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Abstract. We describe the powers of irreducible polynomials occurring as

characteristic polynomials of automorphisms of even unimodular lattices over
number fields. This generalizes results of Gross & McMullen and Bayer-

Fluckiger & Taelman.

1. Introduction

Even unimodular lattices over the integers correspond to regular quadratic forms
over Z. Hence they play an important role. Gross and McMullen [6] give necessary
conditions for an irreducible polynomial S ∈ Z[t] to be the characteristic polynomial
of an automorphism of an even unimodular Z-lattice. They speculate that these
conditions are sufficient. This conjecture was proved recently by Bayer-Fluckiger
and Taelman [2] not only in the case that S is irreducible but also for powers of
irreducible polynomials. The purpose of this note is to extend the characteriza-
tion of Bayer-Fluckiger and Taelman to any algebraic number field K with ring of
integers o.

To state the main result, some notation is necessary. Let Ω(K) be the set of all
places of K. For v ∈ Ω(K) let Kv be the completion of K at v. If v is finite, we
denote by ov the ring of integers of Kv. Let Ω2(K) be the set of all even places of
K, i.e. the finite places over 2. For v ∈ Ω2(K) let ev be the ramification index of
Kv and let ∆v ∈ o∗v be a unit of quadratic defect 4o, see Definition 3.3 for details.
Further, let Ωr(K) denote the set of real places of K. Given a polynomial S ∈ o[t]
and v ∈ Ωr(K), let 2mv(S) be the number of complex roots of S ∈ Kv[t] which do
not lie on the unit circle.

Theorem A. Let n be a positive integer. For v ∈ Ωr(K) let (rv, sv) be a pair of
non-negative integers such that rv + sv = 2n. Let P ∈ o[t] be a monic irreducible
polynomial different from t ± 1 and let S be a power of P such that deg(S) =
2n. Then there exists an even unimodular o-lattice L such that KvL has signature
(rv, sv) for all v ∈ Ωr(K), and some proper automorphism of L with characteristic
polynomial S if and only if the following conditions hold.

(C1) S is reciprocal, i.e. t2nS(1/t) = S(t).
(C2) mv(S) ≤ min(rv, sv) and mv(S) ≡ rv ≡ sv (mod 2) for all v ∈ Ωr(K).
(C3) The fractional ideals S(1)o and S(−1)o are squares.
(C4) (−1)nS(1)S(−1) ·K∗,2v ∈ {K∗,2v , ∆v ·K∗,2v } for all v ∈ Ω2(K).
(C5) (−1)svS(1)S(−1) ∈ Kv is positive for all v ∈ Ωr(K).
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(C6) The cardinalities of the sets

{v ∈ Ωr(K) | n(n− 1) 6≡ sv(sv − 1) (mod 4)}
{v ∈ Ω2(K) | ev is odd and (−1)nS(1)S(−1) /∈ K∗,2v }

have the same parity.

The outline of the proof of Theorem A is the same as in [2]. The o-lattice L will
be constructed as a trace lattice of a suitable hermitian lattice of rank 1. Using
the local-global principle for Brauer groups, [2] gives a criterion for the existence
of such a global hermitian lattice with prescribed local structure. This reduces the
proof of the theorem to the problem of finding a suitable even unimodular o-lattice
over all local fields. [2] solves the latter problem completely for non-dyadic local
fields but not for dyadic local fields other than Q2. The main contribution of this
note is to fill this gap.

For K = Q, one can recover [2, Theorem A] from Theorem A, cf. Remark 4.1.
In this case it is well known that r∞ ≡ s∞ (mod 8). This congruence does not hold

for arbitrary algebraic number fields K. For example, let K = Q(
√

6) and let L be
the even unimodular o-lattice with Gram matrix(

2 1−
√

6

1−
√

6 6

)
.

The determinant of this matrix is the fundamental unit 2
√

6 + 5. Moreover, L is
totally positive definite, i.e. it has signature (2, 0) at the two infinite places of K.

The paper is organized as follows. Section 2 recalls some facts about bilinear
spaces and unimodular lattices. In Section 3, we answer the question whether a
quadratic space over a local field admits an even unimodular lattice with given
characteristic polynomial. Finally, the last section gives a proof of Theorem A.

2. Definitions, notation and basic facts

Let K be a field of characteristic different from 2.
A bilinear space (V,Φ) is a finite-dimensional vector space V over K equipped

with a non-degenerate, symmetric, bilinear form Φ: V × V → K. In this paper,
the dimension of V is assumed to be even, say 2n. Let B = (b1, . . . , b2n) be a basis
of V . Then

G(B) = (Φ(bi, bj)) ∈ K2n×2n

is called the Gram matrix of B. The determinant det(V,Φ) of (V,Φ) is the deter-
minant of G(B) viewed as an element of K∗/K∗,2. Further, disc(V,Φ) = (−1)n ·
det(V,Φ) is called the discriminant of (V,Φ). Given any place v of K, we denote
by Vv := V ⊗K Kv the completion of V at v.

The orthogonal and special orthogonal groups of (V,Φ) are

O(V,Φ) = {ϕ ∈ GL(V ) | Φ(ϕ(x), ϕ(y)) = Φ(x, y) for all x, y ∈ V } ,
SO(V,Φ) = O(V,Φ) ∩ SL(V ) .

Given any anisotropic vector v ∈ V (i.e. Φ(v, v) 6= 0), the reflection

(2.1) τv : V → V w 7→ w − 2
Φ(v, w)

Φ(v, v)
· v
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defines an element of O(V,Φ). The reflections generate O(V,Φ) and the spinor
norm is the unique group homomorphism

θ : O(V,Φ)→ K∗/K∗,2

such that θ(τv) = Φ(v, v) ·K∗,2 for all anisotropic vectors v ∈ V .

Lemma 2.1. Let (V,Φ) be a bilinear space over K of even rank. Let S be the
characteristic polynomial of some α ∈ SO(V,Φ). Then

θ(α) = S(−1) ·K∗,2 and θ(−idV ) = det(V,Φ) .

Proof. Let V have rank 2n. Zassenhaus’ method to compute spinor norms [9,
equation (2.1)] yields

θ(α) ≡ det((idV + α)/2) ≡ 2−2n det(idV + α) ≡ S(−1) (mod K∗,2) .

The second congruence is [9, Equation (2.3)]. �

The following result is well known, see for example [1, Corollary 5.2] or [6,
Proposition A.3].

Lemma 2.2. Let (V,Φ) be a bilinear space over K of even rank. Let S be the
characteristic polynomial of some α ∈ SO(V,Φ). If S(±1) 6= 0 then det(V,Φ) =
S(1)S(−1).

Proof. Lemma 2.1 yields

det(V,Φ) ≡ θ(−idV ) ≡ θ(α)θ(−α) ≡ S(1)S(−1) (mod K∗,2) ,

since θ is a group homomorphism. �

Assume now that K is the field of fractions of a Dedekind ring o. Further let
L be an o-lattice in (V,Φ), i.e. a finitely generated o-module L in V such that
KL = V . The ideal generated by {Φ(x, x) | x ∈ L} is called the norm of L and is
denoted by n(L). The dual L# := {x ∈ V | Φ(x, L) ⊆ o} is also an o-lattice. If
L = L#, then L is said to be unimodular. If in addition n(L) ⊆ 2o, then L is called
even unimodular. In particular, if 2 ∈ o∗ then any unimodular lattice is even.

We say that two o-lattices in V are properly isometric if they are in the same
orbit under SO(V,Φ). The stabilizer of a lattice L in V under SO(V,Φ) is the
proper automorphism group of L.

The proof of Theorem A is based on the construction of a suitable bilinear space
using one-dimensional hermitian spaces. We recall this setup quickly.

Let E0 be an étale K-algebra and let E be an étale E0-algebra which is a free
E0-module of rank 2. There exists a unique K-linear involution σ on E which fixes
E0. Every λ ∈ E∗0 gives rise of a bilinear form

bλ : E × E → K, (x, y) 7→ TrE/K(λxσ(y))

over K, where TrE/K : E → K denotes the usual trace map. Multiplication by any
α ∈ E∗ with ασ(α) = 1 induces an isometry on (E, bλ). The isometry class of the
bilinear space (E, bλ) only depends on the class of λ in

µ(E, σ) := E∗0/{xσ(x) | x ∈ E∗} .
Suppose that E is a field. By [2, Lemma 5.3], there exists a short exact sequence

(2.2) 1 −→ µ(E, σ)
β−→ Br(E0) −→ Br(E) ,

which identifies µ(E, σ) with the relative Brauer group Br(E/E0).
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3. Automorphisms of even unimodular lattices over local fields

Let K be a non-archimedean local field of characteristic 0 with ring of integers o
and uniformizer π. We assume the residue class field o/πo to be finite. Further, let
ord: K → Z∪{∞} be the discrete valuation of K. The field K is said to be dyadic
if ord(2) > 1.

Given a non-degenerate bilinear space (V,Φ) overK with Gram matrix diag(a1, . . . , an),
set

c(V,Φ) :=
∏
i<j

(ai, aj)

where ( , ) denotes the Hilbert symbol of K. The integer c(V,Φ) is the Hasse-Witt
invariant of (V,Φ) and does not depend on the chosen Gram matrix, see for instance
[5, Lemma 2.2].

Theorem 3.1. Let (V,Φ) be a bilinear space over K. Suppose L is an even uni-
modular o-lattice in V . If ϕ ∈ SO(V,Φ) such that ϕ(L) = L, then θ(ϕ) ∈ o∗K∗,2.

Proof. The result is due to Kneser [7, Satz 3] for non-dyadic fields K. The dyadic
case is solved by Beli in [3, Lemma 3.7 and Lemma 7.1]. �

Let E, E0 and σ be as in Section 2. Let α ∈ E such that ασ(α) = 1 and
σ(α) 6= α. Further, let S be the characteristic polynomial of α over K.

Proposition 3.2. Suppose S(1) and S(−1) are non-zero and assume that one of
the following conditions holds:

• K is non-dyadic and ord(S(1)) ≡ ord(S(−1)) ≡ 0 (mod 2).
• K is dyadic and ord(S(1)) ≡ ord(S(−1)) (mod 2).

Then there exists some λ ∈ µ(E, σ) such that (E, bλ) contains an α-stable unimod-
ular o-lattice.

Proof. See Propositions 7.1 and 7.2 of [2]. �

Suppose now that K is dyadic. Then 2o = πeo for some integer e ≥ 1. In the
unramified case, i.e. e = 1, Bayer-Fluckiger and Taelman give the analogous result
of Proposition 3.2 for even unimodular lattices. We extend this classification to
any ramification index e. The result is heavily based on O’Meara’s classification of
unimodular lattices over o, which we recall briefly.

Definition 3.3. The quadratic defect of a ∈ K is

d(a) =
⋂
b∈K

(a− b2)o .

We will make use of the following facts about the quadratic defect of units.

Lemma 3.4. Let a ∈ o∗.

(1) d(a) only depends on the square class of a and d(1) = (0).
(2) There exists some element b ∈ o such that 1 + b is in the square class of a

and d(a) = d(1 + b) = bo.

(3) There exists some unit ∆ ∈ o∗ of quadratic defect 4o. Then K(
√

∆) is the
unique unramified quadratic extension of K. In particular, ∆ is unique up
to unit squares.

Proof. See Section 63A of [8], in particular 63:1a–63:5. �
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For the remainder of this section, we fix some unit ∆ ∈ o∗ of quadratic defect
4o. Without loss of generality, ∆ = 1 + 4δ for some unit δ ∈ o∗. Note that
(a,∆) = (−1)ord(a), cf. [8, 63:11a].

Definition 3.5. Let L be a unimodular o-lattice in a bilinear space (V,Φ).

(1) The determinant det(L) of L is the determinant of any Gram matrix of L,
viewed as an element in o∗/o∗,2.

(2) The abelian group g(L) = {Φ(x, x) | x ∈ L} is called the norm group of L
and the norm n(L) is the fractional o-ideal generated by g(L). An element
a ∈ g(L) is called a norm generator of L if it generates the ideal n(L).

(3) The weight w(L) is defined as

w(L) = πm(L) + 2o ,

where m(L) denotes the largest fractional o-ideal contained in g(L).

By [8, Paragraph 93A], the norm and weight of a unimodular o-lattice L satisfy

2o ⊆ w(L) ⊆ n(L)

and w(L) = 2o whenever ord(n(L)) + ord(w(L)) is even. Based on the above
invariants, OMeara classified the isometry classes of unimodular o-lattices:

Theorem 3.6 (O’Meara). Let L1, L2 be unimodular o-lattices in the same bilinear
space (V,Φ). Then L1 and L2 are isometric if and only if

g(L1) = g(L2) .

Moreover, g(Li) = aio
2 + w(Li) where ai denotes a norm generator of Li.

Proof. See [8, Theorem 93:16 and 93:4]. �

Using the above classification, one can write down Gram matrices for all isometry
classes of unimodular o-lattices explicitly. To this end, let H be an hyperbolic plane,
i.e. an o-lattice with Gram matrix (

0 1
1 0

)
.

Given any integer r ≥ 0, we denote by Hr the orthogonal sum of r copies of H.

Lemma 3.7. Let L be a unimodular o-lattice of rank 2n with norm generator a and
weight πbo. Further, let (−1)n det(L) = 1 + α with d((−1)n det(L)) = αo. Then L
is isomeric to one of the following lattices.

L1 =

(
a 1
1 −α/a

)
⊥ Hn−1 where πb = d(−α)/a+ 2o,

L2 =

(
a 1
1 −α/a

)
⊥
(
πb 1
1 0

)
⊥ Hn−2 where b < e,

L3 =

(
a 1
1 −(α− 4δ)/a

)
⊥
(
πb 1
1 −4δ/πb

)
⊥ Hn−2 .

The second and third case only occur if ord(a) + b is odd. Moreover,

c(KLi) =

{
+(1 + α, (−1)n−1a)(−1,−1)n(n−1)/2 if i = 1, 2,

−(1 + α, (−1)n−1a)(−1,−1)n(n−1)/2 if i = 3.
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Proof. See [8, Examples 93:17 and 93:18] for details. The computation of the
Hasse-Witt invariants follows by induction on n from [5, Lemma 2.3] and a lengthy
computation with Hilbert symbols. The weight of L1 can be computed using the
method given in [8, Section 94]. �

Corollary 3.8. Let L be an even unimodular o-lattice. Then rank(L) = 2n is even
and L is isometric to either

(3.1) Hn or

(
2 1
1 −2δ

)
⊥ Hn−1 .

In the first case, disc(KL) = 1 and c(KL) = (−1,−1)n(n−1)/2. In the second case,
disc(KL) = ∆ and c(KL) = (−1)e · (−1,−1)n(n−1)/2.

Proof. It is well known that L is an orthogonal sum of unary and binary sublattices,
cf. [8, 93:15]. Since unary lattices are not even unimodular, the rank of L must
be even, say 2n. Theorem 3.6 shows that 2 is a norm generator of L because
n(L) = w(L) = 2o. The result now follows from Lemma 3.7. �

Lemma 3.9. Let L be a unimodular lattice of rank 2n over o with norm generator
a and weight πbo. Suppose that KL contains an even unimodular lattice. Then one
of the following conditions holds.

(1) disc(KL) = 1, b = e and L ∼=
(
a 1
1 0

)
⊥ Hn−1.

(2) disc(KL) = ∆, b = e, ord(a) + b is even and

L ∼=
(
a 1
1 −4δ/a

)
⊥ Hn−1 .

(3) disc(KL) = 1, ord(a) + b is odd, b < e and

L ∼=
(
a 1
1 0

)
⊥
(
πb 1
1 0

)
⊥ Hn−2 .

(4) disc(KL) = ∆, ord(a) + b is odd, ord(a) + e is even, b < e and

L ∼=
(
a 1
1 −4δ/a

)
⊥
(
πb 1
1 0

)
⊥ Hn−2 .

(5) disc(KL) = ∆, ord(a) + b is odd, b+ e is even, b < e and

L ∼=
(
a 1
1 0

)
⊥
(
πb 1
1 −4δ/πb

)
⊥ Hn−2 .

Proof. By Corollary 3.8 either disc(KL) = 1 and c(KL) = (−1,−1)n(n−1)/2 or
disc(KL) = ∆ and c(KL) = (−1)e · (−1,−1)n(n−1)/2. The result now follows from
Lemma 3.7. �

The following result generalizes [2, Theorem 8.1].

Theorem 3.10. Let (V,Φ) be a bilinear space of rank 2n over K. Let G be a
subgroup of SO(V,Φ). Then V contains a G-stable even unimodular o-lattice if and
only if the following conditions hold:

(1) (V,Φ) contains a G-stable unimodular o-lattice.
(2) (V,Φ) contains an even unimodular o-lattice.
(3) θ(G) ⊆ o∗K∗,2.
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Proof. The first two conditions are certainly necessary. The necessity of the third
condition follows from Theorem 3.1. Conversely suppose that G satisfies the three
conditions. Then there exists some G-stable unimodular lattice L in (V,Φ). Let
Lev = {x ∈ L | Φ(x, x) ∈ 2o} be the maximal sublattice of L such that n(L) ⊆ 2o.
Further let SL be the set of all even unimodular lattices between Lev and (Lev)

#.
The group G acts on SL. We claim that every lattice in SL is actually G-stable.
To this end, it suffices to show that SL satisfies the following two conditions:

(1) #SL ∈ {1, 2}.
(2) If SL = {M1,M2} consists of two lattices, then the spinor norm of some

(and thus any) proper isometry between M1 and M2 lies in πo∗K∗,2.

Since L is unimodular, n(L) = πio for some 0 ≤ i ≤ e. The above claim is clear if
i = e. Suppose now i < e. After rescaling the form Φ with some element of o∗, we
may assume that πi is a norm generator of L. Further, let πbo be the weight of L.
We distinguish the five cases of Lemma 3.9.

Suppose that L is as in the first two cases of Lemma 3.9. Then L ∼= L1 ⊥ L2

where L2
∼= Hn−1 is hyperbolic and L1 has a basis (x, y) with Gram matrix(

πi 1
1 ε/πi

)
with ε ∈ {0,−4δ} and ε = 0 whenever e 6≡ i (mod 2). Write k := d(e− i)/2e ≥ 1,
then

Lev = (πkxo⊕ yo) ⊥ L2 and (Lev)
# = (xo⊕ π−kyo) ⊥ L2 .

Let M ∈ SL. Then πkx ∈ Lev ⊆ M is a primitive vector of M . Hence there
exists some v ∈ M ⊆ L#

ev such that Φ(πkx, v) = 1. Without loss of generality,
v = λx+ π−ky with λ ∈ o. The condition Φ(v, v) ∈ 2o shows that

λ2πi + 2λπ−k ≡ 0 (mod πe)

or equivalently

(3.2) λ2 +
2

πe
λπe−i−k ≡ 0 (mod πe−i) .

Suppose first e ≡ i (mod 2), then 2k = e − i. Comparing valuations, we see
that eq. (3.2) implies λ ∈ πko. Since πkx ∈ Lev, we have π−ky ∈ M . Hence
M = M1 := Lev + π−kyo. So SL = {M1}.
Suppose now e 6≡ i (mod 2). Then ε = 0 and 2k = e− i+ 1. In this case, eq. (3.2)
holds if either λ ∈ πko or λ ≡ −2πk−e−1 (mod πk). So in this case, S = {M1, M2}
where M2 := Lev + (2πk−e−1x−π−ky)o. It remains to construct a proper isometry
between M1 and M2. For this, we may assume that n = 1, i.e. the lattices have
rank 2. Further, let x′ = πk−1x, y′ = π1−ky and z′ = x′ − πe−1/2y′. Then

M1 = πx′o⊕ y′/πo = πz′o⊕ y′/πo ,

M2 = πx′o + πk−1y′o + z′o = z′o⊕ y′o .

From Φ(z′, z′) = 0 = Φ(y′, y′) and Φ(z′, y′) = 1 it follows that the K-linear map
ϕ : KM1 → KM1 with ϕ(z′) = z′/π and ϕ(y′) = πy′ is a proper isometry from M1

to M2. Lemma 2.1 shows that θ(ϕ) ≡ π (mod K∗,2).
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Suppose now that L is as in the last three cases of Lemma 3.9. Then L = L1 ⊥ L2

where L2 is hyperbolic and L1 has a basis (x, y, z, w) with Gram matrix
πi 1 0 0
1 ε1/π

i 0 0
0 0 πb 1
0 0 1 ε2/π


with i < b ≤ e, i + b is odd and εi ∈ {0,−4δ} such that ε1 = 0 if e 6≡ i (mod 2)
and ε2 = 0 if e 6≡ b (mod 2). We will reduce this case to the one before. To this
end, let k := d(e− i)/2e and ` := d(e− b)/2e. Then

Lev = (πkxo⊕ yo) ⊥ (π`zo⊕ wo) ⊥ L2 ,

(Lev)
# = (xo⊕ π−kyo) ⊥ (zo⊕ π−`wo) ⊥ L2 .

We will not make use of the fact that i < b. So after exchanging the parameters
i and b, we may assume that b + 2` = e and i + 2k = e + 1. Then ε1 = 0. Let
M ∈ SL and suppose

v = λx+ µπ−ky + νz + τπ−`w ∈M where λ, µ, ν, τ ∈ o .

Let α = λ2πi + 2λµπ−k and β = ν2πb + 2ντπ−` + τ2ε2π
−e. Then

α+ β = Φ(v, v) ∈ 2o .

If ord(ν) < `, then ord(β) = 2ord(ν) + b ≤ e− 2. Further, ord(α) = 2ord(λ) + i if
ord(λ) ≤ k−2 and ord(α) ≥ e−1 otherwise. Since i 6= b (mod 2) we conclude from
α+ β ∈ 2o that ord(ν) ≥ `. Hence M ⊆ Y := (xo + π−kyo + π`zo + π−`wo) ⊥ L2.
Thus

M ⊇ Y # = (π−kxo + yo + π`zo + π−`wo) ⊥ L2 .

This shows that SL ⊆ SX where X = (xo ⊕ yo) ⊥ (zπ`o ⊕ π−`wo) ⊥ L2 is a
unimodular lattice as in part (1) or (2) of Lemma 3.9. We have already seen that
SX satisfies the above claim and so does SL. �

As a consequence of Theorem 3.10 one obtains the following dyadic analog of
Proposition 3.2.

Proposition 3.11. Suppose that K is dyadic, ord(S(−1)) ∈ 2Z and that

(−1)deg(S)/2S(1)S(−1) ·K∗,2 ∈ {K∗,2, ∆ ·K∗,2} .
Then there exists some λ ∈ µ(E, σ) such that (E, bλ) contains an α-stable even
unimodular o-lattice.

Proof. The proof of [2, Proposition 9.1] applies mutatis mutandis. �

4. Proof of Theorem A

First we show that the conditions of Theorem A are necessary. To this end, let
L be an even unimodular o-lattice as in the Theorem and let (V,Φ) be its ambient
bilinear space. Further, let ϕ be a proper automorphism of L and let v ∈ Ω(K) be
finite. Conditions (C1) and (C2) are necessary by [6, Section 1 and Proposition A.1].
Theorem 3.1 shows that the fractional ideal θ(±ϕ)ov is a square. By Lemma 2.1,
the ideal S(±1)ov is also a square. Hence condition (C3) is necessary. If v ∈ Ωr(K),
then disc(Vv,Φ) = (−1)n+sv . Similarly, if v ∈ Ω2(K), then disc(Vv,Φ) is either 1
or ∆v, cf. Corollary (3.8). But disc(V,Φ) = (−1)nS(1)S(−1), cf. Lemma 2.2. This
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shows that (C4) and (C5) are necessary. The local Hasse-Witt invariants of (V,Φ)
are given as follows:

(4.1) c(Vv,Φ) =


(−1)sv(sv−1)/2 if v ∈ Ωr(K),

(−1,−1)
n(n−1)/2
v if v ∈ Ω2(K) and disc(Vv,Φ) = 1,

(−1)ev · (−1,−1)
n(n−1)/2
v if v ∈ Ω2(K) and disc(Vv,Φ) 6= 1,

1 otherwise.

For infinite places this is clear. For finite places, it follows from Lemma 3.8 and [8,
92:1 and 63:11a]. Let

c1 = #{v ∈ Ωr(K) | n(n− 1) 6≡ sv(sv − 1) (mod 4)}
c2 = #{v ∈ Ω2(K) | ev is odd and (−1)nS(1)S(−1) /∈ K∗,2v }

be the cardinalities of the two sets from (C6). The product formula for Hilbert
symbols shows that

(4.2) 1 =
∏

v∈Ω(K)

c(Vv,Φ) = (−1)c1+c2 ·
∏

v∈Ω(K)

(−1,−1)n(n−1)/2 = (−1)c1+c2 .

Thus condition (C6) is necessary.
We now show that the conditions are sufficient. To this end, we follow Section 10

of [2] closely.
For v ∈ Ω(K) let cv be the Hasse-Witt invariant given by eq. (4.1). Eq. (4.2)

shows that (C6) is equivalent to
∏
v cv = 1. By [8, Theorem 72:1] there exists a

bilinear space (V,Φ) over K such that

(1) (V,Φ) has rank 2n and discriminant (−1)nS(1)S(−1).
(2) For v ∈ Ωr(K), the space (Vv,Φ) has signature (rv, sv).
(3) For v ∈ Ω(K), the Hasse-Witt invariant of (Vv,Φ) is cv.

The polynomial P is assumed to be non-linear and reciprocal. Let α be the image
of t in the field F := K[t]/(P ). Then there exists a unique K-linear automorphism
σ of F with σ(α) = α−1. Let F0 6= F be the fixed field of σ. Let E0 be a field
extension of F0 in some algebraic closure of F of degree 2n/ deg(P ) which is linearly
disjoint from F . Then the compositum E := FE0 is a field extension of K of degree
2n and S is the characteristic polynomial of α ∈ E over K. Further, σ extends to
E by setting σ|E0

= idE0
.

Let v be a place of K and let w be a place of E0 over v. Let Ew = E ⊗E0
E0,w

and write αw for the image of α in Ew.
If v is real, there are three possibilities:

(1) E0,w
∼= R and Ew ∼= R× R. Then αw = (x, 1/x) with x ∈ R∗ and |x| 6= 1.

(2) E0,w
∼= C and Ew ∼= C × C. Then αw = (x, 1/x) with x ∈ C∗ \ R∗ and

|x| 6= 1.
(3) E0,w

∼= R and Ew ∼= C. Then |αw| = 1.

In the first two cases, (Ew, bλ) has signature (d, d) where d = dimR(E0,w) for any
λ ∈ µ(Ew, σ). The last case occurs n−mv(S) times. By (C2), the quotients

dv,+ :=
rv −mv(S)

2
and dv,− :=

sv −mv(S)

2
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are integral and non-negative. Hence there exists some

λv ∈
∏
w|v

µ(Ew, σ)

such that λw = +1 at exactly dv,+ places of the third type and λw = −1 at exactly
dv,− places of the third type. Thus (Ev, bλv

) has signature (rv, sv).
Suppose now that v is finite. Conditions (C3) and (C4) as well as Propositions 3.2
and 3.11 imply that there exists some

λv ∈
∏
w|v

µ(Ew, σ)

such that (Ev, bλv
) contains an α-stable even unimodular o-lattice.

For any place v of K, the spaces (Vv,Φ) and (Ev, bλv
) are isometric since they

have the same rank, discriminant and Hasse-Witt invariant. By [4, Theorem 4.3]
this implies that

εv(Vv,Φ) = εv(Ev, bλv
) = εv(Ev, b1) + βv(λv) .

Here βv(λv) :=
∑
w|v CorE0,w/Kv

(βw(λw)) where βw : µ(Ew, σ) → Br(E0,w) is

given by eq. (2.2) and CorE0,w/Kv
: Br(E0,w) → Br(Kv) denotes the corestriction

map. Since (V,Φ) and (E, b1) are bilinear K-spaces, we have invv(εv(Vv,Φ)) =
invv(εv(Ev, bλv

)) = 0 almost everywhere and∑
v

invv(εv(Vv,Φ)) =
∑
v

invv(εv(Ev, bλv )) = 0 .

Hence invv(βv(λv)) = 0 almost everywhere and
∑
v invv(βv(λv)) = 0. The commu-

tative diagram

Br(E0,w)

Br(Kv)

Q/Z

Q/Z

invw

invv

idCorE0,w/Kv

shows that
∑
w invw(βw(λw)) = 0. Let ϕw : µ(Ew, σ) ∼= Br(Ew, E0,w) ∼= Z/2Z be

an isomorphism. Then
∑
w invw(βw(λw)) = 0 implies

∑
w ϕw(λw) = 0. Theorem

5.7 of [2] shows that there exists some λ ∈ µ(E, σ) which specializes to the chosen
elements λw locally everywhere. Thus (E, bλ) is isometric to (V,Φ). Now multi-
plication by α ∈ E induces an isometry on (E, bλ) with characteristic polynomial
S. Further, at every place v of K there exists some α-stable even unimodular ov-
lattice Mv. Let O be the ring of integers of E, then we can choose Ov = Mv almost
everywhere. Hence there exists some o-lattice L in E such that Lv = Mv locally
everywhere. This finishes the proof of Theorem A.

Remark 4.1. For K = Q, Theorem A implies [2, Theorem A]. This means that for
K = Q, the six conditions of Theorem A are equivalent to the following conditions:

(C0) r∞ ≡ s∞ (mod 8).
(C1) S is reciprocal.
(C2) m∞(S) ≤ min(r∞, s∞) and m∞(S) ≡ r∞ ≡ s∞ (mod 2).
(C3’) |S(1)|, |S(−1)| and (−1)nS(1)S(−1) are squares.
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Proof. For brevity, we write r and s for r∞ and s∞. Suppose first, that S, n, r, s
satisfy the conditions (C1)–(C6) of Theorem A. Condition (C3) implies that
|S(±1)| is a square. We claim that (−1)nS(1)S(−1) is also a square. If not, then

(−1)n+1S(1)S(−1) must be square and hence (−1)n+1S(1)S(−1) ∈ Q∗,22 . This

contradicts (C4) since ∆2 ≡ 5 6≡ −1 (mod Q∗,22 ). Hence (C3’) holds. From (C4)

we know that (−1)sS(1)S(−1) ∈ Q∗,22 . Thus (r+ s)/2 = n ≡ s (mod 2) and hence
r = s + 4k for some integer k. Since the second set in (C6) is empty, so must be
the first. This implies s(s− 1) ≡ n(n− 1) ≡ (s+ 2k)(s+ 2k − 1) (mod 4). Hence
k is even and thus (C0) holds.
Conversely, if S, n, r, s satisfy (C0)–(C2) and (C3’), then (C3)–(C6) hold triv-
ially. �
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