppen.

Es sei G eine zusammenhéngende reduktive Gruppe. Man zeige: Es ist R(G) =
Z(G)°, die Gruppen G/Z(G) und [G, G] sind zusammenhéngend und halbein-
fach, Z(|G, G]) = R(G) N [G, G] ist endlich, und es ist G = Z(G)° - [G, G].

Hinweis. Man benutze Aufgabe (9.37).

(9.39) Aufgabe: Volle und spezielle lineare Gruppen.
a) Es sei n € N. Man zeige: Es ist [B,,,B,] = U, und (U,)™ = {1}. Daraus
folgere man, da B,, und U,, auflésbar sind.

Hinweis. Fiir die erste Aussage betrachte man die Abbildung U,, — U,,: u —
[t,u], fiir ein ¢ € T, mit CgL, (t) = T,. Fir die zweite Aussage betrachte
man die absteigende Zentralreihe von U, die durch (Un)[o] = U,, und
(U)W = [U,,, (U,)E-Y], fiir i € N, definiert ist.

b) Man zeige: Es gilt [GL,,,GL,| = [SL,,,SL,] = SL,, = (U,,, U..). Aufler-
dem sind GL,, reduktiv und SL,, halbeinfach.

Hinweis. Man betrachte die U,, und U,, := {A™" € SL,;A € U,}, und
benutze (ohne Beweis) den Satz von Lie-Kolchin: Die einfachen Moduln einer
zusammenhéangenden auflosbaren algebraischen Gruppe sind eindimensional.

(9.40) Aufgabe: Faktorgruppen.

Es seien G eine affine algebraische Gruppe, H< G ein (geometrisch) reduktiver
Normalteiler, und V eine affine G-Varietédt, auf der H trivial operiere. Man
zeige: Dann ist V' in natiirlicher Weise eine (G /H)-Varietét.

(9.41) Aufgabe: Multiplikative Gruppe.

Man betrachte die Gruppe G := G, X G, die durch [z, 9] [a, b] := [za, yb], fiir
z,y € Kund a,b € G,,, auf V := K? operiere, sowie die Einbettungen v: G, —
G:gw [g,]]und 6: G, = G: g+ [g,9) und €: G, = G:g — [g,971],
siehe Aufgabe (9.15). Man bestimme die Invariantenalgebren, die algebraischen
Quotienten und deren Fasern. Welche der Quotienten sind geometrisch? Wie
verhalt sich jeweils die maximale Faserdimension zur Dimension des Quotienten?
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(9.42) Aufgabe: Additive Gruppe.

Es sei V := K2 der G,-Modul zur Darstellung G, — GLy: t — [(1] i
zeige: Die Teilmenge U := V \ VG ist eine affine G,-Varietiit mit Koordinate-
nalgebra K[U] = K[X*! Y] sowie Invariantenalgebra K[U]%+ = K[X*!], und
w: U — (K\{0}): [z,y] — z ist ein geometrischer Quotient.

}. Man

(9.43) Aufgabe: Quadratische Formen.

Es sei K ein algebraisch abgeschlossener Kérper mit char(K) # 2, und fiir n €
N sei V := K[X3,...,X,]2 die Menge der n-dren quadratischen Formen iiber
K mit der durch Basiswechsel gegebenen GL,,-Operation. Man bestimme die
zugehérigen Bahnen und die <-Relation. AuBerdem zeige man, dafl K[V]Gl» =
K gilt, und bestimme den zugehorigen Quotienten. Ist er geometrisch?

(9.44) Aufgabe: Matrixidquivalenz.

Es seien K ein algebraisch abgeschlossener Korper und M := K"*" mit der
durch Konjugation gegebenen GL,-Operation. Man zeige, daB K[M|St» =
K[M]GLn gilt. Man bestimme den SL,,-Quotienten. Ist er geometrisch?

(9.45) Aufgabe: Vektorinvarianten.
Es seien K ein algebraisch abgeschlossener Kérper mit char(K) # 2, und G :=
(g) = Cy, die via g — {O

1 (1]} auf V := K2 operiere. Man betrachte W := V@V.

a) Es sei K[W] = K[V] @k K[V] = K[X;1, X2,Y1,Y3], wobel X; 2 und Y die
Koordinatenfunktionen auf dem linken bzw. rechten Summanden sind. Wie
operiert G auf K[V] und K[W]? Welche Bahnen hat G auf V und W?

b) Es seien e; = X7 + Xo und e2 = X1 X, sowie f1 = Y7 + Y5 und fo = Y1Yo,
und auflerdem go := XY + XoY5 sowie he := X1Y5 + X5V, Man zeige, daf
K[V]¢ = Kley, e2] und K[W]Y = K]ey, 2, f1, f2, g2, ha] gelten.

c) Es sei P :=K[V]¢ @k K[V]¢ C K[W]9. Man zeige, daB K[W]¥ = P[ds] C
K[W] ist, wobei dy := g2 — ho ein normiertes irreduzibles rein-quadratisches
Polynom § € P[T] erfiillt. Daraus folgere man, daf8 P C K[W]“ eine Noether-
Normalisierung ist, und dafl K[W]“ ein freier P-Modul vom Rang 2 ist.

d) Man zeige, daf8 der (geometrische) Quotient W)/ G eine Hyperfliiche in K® ist,
die einen natiirlichen Epimorphismus auf K* hat, dessen Fasern aus hochstens
zwei Punkten bestehen.

(9.46) Aufgabe: Invariantenkorper.

a) Es seien G eine zusammenhéngende (geometrisch) reduktive Gruppe, deren
eindimensionale Moduln trivial sind. Weiter seien V' ein G-Modul und 7: V —
V)| G der zugehérige Quotient. Man zeige: Die Invariantenalgebra K[V]¢ ist
faktoriell, und es gilt Q(K[V]%) = K(V)C.

b) Man zeige, dafl in der obigen Aussage die Voraussetzung iiber G-Moduln
nicht ersatzlos gestrichen werden kann.

Hinweis. Man betrachte die Operation von G, auf K? via g: [z,y] — [zg, yg],
fiir g € G,p,; sieche Aufgabe (9.41).
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