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Abstract

We introduce a database containing the character tables of the endomor-
phism rings of the multiplicity-free permutation modules of the sporadic
simple groups, their automorphism groups, their Schur covers, and their
bicyclic extensions. We describe the techniques used to compile the data,
and present a couple of applications to orbital graphs.
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1 Introduction

The purpose of the present paper is to introduce the database [5] containing the
character tables of the endomorphism rings of the multiplicity-free permutation
modules of the sporadic simple groups, their automorphism groups, their Schur
covers, and their bicyclic extensions, thereby covering all almost quasi-simple
groups related to the sporadic simple groups. The database is planned to become
a contributed package of the computer algebra system GAP [11].

The subject has a certain history: The multiplicity-free actions of the sporadic
simple groups and their automorphism groups have been classified in [4], their
Schur covers have been considered in [21], and independently including their
bicyclic extensions in [2]. The work of systematically computing collapsed adja-
cency matrices for the sporadic simple groups and their automorphism groups
has been begun in [32], by a consideration of the necessarily multiplicity-free
actions up to rank 5. In [14] these and other earlier results scattered in the liter-
ature have been collected, and therefrom the character tables associated to the
multiplicity-free actions of degree ≤ 107 have been determined. The remaining
cases for the sporadic simple groups and their automorphism groups, having
degree up to ∼ 1015, have been dealt with in [25], requiring considerable com-
putational efforts. Finally, we have now been able to deal with the Schur covers
and the bicyclic extension of the sporadic simple groups as well, completing the
programme laid out above, up to a single open case, see (3.3).

Besides their own importance in the representation theory of finite groups, an-
other reason to look at endomorphism rings of permutation modules is their
connection to orbital graphs, relating group theory to notions of algebraic graph
theory, such as distance-transitivity, see e. g. [16]. Actually, this has been the
original motivation to compile the database, to have easy and complete access
to the relevant data for the sporadic simple groups and their extensions.

The present paper is organised as follows: In Section 2 we recall the necessary
facts about permutation modules, in Section 3 we explain how the database is
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organised, and how to actually access the data through GAP, in Section 4 we
describe the techniques used to compile the data, and in Section 5 we indicate
a couple of applications to orbital graphs.

Acknowledgements. I am grateful to I. Höhler and S. Linton for provid-
ing lots of explicit results, and to T. Breuer and M. Neunhöffer for valuable
computational advice and help.

2 Theoretical background

We recall the necessary facts about permutation modules and their endomor-
phism rings, thereby fixing the notation used throughout; as general references
see e. g. [25, 37, 1].

(2.1) Let G be a finite group, let H ≤ G and let n := [G : H]. Let Ω 6= ∅ be
a transitive G-set such that StabG(ω1) = H, for some ω1 ∈ Ω. Moreover, let
Ω =

∐r
i=1 Ωi, be the decomposition of Ω into H-orbits, called the associated

suborbits. The numbers n ∈ N and r ∈ N are called the degree and the
rank of Ω, respectively. For i ∈ {1, . . . , r} we choose ωi ∈ Ωi and gi ∈ G
such that ω1gi = ωi, where we assume g1 = 1 and Ω1 = {ω1}, and we let
Hi := StabH(ωi) ≤ H be the stabiliser of ωi in H, and ki := |Ωi| = |H|/|Hi|
be the associated subdegrees.

For i ∈ {1, . . . , r} the orbits Oi := [ω1, ωi] ·G ⊆ Ω×Ω of the diagonal action of
G on Ω×Ω are called the associated orbitals, hence |Oi| = |G|/|Hi| = nki. For
i ∈ {1, . . . , r} let i∗ ∈ {1, . . . , r} be defined by Oi∗ = [ωi, ω1] ·G ⊆ Ω×Ω. Then
Ωi∗ is called the suborbit paired to Ωi; note that ki∗ = ki. For i ∈ {1, . . . , r}
let Ai = [aω,ω′ ] ∈ {0, 1}n×n, with row index ω ∈ Ω and column index ω′ ∈ Ω,
be defined by aω,ω′ := 1 if [ω, ω′] ∈ Oi, and aω,ω′ := 0 otherwise. Hence in
particular A1 is the identity matrix, and we have Atr

i = Ai∗ .

For a subset I ⊆ {2, . . . , r} being closed under taking paired suborbits, i. e.
for all i ∈ I we also have i∗ ∈ I, let the generalised orbital graph GI be
the simple undirected graph having vertex set Ω and adjacency matrix AI :=∑
i∈I Ai; if I = {i} or I = {i, i∗} then GI is called an orbital graph. Hence

GI is a regular graph with valency
∑
i∈I ki.

(2.2) Let ZΩ be the permutation ZG-module associated to Ω, and let E :=
EndZG(ZΩ) be its endomorphism ring, i. e. the set of all Z-linear maps ZΩ →
ZΩ commuting with the action of G. Via the Z-basis Ω of ZΩ, the matrices
Ai ∈ Zn×n can be interpreted as Z-linear maps, and by Schur’s Theorem [34],
see also [18, Ch.II.12], the set A := {Ai; i ∈ {1, . . . , r}} is indeed a Z-basis of
E, called its Schur basis. Moreover, A also is a C-basis of EC := E ⊗Z C ∼=
EndCG(CΩ), which is a split semisimple C-algebra.

For i ∈ {1, . . . , r} let P (i) = [p(i)
h,j ] ∈ Zr×r, with row index h ∈ {1, . . . , r}
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and column index j ∈ {1, . . . , r}, be the representing matrix of Ai for its right
regular action on E, with respect to the Schur basis A, i. e. we have AhAi =∑r
j=1 p

(i)
h,jAj . Hence the map E → Z

r×r : Ai 7→ P (i), for i ∈ {1, . . . , r},
is a faithful Z-representation of E. The matrices P (i) are called collapsed
adjacency matrices or intersection matrices.

The matrix entries p(i)
h,j ∈ Z are called intersection numbers and are given as

p
(i)
h,j = |Ωh ∩ Ωi∗gj | ∈ N0. From kj · |Ωh ∩ Ωi∗gj | = kh · |Ωj ∩ Ωigh|, for h, i, j ∈
{1, . . . , r}, we get the identity p(i)

h,jkj = |Ωj ∩Ωigh| · kh = p
(i∗)
j,h kh. Moreover, the

first row and the first column of P (i) are given as p(i)
1,j = δi,j and p(i)

h,1 = kh ·δh,i∗ ,
respectively, where δ·,· ∈ {0, 1} denotes the Kronecker function. The column
sums of P (i) are identically given as

∑r
h=1 p

(i)
h,j =

∑r
h=1 |Ωh ∩ Ωi∗gj | = ki, and

the row sums of P (i), weighted with the subdegrees, are depending on h given
as
∑r
j=1 kjp

(i)
h,j = khki.

Moreover, if E is commutative, then we have p(h)
i,j kj = p

(i)
h,jkj = |Ωj ∩ Ωigh| ·

kh. Thus in this case, if the subdegrees are known, the determination of P (h)

essentially boils down to computing the orbit counting matrices C(gh) :=
[ci,j(gh)] ∈ Zr×r, with row index i ∈ {1, . . . , r} and column index j ∈ {1, . . . , r},
where the matrix entries ci,j(gh) := |Ωj ∩Ωigh| ∈ N0 are called orbit counting
numbers. Note that the column sums and row sums of C(gh) are identically
given as

∑r
i=1 ci,j(gh) = kj and

∑r
j=1 ci,j(gh) = ki, respectively.

(2.3) Let IrrC(E) be the set of irreducible complex characters of EC. Then
the character table of E is defined as the matrix ΦE := [ϕ(Ai)] ∈ C|IrrC(E)|×r,
with row index ϕ ∈ IrrC(E) and column index i ∈ {1, . . . , r}.
By [9, Ch.1.11.D] there is a natural bijection, called the Fitting correspon-
dence, between IrrC(E) and the irreducible constituents of the permutation
character 1GH ∈ ZIrrC(G) associated to Ω, where IrrC(G) denotes the set of ir-
reducible complex characters of G. The Fitting correspondent of ϕ ∈ IrrC(E)
is denoted by χϕ ∈ IrrC(G), and for its degree χϕ(1) ∈ N we have n

χϕ(1) =∑r
i=1

||ϕ(Ai)||2
ki

, where || · || : C → R denotes the absolute value function. Thus
the degrees of the Fitting correspondents can be easily computed from ΦE .

The C-algebra EC, and hence equivalently E, is commutative if and only if
the permutation character 1GH ∈ ZIrrC(G) is multiplicity-free, i. e. if all ir-
reducible constituents of 1GH occur with multiplicity 1. In this case, we have
|IrrC(E)| = r and ϕ(A1) = 1, for all ϕ ∈ IrrC(E). Moreover, the rows of
ΦE ∈ Cr×r fulfil orthogonality relations, which can be written as the matrix
identity ΦE · diag[ki; i ∈ {1, . . . , r}]−1 · Φtr

E = n · diag[χϕ(1);ϕ ∈ IrrC(E)]−1,
where : C → C denotes complex conjugation, and diag[·] ∈ Cr×r denotes the
diagonal matrix having the indicated entries; in particular ΦE is invertible.
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(2.4) Let E be commutative. Then the character table ΦE and the collapsed
adjacency matrices P (i) are related as follows: If ΦE is given, the matrices P (i)

are easily computed using the formula P (i) = Φtr
E ·diag[ϕ(Ai);ϕ ∈ IrrC(E)]·Φ−tr

E .

Conversely, if the P (i) are given, the set {[ϕ(Ai); i ∈ {1, . . . , r}];ϕ ∈ IrrC(E)} ⊆
C
r, i. e. the set of the rows of ΦE still to be computed, is characterised as the

unique C-basis of the row space Cr consisting of common eigenvectors of all the
matrices P (i)tr ∈ Cr×r, for i ∈ {1, . . . , r}, and having 1 as their first entry. Thus
we have to find the complex eigenvalues of the P (i)tr, which is done as follows:

Note first that by Schur’s Lemma the Schur basis elements Ai ∈ Zn×n, for
i ∈ {1, . . . , r}, are diagonalisable over any common splitting field Q ⊆ K ⊆ C of
the irreducible constituents of 1GH . Thus K may be chosen as a suitable abelian
algebraic number field being contained in Q(IrrC(G)), where for the cases con-
sidered here K typically has very low degree. Anyway, this implies that the
matrices P (i) ∈ Zr×r are also diagonalisable over K. Hence the minimum poly-
nomial µP (i) ∈ Q[X] of P (i) is found as the square-free part of the characteristic
polynomial of P (i), and splits into linear factors in K[X]. Since we actually have
µP (i) ∈ Z[X], we may first factorise µP (i) in Z[X], and subsequently factorise
further in K[X]; algorithms to find square-free parts, as well as to factorise
polynomials in Z[X] and in K[X] are well-known, see [7].

This shows that we have determined a certain row of ΦE whenever we have
found a subset I ⊆ {1, . . . , r} such that the P (i)tr, for i ∈ I, already have a
1-dimensional common eigenspace. Actually, it often turns out that a single
collapsed adjacency matrix already determines most of or even all of ΦE .

(2.5) Let still E be commutative. Then the character table ΦE is related to
the character table of G as follows: Let Cl(G) denote the set of conjugacy classes
of G, and let XG,H := [χ(C)] ∈ Cr×|Cl(G)|, with row index χ and column index
C ∈ Cl(G), be the rows of the character table of G consisting of the irreducible
constituents of 1GH . Let Γ := [γi(C)] ∈ Zr×|Cl(G)|, with row index i ∈ {1, . . . , r}
and column index C ∈ Cl(G), where γi(C) := |C ∩ Hgi| ∈ N0. Then ΦE is
determined by XG,H and Γ: We have ΦE = 1

|H| ·XG,H ·Γ
tr·diag[ki; i ∈ {1, . . . , r}],

where the Fitting correspondent of the i-th row of ΦE is the i-th row of XG,H .

Letting ϕ1 ∈ IrrC(E) be the Fitting correspondent of the trivial constituent of
1GH , this shows that ϕ1(Ai) = ki ∈ N0, for i ∈ {1, . . . , r}. By the orthogonality
relations ϕ1 is the unique character all of whose values are non-negative rational
integers, hence the subdegrees are also easily computed from ΦE .

Moreover, the matrix Γ is determined by XG,H and ΦE as follows: By Ree’s
formula, see [9, Thm.1.11.28], and the orthogonality relations we have Γ =
1
n · diag[ki; i ∈ {1, . . . , r}]−1 · Φtr

E · XG,H · diag[|C|;C ∈ Cl(G)].
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3 The database

(3.1) Contents and accessing the data. The database can be accessed
through GAP [11], where the data and the necessary helper code is stored in the
GAP-readable file mferctbl.gap, which can be downloaded from [5].

The data comprises into the record MULTFREEINFO: For each group G which
is a sporadic simple group or one of its cyclic or bicyclic extensions, MULT-
FREEINFO contains a description of all conjugacy classes of subgroups H < G
such that the action of G on the right cosets of H is faithful and multiplicity-
free, and the character tables ΦE of the endomorphism rings of the associated
permutation modules. Let us just look at the following example:

(3.2) Example. By [4] there are precisely seven equivalence classes of faithful
multiplicity-free actions of the sporadic simple Mathieu group G := M11:

gap> info := MultFreeEndoRingCharacterTables("M11");;
gap> Length(info);
7
gap> info[1];
rec( name := "M11",

group := "$M_{11}$",
subgroup := "$A_6.2_3$",
character := Character( CharacterTable( "M11" ),

[ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ),
rank := 2,
charnmbs := [ 1, 2 ],
ATLAS := "1a+10a",
ctbl := [ [ 1, 10 ], [ 1, -1 ] ],
mats := [ [ [ 1, 0 ], [ 0, 1 ] ],

[ [ 0, 1 ], [ 10, 9 ] ] ] )

Here, the record components are as follows: name is the identifier of the GAP
character table of the group G, which is available in the character table library
CTblLib [3] of GAP and essentially coincides with the one given in [8]; group is a
LATEX format of name; subgroup is a LATEX format of the name of the stabiliser
H; character is the list of values of the permutation character 1GH ∈ ZIrrC(G);
rank is its rank r; charnmbs lists the positions of the irreducible constituents of
1GH in the character table of G; ATLAS is a LATEX format string describing these
constituents; ctbl is the character table ΦE of the endomorphism ring, whose
rows by Fitting correspondence are ordered according to charnmbs; and finally
mats is the list of the corresponding collapsed adjacency matrices P (i).

Note that the record component mats containing the collapsed adjacency ma-
trices P (i) is not stored in the database, but the P (i) are computed from the
character table ΦE at runtime, invoking the formula given in (2.4). This can
also be done on user demand as follows:
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gap> CollapsedAdjacencyMatricesFromCharacterTable(info[1].ctbl);
[ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 0, 1 ], [ 10, 9 ] ] ]

The character table ΦE can be displayed as follows, where the header gives the
names of the group G and of the stabiliser H, the rows are by Fitting corre-
spondence labelled by the irreducible constituents of the permutation character
1GH , and the columns are labelled by the suborbits Ωi. Recall that the entries
in the first row, which always corresponds to the trivial representation 1a, are
exactly the subdegrees ki. Irrational character values are displayed in a format
as in [8], where a legend shown after the table explains the values; e. g. ER is
the GAP function returning a square root of a rational integer:

gap> DisplayMultFreeEndoRingCharacterTable(info[4]);
G = M_{11}, H = 11:5 < L_2(11)

| O_1 O_2 O_3 O_4 O_5 O_6
-------------------------------------
1a | 1 11 11 11 55 55
11a | 1 -1 -1 11 -5 -5
16a | 1 -4-3b11 -1+3b11 -1 -5 10
16b | 1 -1+3b11 -4-3b11 -1 -5 10
45a | 1 3 3 -1 -5 -1
55a | 1 -1 -1 -1 7 -5

-1+3b11 = (-5+3*ER(-11))/2
-4-3b11 = (-5-3*ER(-11))/2

Moreover, if G is a simple group or an associated automorphism group, and H
is not a maximal subgroup of G, then also the name of a maximal subgroup
containing H is given, while for the Schur covers and the bicyclic extensions, the
action of the associated simple group or its automorphism group being covered
by the action under consideration is given:

gap> info2 := MultFreeEndoRingCharacterTables("2.M12");;
gap> DisplayMultFreeEndoRingCharacterTable(info2[1]);
G = 2.M_{12}, H = M_{11} ---> (M_{12},1)
...

(3.3) By [4, 21, 2] there are 147 equivalence classes of faithful multiplicity-free
actions of the sporadic simple groups, 120 of their automorphism groups, 62 of
their Schur covers and 68 of their bicyclic extensions, accounting for a total of
397 equivalence classes. The complete list is accessed as follows:

gap> infoall := MultFreeEndoRingCharacterTables("all");;
gap> Length(infoall);
397
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There is a single case remaining for which the character table ΦE is not known;
it is characterized by the value fail for the record component ctbl:

gap> unknown := Filtered(infoall, x -> x.ctbl = fail);;
gap> Length(unknown);
1
gap> DisplayMultFreeEndoRingCharacterTable(unknown[1]);
G = 2.B, H = Fi_{23} ---> (B,4)
(character table not yet known)

(3.4) Explicit permutation groups. Finally, there is a couple of programs
dealing with explicit permutation groups:

For a group G whose table of marks is contained in the table of marks library
TomLib [24] of GAP, a list containing its multiplicity-free permutation charac-
ters and the associated permutation representations can be computed using the
function MultFreeFromTOM, which works as follows: Together with the table
of marks, GAP provides the smallest faithful permutation representation of G,
given as standard generators in the sense of [35] whenever the latter are defined,
and a representative H for each conjugacy class of subgroups. Using the facili-
ties dealing with permutation groups available in GAP, it is straightforward to
compute the action of G on the right cosets of H. Note that the ordering of
the actions does not necessarily coincide with the one given by MultFreeEndoR-
ingCharacterTables, and that the trivial representation is returned as well.

gap> multfree := MultFreeFromTOM("M11");;
gap> Length(multfree);
8
gap> multfree[8];
[ Character( CharacterTable( "M11" ),
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ), Group(()) ]

gap> multfree[7];
[ Character( CharacterTable( "M11" ),
[ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ),
Group([ (1,7)(2,9)(3,11)(5,6), (1,8,5,3)(2,10,6,4) ]) ]

Moreover, for a transitive permutation group G with stabiliser H, the associated
collapsed adjacency matrices P (i) can be computed, invoking the formula in
(2.2), as follows:

gap> CollapsedAdjacencyMatricesInfo(multfree[7][2]);
rec( mats := [ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 0, 1 ], [ 10, 9 ] ] ],

points := [ 1, 2 ],
representatives := [ (), (1,2)(5,7)(6,9)(8,11) ] )

Here, the record component mats is the list of the collapsed adjacency matrices
P (i), points are representatives of the suborbits, and representatives is a list of



8

elements of G, the i-th element mapping points[1] to points[i]. Note that the
ordering of the suborbits does not necessarily coincide with the one given by
MultFreeEndoRingCharacterTables.

4 Compiling the data

We briefly describe the techniques, which are of computational as well as of
theoretical nature, used to collect the data. For a complete account of all the
details, which of course would be very technical and too lengthy for the present
paper, the reader is referred to [25].

(4.1) For the ‘small’ cases of degree n ≤ 107, which for the sporadic simple
groups and their automorphism groups have already been dealt with in [14],
typically the associated permutation representations have been used explicitly:

For the sporadic simple groups up to the Held group He, and their automor-
phism groups except HS.2 and He.2, the tables of marks are available in GAP,
hence explicit permutations are accessible through the function MultFreeFrom-
TOM described in (3.4). The cases up to rank 5 for all sporadic simple groups
and their automorphism groups have been dealt with in [32]. For the Schur cov-
ers of the sporadic simple groups explicit permutations have been constructed
in [19]. For many of the remaining cases for the sporadic simple groups and
their extensions, explicit permutations are accessible in the database [36], given
as standard generators in the sense of [35].

For quite a few cases we have constructed permutation representations using
the ‘vector permutation’ technique implemented in the MeatAxe [33]. Given G
and H < G, we look for a matrix representation of G over a small finite field
F , such that there is 0 6= v ∈M , where M is the underlying FG-module, which
is fixed under the action of H, but not fixed under any proper overgroup of H.
Hence the action of G on v ·G ⊆M is equivalent to its action on the right cosets
of H. Here again the database [36] has been a rich source of explicitly given
matrices to start with, and suitable vectors are searched for using the algorithms
to compute submodule lattices in [23], which are also available in the MeatAxe.

Having explicit permutation representations in hand, the technique described in
(3.4) yields all the collapsed adjacency matrices P (i), from which the character
tables ΦE are obtained using the method described in (2.4). Admittedly, for a
few exceptional bicyclic extension cases, instead of using explicit constructions
it turned out to be easier to apply the ideas described in (4.3).

(4.2) The ‘large’ cases of degree n > 107 are collected in Table 1. As is
also indicated in Table 1, a few collapsed adjacency matrices have already been
available in the literature. In many of these cases the available matrices have
been sufficient to obtain a complete splitting of Cr into 1-dimensional common
eigenspaces, and thus to determine the character table ΦE . But in a few cases
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Table 1: ‘Large’ multiplicity-free permutation representations.

G H n r

3.F i22
2F4(2)′ 10 777 536 25 [19]

3.F i22.2 2F4(2)′.2 10 777 536 17 (4.3)
6.F i22.2 2F4(2)′.2 21 555 072 22 (4.3)
6.F i22.2 2F4(2)′.2 21 555 072 22 (4.3)
HN.2 S11 13 680 000 17 (4.5)
HN A11 13 680 000 19 (4.3)
HN.2 U3(8).6 16 500 000 15 (4.5)
HN U3(8).31 16 500 000 19 (4.3)
Ly 3.McL 19 212 250 8 (4.5), (4.6)
Th 3D4(2).3 143 127 000 11 (4.5)
Th 25.L5(2) 283 599 225 11 (4.5)
Fi23 S8(2) 86 316 516 13 [20]
Fi23 211.M23 195 747 435 16 [20]
Co1 21+8

+ .O+
8 (2) 46 621 575 11 [16]

2.Co1 Co3 16 773 120 12 [19]
J4 211 : M24 173 067 389 7 [17]
J4 211 : M23 4 153 617 336 11 (4.5)
Fi′24.2 O−10(2).2 50 177 360 142 17 [20]
Fi′24 O−10(2) 50 177 360 142 17 (4.3)
Fi′24.2 O−10(2) 100 354 720 284 34 (4.3)
Fi′24.2 37.O7(3).2 125 168 046 080 17 [20], (4.2)
Fi′24 37.O7(3) 125 168 046 080 18 (4.3)
3.F i′24 O−10(2) 150 532 080 426 43 [19], (4.2)
3.F i′24.2 O−10(2).2 150 532 080 426 30 (4.3)
B 2.2E6(2).2 13 571 955 000 5 [12]
B 2.2E6(2) 27 143 910 000 8 (4.3), (4.4)
B 21+22.Co2 11 707 448 673 375 10 (4.7)
B Fi23 1 015 970 529 280 000 23 (4.7)
2.B F i23 2 031 941 058 560 000 34 unsolved
M 2.B 97 239 461 142 009 186 000 9 [29]
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there are some higher-dimensional common eigenspaces left, which have to be
split further into 1-dimensional ones; an example computation how to proceed
in these situations is included in (4.6) below.

In the sequel we comment on the cases in Table 1 not covered by earlier results.
The major techniques used, as also indicated in Table 1, are as follows:

(4.3) For quite a few cases there are different, but closely related groups,
having different, but again closely related actions, and it turns out that the
associated character tables are closely related as well. This allows us to deter-
mine certain character tables without explicitly constructing any permutations.
Here, we only present the simplest of these situations, and just note that the
idea to relate various character tables indeed can be applied in several, more
complicated situations. For the quite technical details we refer the reader to
[25, Ch.5].

Let still H ≤ G such that 1GH is multiplicity-free. Moreover, assume there is
an intermediate group H ≤ H ′ ≤ G, hence 1GH′ is multiplicity-free as well. Let
Ω′ =

∐s
j=1 Ω′j be the G-set of right cosets of H ′, together with its decomposition

into H ′-orbits and subdegrees k′j , and let E′ be the associated endomorphism
ring with Schur basis A′ = {A′1, . . . , A′s} ⊆ E′. Since any irreducible constituent
of 1GH′ also occurs in 1GH we may consider E′ as a non-unitary subring of E, and
IrrC(E′) as a subset of IrrC(E). Moreover, the natural homomorphism of G-sets

: Ω → Ω′ : Hg 7→ H ′g induces a map α : {1, . . . , r} → {1, . . . , s} : i 7→ j, being
defined by Ωi ⊆ Ω′j .

Then by [25, Cor.5.13] the character tables ΦE and ΦE′ are related as follows:
Let j ∈ {1, . . . , s}. Firstly, for ϕ ∈ IrrC(E′) ⊆ IrrC(E) and i ∈ α−1(j) we have
ϕ(Ai) = ki

k′j
·ϕ(A′j); thus implying

∑
i∈α−1(j) ϕ(Ai) = [H ′ : H] ·ϕ(A′j). Secondly,

for ϕ ∈ IrrC(E) \ IrrC(E′) we have
∑
i∈α−1(j) ϕ(Ai) = 0; thus in particular if

α−1(j) = {i} is a singleton set then we have ϕ(Ai) = 0.

A particularly nice situation occurs if additionally [H ′ : H] = 2, implying that
H CH ′. Hence we have 1GH = 1GH′ + (1−)GH′ ∈ ZIrrC(G), where 1− ∈ IrrC(H ′) is
the linear character obtained by inflation from the non-trivial linear character
of H ′/H. The ZG-module affording (1−)GH′ can be identified with ZΩ′, but to
indicate the different, monomial G-action it is denoted by ZΩ′′ instead. Let
E′′ := EndZG(ZΩ′′) be its endomorphism ring. Generalising from permutation
representations to monomial representations, inspired by ideas in [13], by [25,
Ch.3] the ring E′′ also has a natural Schur basis, being parametrised by a
subset of {1, . . . , s}. Moreover, there are a notion of a character table ΦE′′ and
a generalised version of [25, Cor.5.13], relating the character tables ΦE and ΦE′′ .

(4.4) Example. Let G := B be the sporadic simple Baby Monster group, let
H := 2.2E6(2) and let H ′ := 2.2E6(2).2. The character table ΦE′′ associated to
(1−)GH′ has been determined in [12], where also the character table ΦE′ associ-
ated to 1GH′ is given. Using the above remarks, from these character tables the
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character table ΦE associated to 1GH can be determined. The character tables
ΦE′ , ΦE′′ and ΦE are shown in Table 2: The Schur basis of E′′ is parametrised
by {1, 2, 4} ⊂ {1, . . . , 5}, the preimages α−1(j), for j ∈ {1, . . . , 5}, are indicated
in the header of ΦE as well, and the rows of ΦE are arranged according to the
partition IrrC(E) = IrrC(E′)

.
∪ IrrC(E′′).

(4.5) Still, for the remaining cases we need explicit constructions. But in-
stead of computing permutations first, and to use them subsequently to find
the collapsed adjacency matrices P (i), we now make use of the ‘direct condense’
technique invented in [30], which has been elaborated in [22] into an efficient
distributed computing technique to directly determine the orbit counting ma-
trices C(g) ∈ N0, for arbitrary elements g ∈ G, without computing any per-
mutations. Moreover, since in these cases Ω typically is too large to be stored
completely, only a part of Ω is actually stored, in a way still allowing us to get
an overview over all of Ω. This is controlled by a suitably chosen ‘small’ helper
subgroup U < G, where as a rule of thumb only a fraction of roughly 1

|U | of Ω
is stored. Again, Ω is realised as a set of vectors in an FG-module, or as a set
of 1-dimensional F -subspaces of an FG-module. Moreover, we make use of the
modification of this technique described in [27], where Ω is realised as a set of
higher dimensional F -subspaces of an FG-module.

To actually run the ‘direct condense’ technique efficiently using distributed com-
puting, Ω has to be partitioned into ‘many’ pieces, while in the present cases
r ∈ N typically is ‘small’. Hence we choose a ‘medium sized’ subgroup V < H,
and consider the decomposition Ω =

∐s
j=1 Ω′j of Ω into V -orbits instead, where

now s ∈ N is ‘large enough’. Then orbit counting matrices C(g) ∈ Zs×s with re-
spect to this decomposition are computed for a few elements g ∈ G. Finally, the
fusion of the Ω′j , for j ∈ {1, . . . , s}, into the Ωi, for i ∈ {1, . . . , r}, has to be de-
termined, which is just done by computing orbit counting matrices C(h) ∈ Zs×s
for a few elements h ∈ H.

(4.6) Example. Let G := Ly be the sporadic simple Lyons group, and let
H := 3.McL < H ′ := NG(H) = 3.McL.2 < G, where H ′ < G is a maximal
subgroup. Hence we have n = |Ω| = 19 212 250 and r = 8.

The G-set Ω is realised as follows: Let M be the absolutely irreducible F5G-
module of F5-dimension 517. Representing matrices of standard generators of
G in the sense of [35], as well as generators of H as words in the standard
generators of G, are available in the database [36]. Using the MeatAxe we find
that the subspace FixH(M) ≤ M of vectors fixed by H is 1-dimensional, and
that for any 0 6= v ∈ FixH(M) we in turn have StabG(v) = H, hence we let
Ω := v ·G ⊆ M . Thus, using ‘compressed vectors’ as are available in GAP and
the MeatAxe, a single vector in M needs 173 Bytes of memory space, hence to
store all of Ω would need 3 323 719 250 ∼ 3 · 109 Bytes, which is slightly too
much to be comfortable.

The setting for the ‘direct condense’ programs is as follows: Letting V := 3 ×
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Table 2: The character table for G := B and H := 2.2E6(2).

ϕ
χ
ϕ

1
2

3
4

5
1

1a
1

39
68

05
5

23
11

37
28

23
70

83
03

36
11

17
40

42
88

0
3

96
25

5a
1

22
87

35
−

70
96

32
14

48
34

56
−

14
00

25
60

4
94

58
75

0a
1

50
89

5
13

30
56

12
49

28
−

30
88

80
6

42
75

36
25

20
a

1
19

35
−

40
32

−
31

74
4

33
84

0
7

92
87

03
74

74
a

1
−

94
5

17
28

14
33

6
−

15
12

0

ϕ
χ
ϕ

1
2

4
2

43
71
a

1
56

68
65

84
67

25
12

5
63

53
24

85
a

1
28

66
5
−

11
46

88
8

13
50

84
18

14
4a

1
−

13
5

51
2

ϕ
χ
ϕ

1′
1′
′

2′
2′
′

3
4′

4′
′

5
1

1a
1

1
39

68
05

5
39

68
05

5
46

22
74

56
23

70
83

03
36

23
70

83
03

36
22

34
80

85
76

0
3

96
25

5a
1

1
22

87
35

22
87

35
−

14
19

26
4

14
48

34
56

14
48

34
56

−
28

00
51

20
4

94
58

75
0a

1
1

50
89

5
50

89
5

26
61

12
12

49
28

12
49

28
−

61
77

60
6

42
75

36
25

20
a

1
1

19
35

19
35

−
80

64
−

31
74

4
−

31
74

4
67

68
0

7
92

87
03

74
74
a

1
1

−
94

5
−

94
5

34
56

14
33

6
14

33
6

−
30

24
0

2
43

71
a

1
−

1
56

68
65
−

56
68

65
0

84
67

25
12

−
84

67
25

12
0

5
63

53
24

85
a

1
−

1
28

66
5
−

28
66

5
0

−
11

46
88

11
46

88
0

8
13

50
84

18
14

4a
1
−

1
−

13
5

13
5

0
51

2
−

51
2

0
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M11 < H, using GAP we find s = 〈1GH , 1GV 〉G = 837, where 〈·, ·〉G denotes the
usual hermitian product on the complex class function on G. This number
of V -orbits in Ω is ‘large enough’ to make full use of distributed computing.
Furthermore, we choose C11

∼= U < V < H, a cyclic group of order 11. Thus
by the above rule of thumb this reduces the amount of memory space needed
to comfortable ∼ 3 · 108 Bytes.

By choosing random elements of G we compute a few of the collapsed adjacency
matrices, and as described in (2.4) we quickly obtain a splitting of C8 into 6
common 1-dimensional eigenspaces, and a 2-dimensional common eigenspace.
Of course we could choose more random elements of G, until we have found
sufficiently many distinct collapsed adjacency matrices also yielding a further
splitting of the 2-dimensional common eigenspaces. But it turns out to be easier
to proceed as follows:

Let 〈ψ1, ψ2〉C ≤ C8 be the 2-dimensional common eigenspace, where we may
assume that the first entries of ψ1 and ψ2 are 1 and 0, respectively. As the
irreducible constituents of 1GH have pairwise distinct degrees, using the de-
gree formula in (2.3) we conclude that we have found ϕi ∈ IrrC(E), for i ∈
{1, 2, 4, 5, 7, 8}, while we have 〈ψ1, ψ2〉C = 〈ϕ3, ϕ6〉C. Hence there are a, b ∈ C
such that ϕ3 = ψ1 + aψ2 and ϕ6 = ψ1 + bψ2. Actually, since Q is a common
splitting field of the irreducible constituents of 1GH , we necessarily have a, b ∈ Q.
Thus from the orthogonality relations for ϕ3 we get

∑r
i=1

(ψ1+aψ2)(Ai)
2

ki
= n

χϕ3 (1) ,
which is a quadratic equation for the unknown a ∈ Q, having the solutions
a ∈ {±1800}. Similarly, for ϕ6 we obtain b ∈ {±675}. Finally, the orthogonal-
ity relations imply a · b < 0. This completes the character table ΦE ; see Table
3, where rows and column again have been reordered to exhibit the phenomena
described in (4.3).

(4.7) Finally, the ‘direct condense’ technique as described above was not effi-
cient enough to tackle the orbits of the the sporadic simple Baby Monster group
G := B. Actually, these problems have been the original motivation to gener-
alise the technique in [30, 22] to a fully grown divide-and-conquer technique,
see [25, 28], which instead of a ‘small’ helper subgroup U < G utilises a whole
chain U1 < U2 < · · · < Uk < G of helper subgroups.

Details for the cases H := 21+22.Co2 and H := Fi23 are to be found in [26] and
[28], respectively. Finally, in [25, Ch.17] also partial results on the presently
unsolved case G := 2.B and H := Fi23 have been collected.

(4.8) Given the character table ΦE , we proceed as follows to determine the
Fitting correspondence, which we consider as an injective map F : IrrC(E) →
IrrC(G) : ϕ 7→ χϕ, whose image is the set of irreducible constituents of 1GH . By
(2.3) the degree χϕ(1) of the Fitting correspondent of ϕ ∈ IrrC(E) can be easily
determined from ΦE . In particular, if the degrees of the irreducible constituents
of 1GH are pairwise distinct, then F already is uniquely determined. Still, for a
candidate map F : IrrC(E)→ IrrC(G), fulfilling ϕF (1) = χϕ(1) for ϕ ∈ IrrC(E),
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Table 3: The character table for G := Ly and H := 3.McL.

ϕ
χ
ϕ

1′
1′
′

2
3′

3′
′

4
5′

5′
′

1
1a

1
1

30
80

0
53

46
00

53
46

00
37

42
20

0
71

85
02

4
71

85
02

4
2

45
69

4a
1

1
−

65
0

10
12

5
10

12
5

−
40

50
−

77
76

−
77

76
4

15
34

50
0a

1
1

−
20

−
60

−
60

56
10

−
27

36
−

27
36

5
30

28
26

6a
1

1
35

0
12

5
12

5
−

10
50

22
4

22
4

7
49

97
66

4a
1

1
−

20
0

−
15

0
−

15
0

−
10

50
77

4
77

4
3

11
52

73
5a

1
−

1
0

18
00

−
18

00
0

30
24

−
30

24
6

30
73

96
0a

1
−

1
0

−
67

5
67

5
0

30
24

−
30

24
8

53
79

43
0a

1
−

1
0

0
0

0
−

23
76

23
76

ψ
1

1
−

1
0

0
0

0
30

24
−

30
24

ψ
2

0
0

0
1

−
1

0
0

0
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let XF := [ϕF (C)] ∈ Cr×|Cl(G)|, with row index ϕ ∈ IrrC(E) and column index
C ∈ Cl(G), be the rows of the character table of G as prescribed by F , and let
ΓF := 1

n · diag[ 1
ki

; i ∈ {1, . . . , r}] · Φtr
E · XF · diag[|C|;C ∈ Cl(G)] ∈ Cr×|Cl(G)|;

recall that the subdegrees ki are also easily determined from ΦE . Thus by
(2.5) we may discard F whenever ΓF has an entry which is not a non-negative
rational integer, otherwise F is called admissible.

Typically, this still does not yield uniqueness, due to the symmetries of the
character tables involved; these are described as follows: The symmetric group
SCl(G) on Cl(G) acts on the set of complex class functions χ : Cl(G) → C by
letting χσ := σ−1χ, for σ ∈ SCl(G). Then σ ∈ SCl(G) is called a table au-
tomorphism of IrrC(G), if IrrC(G)σ = IrrC(G), and σπj = πjσ for all j ∈ Z,
where πj : Cl(G)→ Cl(G) : gG 7→ (gj)G is the j-th power map. Let AG ≤ SCl(G)

denote the group of table automorphisms of IrrC(G), and let AG,H ≤ AG be
the subgroup leaving the set of irreducible constituents of 1GH invariant. Note
that by the orthogonality relations for the irreducible characters of G we have
|Cσ| = |C|, for C ∈ Cl(G) and σ ∈ AG. Given the character table of G, there
are programs available in GAP to determine AG.

Similarly, the symmetric group Sr acts on the set of functions ϕ : A → C by
letting ϕτ := τ−1ϕ, and τ ∈ Sr is called a table automorphism of IrrC(E),
if IrrC(E)τ = IrrC(E). Let AE ≤ Sr denote the group of table automorphisms
of IrrC(E). Note that for the Fitting correspondent ϕ1 ∈ IrrC(E) of the trivial
constituent of 1GH we have ϕτ1 = ϕ1, for τ ∈ AE . Hence we have kiτ = ki for
i ∈ {1, . . . , r}, and thus χϕτ (1) = χϕ(1) for ϕ ∈ IrrC(E). Actually, for the
cases considered here AE ≤ Sr typically is a ‘tiny’ group, whose elements can
be enumerated directly. In particular, if the subdegrees ki are pairwise distinct,
then AE is the trivial group.

The group AE ×AG,H acts on the set of maps F : IrrC(E)→ IrrC(G) by letting
Fτ,σ := τ−1Fσ, for [τ, σ] ∈ AE × AG,H . Since the AE-action respects degrees
of Fitting correspondents and subdegrees, and the AG-action respects sizes of
conjugacy classes, the set of admissible maps is a union of (AE ×AG,H)-orbits.

Moreover, given a group G and its irreducible characters IrrC(G), we typically
have several inequivalent multiplicity-free actions, hence we have to keep the
associated Fitting correspondences consistent between the various actions: Let
1GH1

, . . . , 1GHt be distinct multiplicity-free permutation characters for suitable
Hj ≤ G, with associated endomorphism rings Ej , and let Fj : IrrC(Ej) →
IrrC(G), for j ∈ {1, . . . , t}, be the sets of admissible maps. Now

∏t
j=1 Fj is

acted on by A :=
(∏t

j=1AEj

)
×
(⋂t

j=1AG,Hj

)
, where the left hand factor acts

componentwise, while the right hand factor acts diagonally. Hence
∏t
j=1 Fj is a

union of A-orbits, and the aim is to determine the particular A-orbit describing
the correct tuple of Fitting correspondences. We are done if

∏t
j=1 Fj consists

of a single A-orbit, which in many of the cases considered here indeed occurs.

We proceed similarly for closely related groups, i. e. a simple group, its automor-
phism group, its Schur cover, and its bicyclic extensions, where the associated
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character tables are closely related as well, and thus we also have to keep the
associated Fitting correspondences consistent between the various groups.

To discard erroneous candidate maps we proceed as follows: For closely related
groups and closely related actions, the relations between the associated character
tables as described in (4.3) are used. For the ‘small’ cases, where tables of marks
are known, see (4.1), we proceed as follows: We use the faithful permutation
representation ofG provided by GAP to determine the conjugacy classes Cl(G) of
G. Picking a subgroupH ≤ G, we compute the numbers γi(C) = |C∩Hgi| ∈ N0,
for i ∈ {1, . . . , r} and C ∈ Cl(G), by explicit counting. Letting Γ := [γi(C)] ∈
Z
r×k, comparing the matrix 1

|H| · XG,H · Γ
tr · diag[ki; i ∈ {1, . . . , r}] ∈ Cr×r

with the character table ΦE , by (2.5) yields the Fitting correspondence. Thus
doing so for the various subgroups Hj ≤ G yields a consistent choice of Fitting
correspondences. Finally, for the ‘large’ cases we have to use ad hoc techniques;
an example involving Krein parameters is detailed in [25, Ch.11.5].

5 Applications to orbital graphs

We give a couple of applications to generalised orbital graphs associated to
multiplicity-free actions. We only briefly recall the necessary facts from alge-
braic graph theory to fix notation; as general references see [6, 10]. All graphs
considered are finite, undirected and simple.

(5.1) Ramanujan property. Let G be a regular graph with valency k ∈ N,
and let ρ1 > . . . > ρt, for some t ∈ N, denote the eigenvalues of its adjacency
matrix AG; note that AG is diagonalisable over R. The eigenvalues together
with their multiplicities are called the spectrum of G. We have ρ1 = k, its
multiplicity being the number of connected components of G, as well as |ρt| ≤
k, and G is bipartite if and only if ρt = −k and its multiplicity equals the
multiplicity of ρ1. The number ρG := max{|ρl| ∈ R; l ∈ {1, . . . , t}, |ρl| < k} ≥ 0
is called the spectral radius of G. If G is connected such that ρG ≤ 2 ·

√
k − 1

then it is called a Ramanujan graph; this property is related to the notion of
expander graphs, see e. g. [10, Ch.1], thus the most interesting Ramanujan
graphs are those with small valency compared to their numbers of vertices.

The spectrum of a generalised orbital graph GI , for a subset I ⊆ {2, . . . , r}
closed under taking paired suborbits, associated to a multiplicity-free action is
easily determined from the character table of the associated endomorphism ring:
The eigenvalues of the adjacency matrix AI are given by ϕ(AI) =

∑
i∈I ϕ(Ai),

for ϕ ∈ IrrC(E), where the multiplicity of ϕ(AI) equals the degree χϕ(1) of the
Fitting correspondent of ϕ. Hence the Ramanujan generalised orbital graphs of
the multiplicity-free actions of the sporadic simple groups and their extensions
are easily determined from the database. Those having ‘small’ valency k ≤√
n are given in Table 4, where also the spectral radii and the diameters are

indicated. A complete list for the actions of the sporadic simple groups and
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their automorphism groups up to degree n ≤ 107 is given in [14].

(5.2) Distance-regularity and -transitivity. Let G be a connected graph
of diameter dG ∈ N0, having vertex set Ω. For ω ∈ Ω and d ∈ {0, . . . , dG} let
Gd(ω) ⊆ Ω be the set of all vertices of G having distance d from ω, and let the
distance graph Gd be defined by having vertex set Ω, and vertices ω, ω′ ∈ Ω
being adjacent if and only if ω′ ∈ Gd(ω). The graph G is called distance-
transitive, if there is a group G of graph automorphisms acting transitively on
the sets Gd(ω), for all ω ∈ Ω and d ∈ {0, . . . , dG}; in this case the G-action on
Ω necessarily is multiplicity-free.

The graph G is called distance-regular, if for all ω ∈ Ω and ω′ ∈ Gd(ω), where
d ∈ {0, . . . , dG}, the cardinalities bω,ω′ := |{ω′′ ∈ Gd+1(ω);ω′′ ∈ G1(ω′)}| ∈ N0,
and cω,ω′ := |{ω′′ ∈ Gd−1(ω);ω′′ ∈ G1(ω′)}| ∈ N0, only depend on d, but not on
the particular choice of ω ∈ Ω and ω′ ∈ Gd(ω). In this case, letting bd := bω,ω′
and cd := cω,ω′ , for some ω′ ∈ Gd(ω), the sequence [b0, . . . , bdG−1; c1, . . . , cdG

]
is called the intersection array of G. Note that distance-transitivity implies
distance-regularity, which in turn implies regularity. A distance-regular graph G
is called primitive, if all distance graphs Gd, for d ∈ {1, . . . , dG}, are connected,
otherwise it is called imprimitive; and it is called antipodal, if dG ≥ 2 and
{[ω, ω′] ∈ Ω × Ω;ω′ ∈ G0(ω)

.
∪ GdG

(ω)} is an equivalence relation on Ω. Note
that by [6, Thm.4.2.1], if G is imprimitive of valency k ≥ 3, then it is bipartite
or antipodal or both.

For a generalised orbital graph GI , for a subset I ⊆ {2, . . . , r} closed under tak-
ing paired suborbits, associated to a multiplicity-free action the above properties
are easily determined from the character table of the associated endomorphism
ring: Recall first that connectedness and bipartiteness by (5.1) are spectral
properties anyway.

The sets (GI)d(ω1) ⊆ Ω, for d ∈ {0, . . . , dGI}, are unions of suborbits, hence
give rise to a partition {1, . . . , r} =

∐dGI
d=0 Id, where I0 = {1} and I1 = I. Thus

GI is distance-transitive if and only if all the sets Id, for d ∈ {0, . . . , dGI},
are singleton sets. Moreover, the cardinalities bω1,ω ∈ N0 and cω1,ω ∈ N0 only
depend on the suborbit the element ω ∈ Ω belongs to, but not on the particular
choice of ω within that suborbit. For j ∈ Id we have bω1,ωj =

∑
h∈Id+1

p
(i)
h,j

and cω1,ωj =
∑
h∈Id−1

p
(i)
h,j , where the p(i)

h,j ∈ N0 are the associated intersection
numbers. Hence distance-regularity is easily decided, thereby also providing the
diameter dGI of GI and its intersection array; see also [32, Thm.3.3].

It remains to consider primitivity and antipodality: Given d ∈ {0, . . . , dGI},
the distance graph (GI)d has valency

∑
i∈Id ki and adjacency matrix AId =∑

i∈Id Ai. Hence its eigenvalues are given as ϕ(AId), for ϕ ∈ IrrC(E), with
associated multiplicities χϕ(1). Thus (GI)d is connected if and only if the
eigenvalue ϕ1(AId) =

∑
i∈Id ki occurs with multiplicity 1. Moreover, the gen-

eralised orbital graph GI is antipodal if and only (AIdGI
)2 ∈ E is a Z-linear

combination of {Ai; i ∈ I0

.
∪ IdGI

}, which in turn by the non-negativity of the
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Table 4: Ramanujan generalised orbital graphs of valency k ≤
√
n.

G H n r k ρ d

M12 32.2.S4 220 5 12 5 3
M12.2 32.2.S4 440 9 4 3 6
M12.2 42 : (6× 2) 990 13 28 10 3
M22 23 : L3(2) 330 5 7 4 4
M22.2 A7 352 6 15 7 4
M22.2 23 : L3(2)× 2 330 5 7 4 4
M22.2 23 : L3(2) 660 10 7 4 5
M22.2 23 : L3(2) 660 10 8 5 5
2.M22.2 A7 704 10 15 7 6
J2 21+4

− : A5 315 6 10 5 4
J2 A4 ×A5 840 7 15 6 4
J2 A4 ×A5 840 7 39 11 3
J2.2 21+4

− : S5 315 5 10 5 4
J2.2 22+4.(3× S3) 1050 12 44 9 3
J2.2 22+4.(3× S3) 1050 12 45 10 3
J2.2 22+4.(3× S3) 1050 12 88 18 2
J2.2 22+4.(S3 × 3) 1050 9 56 14 3
J2.2 22+4.(S3 × 3) 1050 9 88 18 2
J2.2 (A4 ×A5).2 840 7 15 6 4
J2.2 (A4 ×A5).2 840 7 39 11 3
J2.2 A4 ×A5 1680 14 15 6 5
J2.2 A4 ×A5 1680 14 16 7 5
J2.2 A4 ×A5 1680 14 39 11 3
J2.2 A4 ×A5 1680 14 39 11 4
J2.2 A4 ×A5 1680 14 40 12 3
J2.2 A4 ×A5 1680 14 40 12 4
J2.2 (A5 ×D10).2 1008 8 12 6 5
J2.2 (A5 ×D10).2 1008 8 37 11 3
M24 26 : (L3(2)× S3) 3795 5 56 10 3
M24 26 : (L3(2)× 3) 7590 8 56 14 3
M24 26 : (L3(2)× 3) 7590 8 57 13 3
M24 26 : (L3(2)× 3) 7590 8 112 20 3
M24 26 : (L3(2)× 3) 7590 8 113 21 3
HS.2 51+2

+ : [25] 22176 15 50 14 3
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associated intersection numbers is the case if and only if we have p(i)
h,j = 0, for

all h, i ∈ IdGI
and j ∈ {2, . . . , r} \ IdGI

.

Hence the distance-regular generalised orbital graphs of the multiplicity-free ac-
tions of the sporadic simple groups and their extensions, and their properties,
are easily determined from the database. As the primitive distance-transitive
orbital graphs of the sporadic simple groups and their automorphism groups
are listed in [16], they are not reproduced here, and by [31] there are no faith-
ful primitive distance-transitive orbital graphs of their Schur covers and their
bicyclic extensions anyway. The imprimitive distance-transitive generalised or-
bital graphs of the sporadic simple groups and their extensions are given in Ta-
ble 5. Moreover, the ‘interesting’ non-distance-transitive but distance-regular
generalised orbital graphs of these groups are given in Table 6, where we have
excluded the ‘uninteresting’ graphs of diameter d ≤ 2, which are the complete
graphs and the strongly regular graphs, see [6, Ch.1.3] and [15], and those of
diameter d = 3 having intersection array [k, k−1, 1; 1, k−1, k], see [6, Cor.1.5.4].
For the graphs listed we also include their intersection arrays, and we indicate
whether they are primitive, bipartite, or antipodal. Using this information the
graphs can be identified, and we locate them in [6]; note that the generalised
orbital graphs of the sporadic simple groups and their automorphism groups
associated to actions of rank at most 5 are also listed in [32, Ch.4].

The graphs marked by (∗) and (∗∗) deserve some comment: The imprimitive
distance-transitive orbital graph (∗) of 3.Suz.2 having 5346 vertices is an an-
tipodal triple cover of the primitive distance-transitive Suzuki graph of Suz.2,
having 1782 vertices and intersection array [416, 315; 1, 96], see [15]. Note that
(∗) is not mentioned in [6, Ch.6.12], where a collection of non-bipartite antipodal
distance-regular graphs is listed together with the problem to find more such
graphs, which we hence have done. The intersection arrays of the primitive
generalised orbital graph (∗∗) of M22.2 having 672 vertices, and of its antipo-
dal double cover having 1344 vertices, are marked as ‘unproven’ in the lists of
feasible intersection arrays given in [6, Ch.14, p.430] and [6, Ch.14, p.424], re-
spectively; assuming that these lists still reflect the current state of the art, the
existence of such graphs hence is proven now.
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Table 5: Imprimitive distance-transitive orbital graphs.
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Table 6: ‘Interesting’ distance-regular generalised orbital graphs.
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[28] J. Müller, M. Neunhöffer, R. Wilson: Enumerating big orbits and
an application: B acting on the cosets of Fi23, J. Algebra 314, 2007, 75–96.

[29] S. Norton: The uniqueness of the Fischer-Griess Monster, Contemp.
Math. 45, 1985, 271–285.

[30] R. Parker, R. Wilson: Private communication, 1995.

[31] C. Praeger, J. Saxl, K. Yokoyama: Distance transitive graphs and
finite simple groups, Proc. London Math. Soc. 55, 1987, 1–21.

[32] C. Praeger, L. Soicher: Low rank representations and graphs for spo-
radic groups, Cambridge Univ. Press, 1997.

[33] M. Ringe: The C-MeatAxe, Version 2.4, RWTH Aachen, 2000.

[34] I. Schur: Zur Theorie der einfach transitiven Permutationsgruppen,
Sitzungsberichte der Preußischen Akademie der Wissenschaften, 1933, 598–
623.

[35] R. Wilson: Standard generators for sporadic simple groups, J. Algebra
184, 1996, 505–515.

[36] R. Wilson, R. Parker, S. Linton et al.: Atlas of finite group represen-
tations, Version 3, 2005, http://brauer.maths.qmul.ac.uk/Atlas/v3/.

[37] P. Zieschang: An algebraic approach to association schemes, Lecture
Notes in Mathematics 1628, Springer, 1996.

Lehrstuhl D für Mathematik, RWTH Aachen

Templergraben 64, D-52062 Aachen, Germany

Juergen.Mueller@math.rwth-aachen.de


