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1. Introduction

It is one of the aims of computational representation theory to provide tools for the
explicit construction of representations of abstractly given algebras. If the algebra
under consideration is given by a finite algebra presentation and the representation
searched for is given by a finite module presentation, then the algorithmic tool at
hand is the so-called VectorEnumerator algorithm, see Section 1.1 and Theorem 1.2.
In this note we are going to show how it is possible to exploit certain abstract
situations to obtain algebra or module presentations, making them accessible for
analysis using the VectorEnumerator algorithm.
In Section 2 we show how module presentations can be obtained in two particular
situations. Firstly an explicit matrix representation can be used to give a module
presentation, and secondly we consider so-called local modules. In Section 3 we
show how presentations of induced modules and of certain epimorphic images are
found. In Section 4 we are concerned with field extensions and how these affect
algebra presentations.
In the final Section 5 we show by example, a so-called Iwahori-Hecke algebra over a
certain cyclotomic field, how the techniques described in this note work together in
practice. Iwahori-Hecke algebras have gained considerable interest in the modular
representation theory of finite groups of Lie type. In particular for the exceptional
types methods of computational representation theory have been of great help in
understanding the representation theory of Iwahori-Hecke algebras. In fact, ex-
amples of this kind have been the original motivation for the present work. The
example presented here is part of a broader examination of exceptional Iwahori-
Hecke algebras done by the author in [11].
Recently, there is rising interest in certain generalizations of Iwahori-Hecke algebras,
the so-called cyclotomic Hecke algebras, see e.g. [2]. Again there are exceptional
types, which for the time being defy deeper theoretical analysis. The computational
techniques described in this note again turn out to be very helpful to understand
the structure and the representation theory of yclotomic Hecke algebras. At the
moment this is work under progress and details on this will appear elsewhere.
Let us now begin by setting the stage for the main actor, where as a general reference
see [1, Section III.2.8.].
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1.1. Let K be a field. Let X be a finite set and AK(X) the free unitary as-
sociative K-algebra over X. Let RK(X) ⊆ AK(X) be a finite subset of algebra
relators and 〈RK(X)〉 E AK(X) the ideal generated by RK(X). Then the K-
algebra 〈X|RK(X)〉 := AK(X)/〈RK(X)〉 is called a finitely presented K-algebra.
Let πR : AK(X)→ 〈X|RK(X)〉 denote the natural K-algebra epimorphism.
Let A be a K-algebra, Y a finite set and MA(Y) the free right unital A-module
over Y. Let rA(Y) ⊆ MA(Y) be a finite subset of module relators and 〈rA(Y)〉 ≤
MA(Y) the submodule generated by rA(Y). Then the A-module 〈Y|rA(Y)〉 :=
MA(Y)/〈rA(Y)〉 is called a finitely presented A-module. Finally, let πr : MA(Y)→
〈Y|rA(Y)〉 denote the natural K-algebra epimorphism.

1.2. Theorem. There is an algorithm, the VectorEnumerator algorithm, which, for
given A := 〈X|RK(X)〉 and M := 〈Y|rA(Y)〉 as in Section 1.1, terminates, if and
only if dimK(M) is finite. In this case, a K-basis B of M and representing matrices,
with respect to B, for the action of πR(X) on M are returned.

Theorem 1.2 has been proven in [6, 7] and independently in [5].
For the time being there are the following implementations of the VectorEnumerator
algorithm: for K a small finite prime field or the rationals [8]; an experimental
version [9] in the computer algebra system GAP [14]; and for K a rational function
field over the rationals [12], based on the implementation [8] and the FACTORY
library [4] for arithmetic of multivariate polynomials.

2. Module presentations

2.1. Matrix representations. Let A be a K-algebra, which is as a K-algebra is
generated by the finite set A := {a1, . . . , as} and s := |A|. Let M be an A-module
such that n := dimK(M) is finite and M = 〈m1, . . . ,mr〉 as A-module for some
r ∈ N. Let B := {b1, . . . , bn} be a K-basis of M such that bi := ml(i)wi, where
1 ≤ l(i) ≤ r and wi ∈ A for all 1 ≤ i ≤ n. Let the action of ak ∈ A on M be given
as biak =

∑r
j=1 a

k
ij · bj , where akij ∈ K.

Note that a special case is given by bi = mi and wi = 1 for all 1 ≤ i ≤ n = r. This
means that representing matrices, with respect to B, for the action of A on M are
known. If only an A-module generating set of M is known, a K-basis B can be
found using variants of the standard basis algorithm, see [13].

2.2. Theorem. Let Y := {Y1, . . . ,Yr} and

rA(Y) := {Yl(i)wiak −
r∑
j=1

akij ·Yl(j)wj ; 1 ≤ i ≤ n, 1 ≤ k ≤ s}.

Then α : 〈Y|rA(Y)〉 →M : πr(Yi) 7→ mi ⊆MA(Y) is an A-module isomorphism.

Proof. There is an A-module homomorphism MA(Y)→M : Yi 7→ mi, which has
rA(Y) in its kernel, and is an epimorphism, as M = 〈m1, . . . ,mr〉 as A-module.
As {πr(Yl(i))wi; 1 ≤ i ≤ n} generates 〈Y|rA(Y)〉 as a K-vector space, we have
dimK(〈Y|rA(Y)〉) ≤ n, and the assertion follows. ]
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2.3. Local modules. Let dimK(A) be finite. Let S be an irreducible A-module
and M a finitely generated A-module. M is called S-local, if M/rad(M) ∼= S as
A-modules. For a ∈ A let aM ∈ EndK(M) denote the linear map induced by the
action of a on M . An element a ∈ A is called an S-peakword, if ker(aS′) = {0}
for all simple A-modules S′ 6∼= S and dimK(ker(a2

S)) = dimK(EndA(S)); for more
details see [10]. If M is S-local and a ∈ A is an S-peakword, then, by [10, Theorem
2.3], there exists v ∈M such that vat = 0 for some t ∈ N and M = 〈v〉 as A-module.
Conversely, if M = 〈v〉 as A-module, such that vat = 0 for an S-peakword a ∈ A
and some t ∈ N, then M is S-local. Hence the finitely presented A-module Ma,t :=
〈Y |Y at〉, being generated by the element πa,t(Y ) ∈ Ma,t, is S-local and thus an
epimorphic image of the projective cover PS of S. As the identity on MA(Y )
induces an A-module epimorphism αa,t+1 : Ma,t+1 → Ma,t : πa,t+1(Y ) 7→ πa,t(Y )
for all t ∈ N, we have dimK(Ma,t) ≤ dimK(Ma,t+1) ≤ dimK(PS) <∞.

2.4. Theorem. Let t0 := min{t ∈ N; dimK(Ma,t) = dimK(Ma,t+1)}, where a ∈ A
is an S-peakword. Then for all t ∈ N we have as A-modules

〈Y |Y at0〉 = Ma,t0
∼= Ma,t0+t

∼= PS .

Proof. By assumption αa,t0+1 is an isomorphism. By induction we now assume
t ≥ 2. We have πa,t0+t(Y )a · at0+t−1 = 0, hence the A-submodule 〈πa,t0+t(Y )a〉 ≤
Ma,t0+t is an epimorphic image of Ma,t0+t−1

∼= Ma,t0+t−2. Hence we even have
0 = πa,t0+t(Y )a · at0+t−2 = πa,t0+t(Y )at0+t−1. Thus βa,t0+t−1 : Ma,t0+t−1 →
Ma,t0+t : πa,t0+t−1(Y ) 7→ πa,t0+t(Y ) is well-defined and βa,t0+t−1 = α−1

a,t0+t. Fi-
nally, there exists v ∈ PS such that vas = 0, for some s ∈ N, and PS = 〈v〉 as
A-modules. Hence PS is an epimorphic image of Ma,s. ]

2.5. Remarks.
a) In certain situations there are efficient techniques to find S-peakwords, see [10].
Hence in these cases Theorem 2.4 provides a means to determine projective covers
of simple A-modules.
b) Unfortunately, it is not always true that Ma,1 is isomorphic to the simple module
S. In general, further relators are needed. These can e.g. be found by camparing
the action of A on Ma,1 and on S, with respect to suitable standard K-bases of
Ma,1 and S.

3. Induced modules and epimorphic images

3.1. Induced modules. Let A and B be K-algebras and ϕ : A→ B a K-algebra
homomorphism. Note that if ϕ is a monomorphism, then A can be considered
as a K-subalgebra of B. Anyway, B can be considered as a left A-module AB,
by restriction along ϕ. For any A-module N we can form the induced B-module
N ⊗A B. Note that if AB is free of finite rank, s say, and dimK(N) is finite, then
we have dimK(N ⊗A B) = s · dimK(N).
Let now Y be a finite set and r := |Y|. Hence we have a B-module isomorphism
αr : MA(Y) ⊗A B ∼= ⊕ri=1(A ⊗A B) → ⊕ri=1B

∼= MB(Y), given componentwise by
the natural isomorphism α : A⊗A B → B : a⊗ b 7→ ϕ(a)b.
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3.2. Theorem. Let M := 〈Y|rA(Y)〉 be a finitely presented A-module, and let

rB(Y) := αr(rA(Y)⊗ 1) ⊆MB(Y).

Then we have 〈Y|rB(Y)〉 ∼= M ⊗A B as B-modules.

Proof. By [15, Proposition 2.6.3], the tensor functor ?⊗A B is right exact. Hence
we have (MA(Y)/〈rA(Y)〉)⊗A B ∼= (MA(Y)⊗A B)/〈rA(Y)⊗ 1〉. ]

3.3. Epimorphic images. If M := 〈Y|rA(Y)〉 is a finitely presented A-module,
and we add module relators to the set rA(Y), we by definition obtain an epimorphic
image of M . If 〈X|RK(X)〉 is a finitely presented K-algebra, and we add algebra
relators to the set RK(X), we not only obtain an epimorphic image of the algebra
we started with, but this also affects finitely presented modules.
Let again A and B be K-algebras and ϕ : A → B a K-algebra homomorphism.
Note that in the above situation ϕ is an epimorphism. Anyway, any B-module N
can be considered as an A-module NA, by restriction along ϕ. In particular, we can
consider B as an A-module BA. We assume that BA = 〈W〉 as A-module, where
W := {w1, . . . , ws} and s := |W|. Note that W can be chosen as a singleton set, if
and only if ϕ is an epimorphism.
Let again Y be a finite set and r := |Y|. There is an A-module epimorphism

βrs : ⊕sj=1 MA(Y) ∼= ⊕sj=1(⊕ri=1A) ∼= ⊕ri=1(⊕sj=1A)→ ⊕ri=1BA
∼= MB(Y)A

given componentwise, i.e. for all 1 ≤ i ≤ r, by βs : ⊕sj=1 A → BA : [a1, . . . , as] 7→∑s
j=1 wjaj .

From this we conclude the following theorem, where for a subset N ⊆ MA(Y) we
let [N, . . . , N ] := {[n1, . . . , ns] ∈ ⊕sj=1MA(Y);nj ∈ N, 1 ≤ j ≤ s}.

3.4. Theorem. Let M := 〈Y|rA(Y)〉 be a finitely presented A-module and

rB,A(Y) := βrs ([rA(Y), . . . , rA(Y)]) ⊆MB(Y).

Then βrs induces an A-module epimorphism ⊕sj=1M → 〈Y|rB,A(Y)〉A. In partic-
ular, if ϕ is an epimorphism, then 〈Y|rB,A(Y)〉A is an epimorphic image of the
A-module M .

4. Finitely generated field extensions

Besides the theoretical interest in rationality questions, this section is motivated by
the following practical problem. To actually run the VectorEnumerator algorithm,
one has to be able to do arithmetical operations in the base field, which for the
interesting applications have to be sufficiently fast as well. In the case where an
efficient implementation of the arithmetic in a field K is available, but the algebra
and module presentations are given over a finite extension field L ≥ K, for which
such an implementation is not at hand, one can use the VectorEnumerator algorithm
instead to do the arithmetic in L.
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4.1. Let L := K(ζ) ≥ K be an algebraic field extension. Note that this covers
finitely generated separable field extensions, as in these cases there always exist
primitive elements. Arbitrary finitely generated algebraic field extension can be
dealt with by an iterated application of Proposition 4.2 and Theorem 4.3.
Let µK(X) ∈ K[X] the minimum polynomial of ζ over K. Hence K[X] is isomor-
phic to the free K-algebra AK(X) being generated by the element X ∈ AK(X) and
λ : 〈X|µK(X)〉 → L : πµ(X) 7→ ζ is a K-algebra isomorphism.

4.2. Proposition. Let SK(X, X) := {µK(X)} ∪ {xX −Xx;x ∈ X} ⊆ AK(X, X),
where X is a finite set not containing X. Then the following holds.
a) There is a K-algebra isomorphism

α : AK(X)⊗K 〈X|µK(X)〉 → 〈X, X|SK(X, X)〉 : x⊗ πµ(X) 7→ πS(xX)

for all x ∈ X. Hence 〈X, X|SK(X, X)〉 becomes an L-algebra via α(1⊗ λ−1).
b) There is an L-algebra isomorphism

β : 〈X, X|SK(X, X)〉 → AL(X) :
{
πS(X) 7→ ζ · 1,
πS(x) 7→ x, x ∈ X.

Proof. a) The monomorphisms AK(X) → AK(X, X) and AK(X) → AK(X, X)
induce a K-linear map AK(X)⊗KAK(X)→ AK(X, X) πS→ 〈X, X|SK(X, X)〉, where
1 ⊗ X 7→ πS(X) and x ⊗ 1 7→ πS(x) for all x ∈ X. As xX − Xx ∈ SK(X, X)
for all x ∈ X, this is a K-algebra homomorphism, having AK(X)⊗K µK(X) in its
kernel. Hence α is well-defined. Conversely, there is a K-algebra homomorphism
AK(X, X) → AK(X) ⊗K 〈X|µK(X)〉 defined by X 7→ 1 ⊗ πµ(X) and x 7→ x ⊗ 1
for all x ∈ X, which hence has SK(X, X) in its kernel. Thus for the induced map
α̃ : 〈X, X|SK(X, X)〉 → AK(X)⊗K 〈X|µK(X)〉 we have α̃ = α−1.
b) There is a K-algebra homomorphism AK(X, X)→ AL(X) defined by X 7→ ζ · 1
and x 7→ x for all x ∈ X, which has SK(X, X) in its kernel. Hence β is well-defined.
There is an L-algebra homomorphism β̃ : AL(X) → 〈X, X|SK(X, X)〉 defined by
x 7→ πS(x) for all x ∈ X. By L-linearity, we have β̃(ζ) = πS(X). Hence β̃ = β−1. ]

4.3. Theorem. Let 〈X|RL(X)〉 be a finitely presented L-algebra. For each v ∈
RL(X) ⊆ AL(X) choose wv ∈ π−1

S β−1(v) ⊆ AK(X, X).
a) Let RK(X, X) := SK(X, X) ∪ {wv; v ∈ RL(X)} ⊆ AK(X, X), hence there is the
natural K-algebra epimorphism πSR : 〈X, X|SK(X, X)〉 → 〈X, X|RK(X, X)〉. Then
〈X, X|RK(X, X)〉 becomes an L-algebra via πSR·α(1⊗λ−1), and there is an L-algebra
isomorphism

γ : 〈X, X|RK(X, X)〉 → 〈X|RL(X)〉 :
{
πR(X) 7→ ζ · 1,
πR(x) 7→ πRL(x), x ∈ X.

b) Let 〈X|RL(X)〉 be defined over K, i.e. wv can be chosen as elements of AK(X)
for all v ∈ RL(X), and RK(X) := {wv; v ∈ RL(X)} ⊆ AK(X). Then there is an
L-algebra isomorphism

δ : 〈X|RK(X)〉 ⊗K 〈X|µK(X)〉 → 〈X|RL(X)〉 : πR(x)⊗ πµ(X) 7→ ζ · πRL(x).
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Proof. a) We have βπS(RK(X, X)) = RL(X) ∪ {0}. Hence γ is well-defined by
γπSR = πRLβ and the assertion follows from Proposition 4.2.
b) Let RK(X)⊗ 1 := {wv ⊗ 1; v ∈ RL(X)}. The natural map

〈X|RK(X)〉 ⊗K 〈X|µK(X)〉 → (AK(X)⊗K 〈X|µK(X)〉)/〈RK(X)⊗ 1〉

is an L-algebra isomorphism. Let R̃K(X, X) := SK(X, X)∪RK(X). Hence we have
α(RK(X) ⊗ 1) = πS(R̃K(X, X)). By Proposition 4.2 and a) we conclude that δ is
well-defined by δ · (π−1

R ⊗ id) = γπS
R̃
· α and as asserted. ]

4.4. Corollary. Let A := 〈X|RL(X)〉. Let M := 〈Y|rA(Y)〉 be a finitely presented
A-module and r := |Y|.
a) Let B := 〈X, X|RK(X, X)〉. By restriction along γ, any A-module N can be con-
sidered as a B-module, NB say. In particular, there is the B-module isomorphism
γr : MB(Y) ∼= ⊕ri=1B → ⊕ri=1AB

∼= MA(Y)B , which is given componentwise by γ.
Let rB(Y) := (γr)−1(rA(Y)). Then we have 〈Y|rB(Y)〉 ∼= MB as B-modules.
b) Let A be defined over K and now B := 〈X|RK(X)〉. Recall that L ∼= 〈X|µK(X)〉
as K-algebras. By restriction along δ, any A-module N can be considered as
a (B ⊗K L)-module, NBL say, and there is the (B ⊗K L)-module isomorphism
δr : MB⊗KL(Y) ∼= ⊕ri=1(B ⊗K L) → ⊕ri=1ABL

∼= MA(Y)BL, which is given com-
ponentwise by δ. Let M be defined over K, i.e. for all m ∈ rA(Y) we have
(δr)−1(m) = [m1 ⊗ 1, . . . ,mr ⊗ 1] ∈ ⊕ri=1(B ⊗K 1).
Let rB(Y) := {[m1, . . . ,mr];m ∈ rA(Y)}. Then we have 〈Y|rB(Y)〉 ⊗K L ∼= MBL

as (B ⊗K L)-modules.

4.5. Remark. Let B and MB be as in Corollary 4.4, assume that dimK(MB) is
finite, and representing matrices, with respect to some K-basis B, for the action of
πRK (X) and πRK (X) on MB are known. By Theorem 4.3, the action of πRK (X)
on MB describes the action of the field generator ζ ∈ L on M . Hence using a
variant of the standard basis algorithm, it is possible to find an L-basis B̃ for M
and representing matrices, with respect to B̃, for the action of πRL(X) on M .

5. An example

The computations described in this section have been done using the implementa-
tion [8] of the VectorEnumerator algorithm, over the base field of rational numbers.
On modern PCs the results are obtained in a matter of seconds or minutes of CPU
time. Indeed, much larger examples can nowadays be dealt with using these tech-
niques.

5.1. Let W be a finite Coxeter group of Dynkin type Γ with standard generators S.
Let L be a field, 0 6= u ∈ L, and HL(Γ, u) := 〈T|RL(T)〉 be the the corresponding
Iwahori-Hecke algebra with parameter u, where T := {Ts; s ∈ S} and RL(T) is
defined as follows. For all s, s′ ∈ S, s 6= s′, let mss′ ∈ N be the order of ss′ ∈W . If
mss′ is even, let

R(s, s′) := (TsTs′)mss′/2 − (Ts′Ts)mss′/2.
If mss′ is odd, let b·c denote the lower Gauss bracket and

R(s, s′) := (TsTs′)bmss′/2cTs − (Ts′Ts)bmss′/2cTs′ .

Let R(s) := T 2
s − (u − 1)Ts − u · 1 and RL(T) := {R(s), R(s, s′); s, s′ ∈ S, s 6= s′}.

For more details see e.g. [3, Section 10.].
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Table 1. Dynkin graph of type E7t t t t t t
t

1 2 3 4 6 7

5

5.2. From now on we let Γ = E7, whose Dynkin graph is shown in Table 1, where
S := {1, . . . , 7}. This means mij = 3, if the nodes i and j are joined, and mij = 2, if
they are not. We let L := Q[i] ≥ Q =: K, hence we have L ∼= K[X]/〈X2 +1〉 as K-
algebras. Finally, we let u = −1 and H := HL(E7,−1). Note that H is defined over
K, see Theorem 4.3. Hence we have a K-algebra HK := γ−1δ(HK(E7,−1)⊗K 1).
Let H ′ ⊆ H be the parabolic L-subalgebra which as an L-algebra is generated by
{T2, . . . , T7}. We have H ′ ∼= HL(E6,−1) as L-algebras, where the Dynkin graph
of type E6 is the subgraph of the Dynkin graph of type E7 induced by the nodes
{2, . . . , 7}. Let H ′K := γ−1δ(HK(E6,−1)⊗K 1).
Let M the irreducible H ′-module with character χ10,9, see [3, Section 13.9.]. For
the purpose of this note the precise definition of M does not matter, we only note
that dimL(M) = 10. To construct M explicitly we use Theorem 1.2 and Corollary
4.4, which hence yields an H ′K-module MH′K

such that dimK(MH′K
) = 20.

5.3. Let H ′′ ⊆ H ′ be the parabolic L-subalgebra which as an L-algebra is gener-
ated by {T3, . . . , T7}. We have H ′′ ∼= HL(D5,−1) as L-algebras, where the Dynkin
graph of type D5 is the subgraph of the Dynkin graph of type E7 induced by the
nodes {3, . . . , 7}. Let H ′′K := γ−1δ(HK(D5,−1)⊗K 1).
It is known that the restriction MH′′ of M to H ′′ is an irreducible H ′′-cell module.
Again, the precise definition of cell modules does not matter. The theory of cell
modules allows us to compute representing matrices, with respect to a certain basis,
for the action of {T3, . . . , T7} on MH′′ . The cell module MH′′ is only defined over
L, hence we use Theorem 2.2 and Corollary 4.4 to obtain a finitely presented H ′′K-
module N := (MH′′)H′′K , thus dimK(N) = 20.

Using Theorems 1.2 and 3.2, we compute the induced module N ⊗H′′K H ′K . As H ′

is a free left H ′′-module of rank 27, which hence holds for the left H ′′K-module H ′K
as well, by Section 3.1 we have dimK(N⊗H′′K H

′
K) = 540. By Frobenius reciprocity,

see [15, Proposition 2.6.3], MH′K
is an epimorphic image of N ⊗H′′K H

′
K .

It turns out that the element πR(T3T5T4T6T7) ∈ H ′′K ⊆ H ′K acts on N by a K-
linear map whose minimum polynomial equals Φ4Φ8, where Φn ∈ K[X] denotes
the n-th cyclotomic polynomial. We hence add Φ4Φ8(T3T5T4T6T7) to the set of
algebra relators in the presentation for H ′K , see Section 3.3. By Theorem 3.4,
this defines an epimorphic image Ñ of N ⊗H′′K H ′K , which in turn has MH′K

as an
epimorphic image. Applying Theorem 1.2, we find that dimK(Ñ) = 20, hence we
have Ñ ∼= MH′K

as H ′K-modules.

5.4. Using the matrices forMH′K
and Theorems 1.2, 2.2, and 3.2 again, we compute

the induced module MH′K
⊗H′KHK . As H is a free left H ′-module of rank 56, which

hence holds for the left H ′K-module HK as well, we have dimK(MH′K
⊗H′K HK) =

1120.
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To exhibit a certain epimorphic image of MH′K
⊗H′K HK , we proceed as follows.

Let w0 ∈ W be the longest element, where W is the Coxeter group of type E7.
The corresponding element Tw0 ∈ HK , which is central in HK , can be written as a
product of length 63 in the generators {T1, . . . , T7} of HK . We add Tw0 + 1 to the
set of algebra relators in the presentation for H ′K , see Section 3.3, and now do the
induction from H ′K to HK by Theorem 3.2 and going over to the epimorphic image
M̃ of MH′K

⊗H′K HK defined by the additional relator by Theorem 3.4 in a single
application of Theorem 1.2. We find that dimK(M̃) = 448 holds.
Unfortunately, we cannot explain the significance of the existence of this epimorphic
image in this note. For more details and for more examples of this kind, we refer
the reader to [11].
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