ONE CLASS GENERA OF LATTICE CHAINS OVER NUMBER
FIELDS

MARKUS KIRSCHMER AND GABRIELE NEBE

ABSTRACT. We classify all one-class genera of admissible lattice chains of length
at least 2 in hermitian spaces over number fields. If L is a lattice in the chain
and p the prime ideal dividing the index of the lattices in the chain, then the
{p}-arithmetic group Aut(Lyy,)) acts chamber transitively on the corresponding
Bruhat-Tits building. So our classification provides a step forward to a complete
classification of these chamber transitive groups which has been announced 1987
(without a detailed proof) by Kantor, Liebler and Tits. In fact we find all their
groups over number fields and one additional building with a discrete chamber
transitive group (see Table 1).

1. INTRODUCTION

Kantor, Liebler and Tits [11] classified discrete groups I" with a type preserving
chamber transitive action on the affine building B of a simple adjoint algebraic
group of relative rank r» > 2. Such groups are very rare and hence this situation
is an interesting phenomenon. Except for two cases in characteristic 2 ([11, case
(v)]) and the exceptional group Go(Qs) ([11, case (iii)], Section 5.4) the groups arise
from classical groups U, over Q, for p = 2,3. Moreover I' is a subgroup of the
S-arithmetic group T, == Aut(L ®y Z[}—lj]) (so S = {p}) for a suitable lattice L
in some hermitian space (V,®) and U, = U(V},, ®) is the completion of the unitary
group U(V,®) (see Remark 2.3). This paper uses the classification of one- and
two-class genera of hermitian lattices in [16] to obtain these S-arithmetic groups
Fmax'

Instead of the thick building B* we start with the affine building B of admissible
lattice chains as defined in [1]. The points in the building B correspond to homothety
classes of certain Z,-lattices in V. The lattices form a simplex in B, if and only if
representatives in these classes can be chosen to form an admissible chain of lattices
in V,. In particular the maximal simplices of B (the so called chambers) correspond
to the fine admissible lattice chains in V}, (for the thick building B one might have
to apply the oriflamme construction as explained in Remark 4.6).

Any fine admissible lattice chain £, in V), arises as the completion of a lattice chain
L' in (V,®). After rescaling and applying the reduction operators from Section 2.3
we obtain a fine p-admissible lattice chain £ = (Lo, ..., L,) in (V, ®) (see Definition
3.4) such that Aut(£) O Aut(L') and such that the completion of £ at p is £,. The

S-arithmetic group Aut(Lgo ® Z[%]) = Aut(L; ® Z[%]) =: Aut(£L ® Z[%]) contains
Aut(L' ® Z[z—lj]) Therefore we call this group closed.
The closed {p}-arithmetic group Aut(Lg ®Z[%]) acts chamber transitively on B, if

the lattice Lo represents a genus of class number one and Aut(Ly) ) acts transitively
on the fine flags of (isotropic) subspaces in the hermitian space Lo (see Theorem
4.4). If we only impose chamber transitivity on the thick building BT, then we

also have to take two-class genera of lattices Ly into account. To obtain a complete
1
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classification of all chamber transitive actions of closed S-arithmetic groups on the
thick building B* using this strategy there are two ingredients missing:

(a) By Theorem 4.9 we need the still unknown classification of proper special
genera of lattices Ly with class number one (see also Proposition 4.5 and [27,
Proposition 1]).

(b) We should also include the skew hermitian forms over quaternion algebras
for which a classification of one-class genera is still unknown.

Already taking only the one-class genera of lattices Ly we find all the groups from [11]
and one additional case (described in Proposition 5.3 (1)). Hence our computations
correct an omission in the classification of [11]. A list of the corresponding buildings
and groups U, is given in Section 6.

ACKNOWLEDGEMENTS. The research leading to this paper was supported by the
DFG in the framework of the SPP1489. The authors thank Bill Kantor and Rudolf
Scharlau for helpful discussions.

2. LATTICES IN HERMITIAN SPACES

Let K be a number field. Further, let /K be a field extension of degree at most

2 or let E be a quaternion skewfield over K. The canonical involution of £/K will
be denoted by o: F — FE. In particular, K is the fixed field of ¢ and hence the
involution ¢ is the identity if and only if K = E. A hermitian space over E is
a finitely generated (left) vector space V over E equipped with a non-degenerate
sesquilinear form ®: V x V' — FE such that

o O(x+ 12 y) = D(x,y) + O(a,y) for all z, 2’y € V.

o O(ax, fy) = a®(z,y)o(p) for all x,y € V and «, 5 € E.

o O(y,x) =o(P(z,y)) for all z,y € V.

The unitary group U(V, ®) of ® is the group of all E-linear endomorphisms of V'
that preserve the hermitian form ®. The special unitary group is defined as

SU(V,®) := {g € U(V,®) | det(g) = 1}

if £ is commutative and SU(V, ®) := U(V, ®) if F is a quaternion algebra.
We denote by Zg the ring of integers of the field K and we fix some maximal
order M in E. Further, let d be the dimension of V over E.

Definition 2.1. An M-lattice in V is a finitely generated M-submodule of V' that
contains an E-basis of V. If L is an M-lattice in V' then its automorphism group
18

Aut(L) :=={g € U(V,®) | Lg = L}.

2.1. Completion of lattices and groups. Let 13 be a maximal two sided ideal of
M and let p =P N K. The completion U, := U(V @k K,, ®) is an algebraic group
over the p-adic completion K, of K.

Let L < V be some M-lattice in V. We define the p-adic completion of L as
Ly = L ®z, Lk, and we let

L(p) :={X <V | X, = L, for all prime ideals q # p},

be the set of all M-lattices in V' whose g-adic completion coincides with the one of
L for all prime ideals q # p.

Remark 2.2. By the local global principle, given a lattice X in Vj,, there is a unique
lattice M € L(p) with M, = X.
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To describe the groups U, in the respective cases, we need some notation: Let R
be one of E, K, Zk, M or a suitable completion. A hermitian module H(R) with
R-basis (e, f) satisfying ®(e, f) = 1,P(e,e) = O(f, f) = 0 is called a hyperbolic
plane. By [18, Theorem (2.22)] any hermitian space over E is either anisotropic
(i.e. ®(z,2) # 0 for all = # 0) or it has a hyperbolic plane as an orthogonal direct
summand.

Remark 2.3. In our situation the following cases are possible:

e £ = K: Then (V ®k K,,®) is a quadratic space and hence isometric to
H(K,)" L (Vo, ®o) with (Vp, ®g) anisotropic. The rank of U, is r. The group
that acts type preservingly on the thick Bruhat-Tits building B* defined in
Section 4.3 is

Uy == {g € Uy | det(g) = 1,0(g) € K*}

the subgroup of the special orthogonal group with trivial spinor norm 6.

o P # o(P). Then F®x K, = K, @ K, where the involution interchanges the
two components and U, = GL4(K)) has rank r = d — 1. As P is assumed to
be a maximal 2-sided ideal of M, the case that F is a quaternion algebra is
not possible here. Here we let

U, = {9 € Uy | det(g) = 1} = SLa(K).

e [E: K|]=4and P =pM. Then E, = K2** and for x € E,, o(z) is simply
the adjugate of 2 as o(x)z € K. Let e* = e € F, such that o(e) = 1—e. Then
Vo = eV, @(1 — e)V,. The hermitian form @ gives rise to a skew-symmetric
form

U:eV, xely, = eby(l—e) =2 K,
(ex,ey) — D(ex, ey) = e®(z,y)(1 —e) .
From E, = E,eE, we conclude that V,, = E,eE,V. Hence we can recover the
form ® from ¥ and thus U, = U(eV, V) = Sp,,(K,) has rank r = d. Here
the full group U, acts type preservingly on B* and we put U; = U,.
e In the remaining cases £ ® K, = Ey is a skewfield, which is ramified over
K, if and only if 3% = pM. In all cases U, is isomorphic to a unitary group

over Ey. Hence it admits a decomposition H(Eg)" L (Vo, ®o) with (Vp, o)
anisotropic where r is the rank of U,. If E, is commutative, we define

U :={g € Uy | det(g) = 1} = SU,
and put U;“ = SU, := U, in the non-commutative case.

2.2. The genus of a lattice. To shorten notation, we introduce the adelic ring
A = A(K) =[], K, where v runs over the set of all places of K. We denote the
adelic unitary group of the A ®x F-module Vy = ARk V by U(V4, ®). The normal
subgroup
UT(Va, @) == {(gp)p € U(Va, @) | gy € U} < U(Vi, @)

is called the special adelic unitary group.

The adelic unitary group acts on the set of all M-lattices in V' by letting Lg = L'
where L' is the unique lattice in V' such that its p-adic completion (L), = Lyg, for
all maximal ideals p of Zg.

Definition 2.4. Let L be an M-lattice in V. Then
genus(L) :={Lg | g € UV, ®)}
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is called the genus of L.

Two lattices L and M are said to be isometric (respectively properly isometric), if
L = Mg for some g € U(V,®) (resp. g € SU(V,D)).

Two lattices L and M are said to be in the same proper special genus, if there exist
g € SU(V,®) and h € U (Vy, ®) such that Lgh = M. The proper special genus of
L will be denoted by genus™(L).

Let L be an M-lattice in V. It is well known that genus(L) is a finite union of
isometry classes, c.f. [4, Theorem 5.1]. The number of isometry classes in genus(L)
is called the class number A(L) of (the genus of) L. Similarly the proper special
genus is a finite union of proper isometry classes, the proper class number will be
denoted by ht(L).

2.3. Normalised genera.

Definition 2.5. Let L be an M-lattice in V. Then L# = {z € V | ®(x, L) C M} is
called the dual lattice of L. [fp 1s a maximal ideal of Zk , then the unique M-lattice
X € L(p) such that X, = L,g is called the partial dual of L at p. It will be denoted
by L#F.

Definition 2.6. Let L be an M-lattice in V. Further, let P be a maximal two sided
ideal of M and setp = PNK. If B, = K, ® K, then L, is called square-free if
L, = L#. In all other cases, Ly, is called square-free z'f‘BL,f7E CL,C L#. The lattice
L is called square-free if L, is square-free for all mazimal ideals p of Zg .

Given a maximal two sided ideal B of M, we define an operator py on the set of
all M-lattices as follows:

oy {LE IO R e)
P L+ (P ILNYPL#)  otherwise.

The operators generalise the maps defined by L. Gerstein in [7] for quadratic spaces.
They are similar in nature to the p-mappings introduced by G. Watson in [32]. The
maps satisfy the following properties:

Remark 2.7. Let L be an M-lattice in V. Let ‘B be a maximal two sided ideal of M
and set p =P N Zg.
) pp(L) € L(p).
2) If L, is integral, then (pyu(L)), = L, <= L, is square-free.
3) If 9 is a maximal two sided ideal of M, then P © pa = pa © Pyp-
4) If L is integral, there exist a sequence of not necessarily distinct maximal

two sided ideals P, ..., P, of M such that
L' = (pp,o...0pp,)(L)

is square-free. Moreover, the genus of L’ is uniquely determined by the genus
of L.

(1
(
(
(

Proposition 2.8. Let L be an M-lattice in V and let B be a maximal two sided
ideal of M. Then the class number of pp(L) is at most the class number of L.

Proof. The definition of py(L) only involves taking sums and intersections of mul-
tiples of L and its dual. Hence pyu(L)g = pp(Lg) for all g € U(V, @) and similar for
g € U(Vy, ®). In particular, pp maps lattices in the same genus (isometry class) to
ones in the same genus (isometry class). The result follows. 0J
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Definition 2.9. Let 2 be a two sided M-ideal. An M-lattice L is called A-maximal,
if ®(xz,x) € A for all x € L and no proper overlattice of L has that property.
Similarly, one defines mazimal lattices in V, for a maximal ideal p of Zk .

Definition 2.10. Let B be a maximal two sided ideal of M and set p =P N K.
We say that an M-lattice L is p-normalised if L satisfies the following conditions:
e L is square-free.
o If E = K then L, = H(Zg,)" L My where My = pg°(M) and M denotes a
27k, -maximal lattice in an anisotropic quadratic space over K.
o If E,/K, is a quadratic field extension with different D(E,/K,), then L, =
H(M,)" L My where My = pg°(M) and M denotes a D(E,/K,)-mazimal
lattice in an anisotropic hermitian space over E,.
o If[E: K] =4, then L, = L.
Here p&f(M) denotes the image of M wunder repeated application of py until this
process becomes stable.

Remark 2.11. Let B, p and L be as in Definition 2.10. Then the isometry class of
L, is uniquely determined by (V},, ®).

Proof. There is nothing to show if [E : K] = 4. Suppose now E = K. The space
K M, is a maximal anisotropic subspace of (1}, ®). By Witt’s theorem [25, Theorem
42:17] its isometry type is uniquely determined by (V;, ®). Further, M) is the unique
27 ,-maximal Z, -lattice in K My, see [25, Theorem 91:1]. Hence the isometry type
of pg°(Mpy) depends only on (V,,®). The case [F : K| = 2 is proved similarly. [

3. GENERA OF LATTICE CHAINS

Definition 3.1. Let £ := (Ly,...,Ly,) and L' = (L, ..., L)) be two m-tuples of
M-lattices in V. Then L and L' are isometric, if there is some g € U(V,®) such
that Liyg = L for alli = 1,...,m. They are in the same genus if there is such an
element g € U(Vy, @). Let

(L] :={L"| L is isometric to L}
and
genus(L) :={L' | L' and L are in the same genus}

denote the isometry class and the genus of L, respectively. The automorphism group

of L is the stabiliser of L in U(V,®), i.e.

Aut(L) = ﬁ Aut(L;).

It is well known [4, Theorem 5.1] that any genus of a single lattice contains only
finitely many isometry classes. This is also true for finite tuples of lattices in V:

Lemma 3.2. Let L = (Ly,...,Ly,) be an m-tuple of M-lattices in V. Then
genus(L) is the disjoint union of finitely many isometry classes. The number of
isometry classes in genus(L) is called the class number of L.

Proof. The case m = 1 is the classical case. So assume that m > 2 and let
genus(Ly) := [M;]W. . . W[M,], with M; = L,g; for suitable g; € U(Vy4, ®). We decom-
pose genus(L) = Gy W ... WG, where G; := {(L},..., L)) € genus(L) | L] = M,;}.
It is clearly enough to show that each G; is the union of finitely many isometry
classes. By construction, any isometry class in G; contains a representative of the
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form (M;, L, ..., L;,) for some lattices L in the genus of L;. As all the L; are
lattices in the same vector space V, there are a,b € Zg such that

1
bLl QLJ Q —L1 for all 1 S] Sm
a
As (M;, L, ..., L],) = Lg for some g € U(V,, ®) we also have
1
a

So there are only finitely many possibilities for such lattices L;. Hence the set of all
m-tuples (M;, L}, ..., L) € genus(L) is finite and so is the class number. O]

Remark 3.3. If £ C L then the class number of £ is at most the class number of
L.

3.1. Admissible lattice chains.

Definition 3.4. Let P be a maximal 2-sided ideal of M and p == K NP. A lattice
chain
L:={LoDLiD...D Lyu12D Ly}

15 called admissible for B, if

(1) Lo € L#,p}

(2) g’BLO - Lm;

(3) BLEP C Ly if B =0 (P).
We call a R-admissible chain fine, if Ly is normalised for p in the sense of Definition
2.10, L; is a mazimal sublattice of L;_1 for alli=1,...,m and either

(a) B =0o(P) and L,/ BLH* is an anisotropic space over M /B
(b) P # o(B) and PLo is a mazimal sublattice of L,,.

Remark 3.5. In the case that B # o(*P) the length m of a fine admissible lattice
chain is just m = r = dimg(V') — 1. Also if P = o(P), then m = r, where r is the
rank of the p-adic group defined in Remark 2.3.

Note that any admissible chain £ contains a unique maximal integral lattice which
we will always denote by Ly.

Remark 3.6. Let £ = (Lo, ..., L,) be a fine admissible lattice chain for 3.

(a) If P = o(P) then Ly := Lo/PLI" is a hermitian space over M /9B and the
spaces V; 1= ‘]3L;’%’p JBLEP (j=1,...,r) define a maximal chain of isotropic

subspaces of this hermitian space. We call the chain (Vi,...,V,_1) truncated.
(b) If P # o(B) then Ly := Lo/ P Ly is a vector space over M /P and the spaces
V= L;j/BLy (j =r,...,1) form a maximal chain of subspaces. Here we

call the chain (V,_1,...,V}) truncated.

For the different hermitian spaces Ly, the number of such chains of isotropic
subspaces can be found by recursively applying the formulas in [29, Exercises 8.1,
10.4, 11.3].

Lemma 3.7. The fine admissible lattice chain L represents a one-class genus of
lattice chains if and only if Lo represents a one-class genus of lattices and Aut(Lg)
is transitive on the maximal chains of (isotropic) subspaces of Ly.

Proof. 1f £ has class number one, so has any lattice in the chain £. Suppose now Ly
has class number one. Let £’ be any other lattice chain in the genus of £. We have
to show that £ and £’ are isometric. To that end, let L{ be the unique maximal



ONE CLASS GENERA OF LATTICE CHAINS OVER NUMBER FIELDS 7

integral lattice in £'. Then Ly and Lj, are isometric, as they are in the same genus.
So without loss of generality, Ly = L{. Then £ and £’ correspond to unique maximal
chains of (isotropic) subspaces of Ly. Since Aut(Lg) acts transitively on these chains
of subspaces, it yields an isometry from £ to £'. O

4. CHAMBER TRANSITIVE ACTIONS ON AFFINE BUILDINGS.

Kantor, Liebler and Tits [11] classified discrete groups acting chamber transitively
and type preservingly on the affine building of a simple adjoint algebraic group of
relative rank > 2 over a locally compact local field. Such groups are very rare and
hence this situation is an interesting phenomenon, further studied in [9], [10], [19],
[22], [12], and [21] (and many more papers by these authors) where explicit construc-
tions of the groups are given. One major disadvantage of the existing literature is
that the proof in [11] is very sketchy, essentially the authors limit the possibilities
that need to be checked to a finite number.

From the classification of the one-class genera of admissible fine lattice chains in
Section 5, we obtain a number theoretic construction of the groups in [11] over fields
of characteristic 0. It turns out that we find essentially all these groups and that
our construction allows to find one more case: The building of Us(Q3(v/—3)) of type
C' — BC(j, see Proposition 5.3 (1), which, to our best knowledge, has not appeared
in the literature before.

4.1. S-arithmetic groups. We assume that (V,®) is a totally positive definite
hermitian space, i.e. K is totally real and ®(z,x) € K is totally positive for all
non-zero x € V.

Let S = {p1,...,pm} be a finite set of prime ideals of Zg. For a prime ideal p we
denote by v, the p-adic valuation of K. Then the ring of S-integers in K is

Zs :={a € K | y4(a) > 0 for all prime ideals q ¢ S}.
Let L be some M-lattice in (V,®) and put Lg := L ®z, Zg. Then the group
Aut(Ls) :={g € U(V,®) | Lsg = Ls}
is an S-arithmetic subgroup of U(V, ®).

Remark 4.1. For any prime ideal p, the group U(V, ®) (being a subgroup of U,) acts
on the Bruhat-Tits building B of the group U, defined in Remark 2.3. Assume that
the rank of U, is at least 1. The action of the subgroup Aut(Lg) is discrete and
cocompact on B, if and only if p € S and (V;, ®) is anisotropic for all p # q € S.

4.2. The action on the building of U,. In the following we fix a prime ideal p
and assume that S = {p}.

A lattice class model for the affine building B has been described in [1]. Note that
[1] imposes the assumption that the residue characteristic of K, is p # 2. This is only
necessary to obtain a proof of the building axioms that is independent from Bruhat-
Tits theory. For p = 2, the dissertation [6] contains the analogous description of
the Bruhat-Tits building for orthogonal groups. For all residue characteristics, the
chambers in B correspond to certain fine lattice chains in the natural U,-module
W,.

Let L be a fixed p-normalised lattice in V' and put V, :==V @ K.

In the case that £ @k K, is a skewfield, we decompose the completion

Ly =H(WM,)" L My = J_(eiafi>Mp 1L My

i=1



8 MARKUS KIRSCHMER AND GABRIELE NEBE

as in Definition 2.10. Then V, =V, L (e1,..., e, f1,.. ., fr) Kk, Where Vj = K, M, is
anisotropic. Then the standard chamber corresponding to L and the choice of this
hyperbolic basis is represented by the admissible fine lattice chain

EZ (L:Lo,Ll,...,LT)
where L; € L(p) is the unique lattice in V' such that

J
(LJ)P = J_ Wezafz J— J_ ez,fz J_ M().
=1

1=j+1

Now assume that F @x K, = Kg“ and W, = eV, for some primitive idempotent
e such that o(e) = 1 — e as in Remark 2.3. Then W, carries a symplectic form ¥
and the lattice Lye has a symplectic basis (e, fi,..., e, fr), 1€

T

Lye = J_<€i, fi)zx,

i=1
with W(e;, f;) = 1. The standard chamber corresponding to L and the choice of this
symplectic basis is represented by the admissible fine lattice chain

L=(L=LyL,...,L)
where L; € L(p) is the unique lattice in V' such that

(LJ)P = J_ Welyfl J— J_ e’L)f’L

1=7+1

In the last and most tricky case ' ®x K, = K, ® K,. Then W, = V,eyp for any
of the two maximal ideals 8 of M that contain p, U, DO SL(W,) and M, := Lyey is
a lattice in W,. To define the standard chamber fix some Zg, -basis (é1,...,e.) of
M, . Then the fine admissible lattice chain

L£=(L=LoLi,....L,)
where L; is the unique lattice in V' such that
e (Lj)g= Lq for all prime ideals Q # 93 of M
o (Lj)p =D (Tei)rmy © Dy (i) ry-
Lemma 4.2. Assume that*B # o(B), so EQ@k K, = K, ® K, and keep the notation

from above. Let M be some M-lattice in V. Then {X € M(p) | epX, = exM,}
contains a unique lattice Y with Y = Y#¥,

Proof. AsY € M(p) it is enough to define Y}, = ep M, ® (1 —ep)X,. This M,-lattice
is unimodular if and only if

(I —ep)Xy ={z € (1 —ep)V | P(epMy,z) C M, }.
L]

Thus for B # o(*B) the stabiliser in the S-arithmetic group Aut(Lg) of a vertex
in the building B is the automorphism group of a p-unimodular lattice. Also if
P = o(*B), any vertex in the building B corresponds to a unique homothety class
of lattices [M,] = {aM, | a € K;}. So by Remark 2.2 there is a unique lattice
X € L(p) with X, = M,. Hence the stabilisers of the vertices in B are exactly the
automorphism groups of the respective lattices in V. In particular these are finite
groups.
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Remark 4.3. As U, acts transitively on the chambers of B, any other chamber
(i.e. r-dimensional simplex) in B corresponds to some lattice chain in the genus
of L = (Lg,...,L;). The (r — 1)-dimensional simplices are the Uy-orbits of the
subchains £; := (L; | i # j) of £ for j = 0,...,r. We call these simplices panels
and j the cotype of the panel L;.

Theorem 4.4. Let L = (Ly, ..., L,) be a fine admissible lattice chain for B of class
number one. Put L := Ly and S := {p}. Then Aut(Lg) acts chamber transitively
on the (weak) Bruhat-Tits building B of the completion U,.

Proof. We use the characterisation of Lemma 3.7. Let C be the chamber of B that
corresponds to £ by the construction above and let D be some other chamber in B.
Then there is some element g € U, with Cg = D. As the genus of L consists only of
one class, there is some h € Aut(Lg) such that gh € U, stabilises the vertex v that
corresponds to L. So gh € Staby,(L,) and Dh is some chamber in B containing
the vertex v. Now Aut(L) acts transitively on the set of all fine admissible lattice
chains for 9B starting in L, so there is some b’ € Aut(L) such that Dhh’' = C. Thus
the element hh' € Aut(Lg) maps D to C. O

As in [27, Proposition 1] we obtain the following if and only if statement:

Proposition 4.5. The group Aut™(Lg) acts chamber transitively on the (weak)
Bruhat-Tits building B if and only if the special class number h™ (L) =1 or equiva-
lently if h™(Lo) = 1 and Aut™(Lg) is transitive on the mazimal chains of (isotropic)
subspaces of L.

For the maximal S-arithmetic group Aut(Lg) an if and only if statement is techni-
cally more involved due to the fact that U(V, ®) is not necessarily connected and so
we do not have strong approximation for this group. Here we obtain that Aut(Lg)
acts chamber transitively on B if and only if Aut(Lg) acts transitively on the max-
imal chains of (isotropic) subspaces of Ly (see Lemma 3.7) and all p-neighbours of
Ly (i.e. all lattices L in the genus of Ly with L/(L N Ly) = M /P for some maximal
twosided ideal 3 of M over p) are isometric to Ly.

For the orthogonal groups we can further characterise the transitivity of Aut(Lg)
on B: Let g € U(V, ®) be some isometry of determinant —1. Then the union of the
proper special genera of L and g(L) consists of exactly h™ (L) isometry classes. Let

N, (L) :== {Mh | M is an iterated p-neighbour, h € U*(V, ®)}.

Then by [2] the set N;F(L) consists of a < 2 proper special genera. The exact value
of a is given by some local condition, see [2, Equation (1.1)]. In particular, the union
of all isometry classes of iterated p-neighbours is the following unig of proper special
genera

genus™ (L) U genus™ (Lg) U genus™ (L) U genus™ (L'g).
where L' denotes any p-neighbour of L. The above union consists of a single isometry
class, if and only if A" (L) =1 and a = 1.

4.3. The oriflamme construction. The buildings B described above are in gen-
eral not thick buildings, i.e. there are panels that are only contained in exactly two
chambers. Such panels are called thin. To obtain a thick building Bt (with a type
preserving action by the group U;r defined in Remark 2.3) we need to apply a gen-
eralisation of the oriflamme construction as described in [1, Section 8]. In particular
[1, Section 8.1] gives the precise situations which panels are thin for the case that
p # 2. Also for p = 2 only the panels of cotype 0 and r can be thin. We refrain from
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describing the situations for p = 2 in general, but refer to the individual examples
below.

Remark 4.6. Assume that B = o(B).

(a) Assume that there are only two lattices Ly and L; in the genus of Ly such

that

Ly C Lo, Ly C LY*.
Then £ and £ := (Ly, Ly, ..., L,) are the only chambers in B that contain
the panel Ly = (Ly,...,L,) and hence this panel is thin. Then we replace
the vertex represented by L, by the one represented by L.

(b) Assume that there are only two lattices L, and L in the genus of L, such

that

BLIK C Ly, L, C Loy,
Then £ and L' := (Lo, L1, ..., L") are the only chambers in B that contain
the panel £, = (Lo, ..., L,_1) and hence this panel is thin. Then we replace
the vertex represented by L,_; by the one represented by L!.

(c) After this construction the standard chamber £ in the thick building Bt
is either represented by L, (Lo, L{, Lo, ..., L), (Lo, L1, ..., Ly—2, L, L), or
(Lo, Ly, Lo, ..., Lo, L, L"). Note that by construction the chain £ can be
recovered from LT, so the stabiliser of £ is equal to the stabiliser of all
lattices in £*. Moreover every element in U, mapping the chain £ to some
other chain £’ maps the chamber £ to the chamber (L) .

For more details we refer to [1, Section 8.3].
In particular by part (c) of the previous remark we find the important corollary.

Corollary 4.7. In the situation of Theorem 4.4 the group Aut(Ls) also acts chamber
transitively (not necessarily type preservingly) on the thick building B™.

Remark 4.8. Also in the situation where B # o (), i.e. E, = K,®K,, the stabilisers
of the points in the building are not the stabilisers of the lattices in the lattice
chain. By Lemma 4.2 the lattices L; (i = 1,...,7) need to be replaced by the
uniquely defined lattices Y; € L;(p), such that (Y;), is unimodular (as in Lemma
4.2) and Y; N Ly = L;. We refer to this construction as a variant of the oriflamme
construction in the examples below.

Theorem 4.9. Let L = (Lo, ..., L) be a fine B-admissible lattice chain for some
mazximal two sided ideal B of M such that o () = P. Suppose that the oriflamme
construction replaces L by some sequence of lattices L which is one of

‘C7 (LOa L67 L27 ey Lr)a (L07 L17 ce 7L7‘—27 L7"7 L',r) or (LOa L67 L27 ey LT’—Qa Lra L;)

Then Lo and Ly as well as L, and L. are in the same genus but not in the same proper
special genus. Put L := Ly and S := {p}. Then Aut™(Lg) := Aut(Lg) N SU(V, ®)
acts type preservingly on the thick building BY. This action is chamber transitive if
and only if h* (L) = 1 and Aut* (L) is transitive on the mazimal chains (in the first
two cases) respectively truncated mazimal chains (in the last two cases) of isotropic

subspaces of L defined in Remark 3.6.

Proof. The proof that the action is chamber transitive in all cases is completely
analogous to the proof of Theorem 4.4. We only need to show that h™ (L) = 1. So let
M be some lattice in the same proper special genus as L. By strong approximation
for UT(Va, ®) (see [17]), there is some element g € Uy and h € SU(V, ®) such that
Mh = Lg. As Aut™(Lg) is chamber transitive and type preserving, there is some
f € Aut™(Lg) such that Lf = Mh so M = Lfh~! is properly isometric to L. [
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To obtain a classification of all chamber transitive discrete actions on BT we
hence need a classification of all proper spinor genera with proper class number one.
The thesis [16] only lists the genera of class number one and two. In some cases,
h(L) = h* (L) for every square-free lattice L, for example if:

(a) F = K, dim(V) > 5 and K has narrow class number one ([25, Theorem
102.9]),

(b) [E: K] = 2 and dimp(V) is odd ([28]),

(c) or [E: K] =4.

5. THE ONE-CLASS GENERA OF FINE ADMISSIBLE LATTICE CHAINS

We split this section into three subsections dealing with the different types of
hermitian spaces ([E : K| = 1,2,4). The fourth subsection comments on the excep-
tional groups.

Suppose L = (Ly, ..., L,) is a fine P-admissible lattice chain of class number one,
where B is a maximal two sided ideal of M. Then p := P N Zk together with
Ly determines the isometry class of £ := L(Lg,p). Moreover L is a p-normalised
lattice in (V, @) of class number one and by Corollary 3.7 the finite group Aut(Ly)
acts transitively on the fine chains of (isotropic) subspaces of Ly as in Remark
3.6. The one- and two-class genera of lattices in hermitian spaces (V, ®) have been
classified in [16]. For all such lattices Ly and all prime ideals p, for which Ly is
p-normalised, we check by computer if Aut(Lg) acts transitively on the fine chains
of (isotropic) subspaces of Ly. Note that the number of such chains grows with the
norm of p, so the order of Aut(Lg) gives us a bound on the possible prime ideals p.
We also checked weaker conditions (similar to the ones in Theorem 4.9) that would
imply a chamber transitive action on the thick building BT, i.e. h(Lg) < 2 and
transitivity only on the truncated maximal chains. The cases h(Lg) = 2 never gave
a transitive action on the chambers of B7.

For any non-empty subset 7" of {1,2,...,r} we list the automorphism group Gr
of the subchain (L;);er. With our applications on the action on buildings in mind,
we also give the order of

G; = GTQU;_

where U;f is given in Remark 2.3. Note that we will always assume that the rank of
the group U, is r > 2.

5.1. Quadratic forms. In this section suppose that £ = K. We denote by
A, B, D, E, the root lattices of the same type over Zg. If L is a lattice and
a € K we denote by (WL the lattice L with form rescaled by a. Sometimes we
identify lattices over number fields using the trace lattice. For instance (Esg) —3

1+¢j3]
2

denotes a hermitian lattice over Z] of dimension 4 whose trace lattice over Z

is isometric to Eg.

5.1.1. Quadratic forms in more than four variables. If E = K, dimg (V) > 5 and
(V, @) contains a one-class genus of lattices, then by [16, Section 7.4] either K = Q
or K = Q[v/5] where one has essentially one one-class genus of lattices of dimension
5 and 6 each. The rational lattices have been classified in [20] and are available
electronically from [13].

Proposition 5.1. If E = K, dimg(V) > 5 and (V,®) contains a fine p-admissible
lattice chain L(Lg,p) of class number one for some prime ideal p, then K = Q and
L(Log,p) is one of the following nine essentially different chains:
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(1) L(Es,2) = (Es,Ds, Dy L Dy, ODF OEy). After applying the oriflamme

construction, the lattice chain becomes

Es (0)  (0) Eg

(2) Dy L Dy

AEg 9 @ (2)Eg

The automorphism groups are as follows

T Gr #GH

{i} 2.05(2).2 213.3%.52.7
{2} Aut(Dy)1Cy 21331
{i, 5} 2.76.Sg 213.32.5.7
{2, Z} N(Sg X Sg ! CQ) 213 . 33

{i,j,k} 24T0.(C2.PSLy(7)) 23-3-7
{2,2,]} N(Cg X Sg { CQ) 213 . 32
{0,0',4,4"} 2176.(C3 -5, 2133
{2,1,7,k} N.(C3 x S3) 213.3
{0,0,2,4,4"} N.C3 213
where N = Oy(Gyay) = 27 %21 and i, j, k € {0,0/,2,4,4'} with #{i, j, k} =
3.
(2) L(E;,2) = (E7,Dg L Ay, Dy L PBy, AB;). After applying the oriflamme
construction, the lattice chain becomes

E,(0) (0)E;
2) D, L @B,
(3) @B,
The automorphism groups are as follows
T Gr #GF
{i} Cy x PSpg(2) 29.3%.5.7
{2} Aut(D4) X CQ l 53 29 . 33
{3} C .57 29.32.5.7
{0,0'} C8.S¢ 29.3%2.5
{i,2} N.S? 29 . 32
{i,3} CI.PSLy(7) 29.3.7
{2,3} N.(Cy x S2) 29 . 32
{0,0',2},{4,2,3} N.Dqs 29.3
{0,0',3} C3.8, 29.3
{0,0/,2,3} N.C? 29

where N := Oy(Gay) = 2?4 X Qg and i € {0,0'}. The one-class chain
L(B7,2) = {B;, ¥ L B;),PD¥ L B,, PE¥}
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yields the same stabilisers.
(3) L(Ag,2) = {Ag, X, DX#2 @ As}. Here X is an indecomposable lattice with
Aut(X) = (CF x C3).Dyg. After applying the oriflamme construction, the

lattice chain becomes
A (0)  (0) A

@) Ag 9 @ (2) Al

The automorphism groups are as follows

T Gr G sqdb
AT =1 Oy xS,  22.37.5.7 -
{0,0'}, {3,3" Cyx Sy xSy 2332 43
{0,3}4,{0,31,{0/,3}, {0/,3'} Cy x PSLy(7) 23-3-7 42
#T:3 CQXS4 23.3 12
{0,0/,3,3/} Cg X Dg 23 3

Here, and in the following tables, the column sgdb gives the label of G4 as
defined by the small group database ([3]).
The admissible one-class chain

L(W)Ag&, 2) = {(7)Az§¢7 (M x#7 (O x# (14)Az)%}

yields the same groups.

(4) L(Eg,2) = {E¢, Yo,Dy L @Ay}, Here Yy is the even sublattice of By L OB, .
It is indecomposable and Aut(Yy) = Aut(Bs L OB) =2 Cy x Cy1 S5. After
applying the oriflamme construction, the lattice chain becomes

B (0) () E

Q) Dy L DA,
The automorphism groups are as follows
T Gr #G7 sgdb

{i} Cox Uy(2).2 26.3%.5 —
{2} Aut(]D)4) X Dlg 26 . 33 —

{0,07} C3 1 S 26.3.5 11358
{i,2} N.S2 26.32 8277
{0,0',2} N.Dyy 2.3 201

where N = Oy(G3) =2 224 x Cy and i € {0,0'}. The admissible one-class
chains

L(Ay L Dy,2) = {Ay L Dy, Dy#2 O}
LAY 1 Dy),2) = {OAF L D,), Ov# OF)
LB 2) = (VB OY#5, 04, 1 D))

yield the same stabilisers.
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(5) L(Dg,2) = {Dg, Dy L XB,y, @DBs}. Here the application of the oriflamme
construction is not necessary. The automorphism groups are as follows

T Gr #G1. sgdb
{0}, {2} Cs 1 S %375  —
{1} Aut(]D)4) 1 CQ ! SQ 28 . 32 -
{0,1},{1,2}  CS.(Cyx Sy)  28-3 1086007
{0,2} CS.(Cyx Sy) 283 1088660
{0,1,2} CS.(Cy x Dg) 28 6331

(6) L(Eg,3) = {Eq, A3, ®Eg}. Here the application of the oriflamme construc-
tion is not necessary. The automorphism groups are as follows

T Gr #GF sgdb
01, 12} CoxUs(2).2  20.37.5 —
1) Dis1 S 25 . 3

{0,2} 3172.(Cy x GLy(3)) 2%-3% 533
{0,1},{1,2} N.(C} x S)) 23 . 3 704
{0,1,2} N.(C3 x Ss) 2.3% 10

where N = O3(Gy1y) = C3.

(7) LBs L ®OBy,3) = {Bs L OB, By L Ay L OBy; By L OBs}. Here the ap-
plication of the oriflamme construction is not necessary. The automorphism
groups are as follows

T Gr #G sgdb
{0},{2} CQXCQZS5 2635 —
{1} 02232 X D12 X 02252 253 144
{0,2} C2 x GLy(3) 23.3 3
{O, 1}, {1,2} 022 X Dg X Sg 23 . 3 8
{0,1,2} C3 % Sy 2.3 p

For 0 <i <2 letY; be the even sublattice of L(Bs L ®By,3);, see also part
(4). Then the admissible one-class chains

L(Yo,3) = {Yo, Y1, Yo} and L(PY]2,3) = (Py 2, Oy Oy

yield the same groups.

(8) L(As5,2) = {As, DB, L Z,® (A, L B3)}. Here Z is the even sublattice of
Bs L OB, and Aut(Z) = Aut(Bs L ®B,). After applying the oriflamme
construction, the lattice chain becomes

As (0)  (0) A

(2) @(Ay L By)
The automorphism groups are as follows

T Gr #G sgdb
{0},{0'}  Coyx Sg  23-3%.5 118

{2} D12 X CQ ! Sg 23. 32 43
#T =2 C2 xS, 233 12
{0,0',2} C2 x Dg 23 3
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The admissible one-class chains
L((3)A?’3, 2) = {(3)A?’3, (6)1531 L (3)2#,3’ (6)(,&;* 1 B3)}
L(Ay L B3, 2) = {A; LB, B, L @z#2 @p#%)
L(OAT L Bs),2) = {P(AF L By), OB, L Oz# ©aF)}

yield the same stabilisers.
(9) L(Bs,3) = {Bs, By L Ay 1L OBy, B, L ®B,}. After applying the oriflamme
construction, the lattice chain becomes

B (0)  (0)Bs

2) (B, L ®By)

T Gr #GH, sgdb
I C>1 5 2535 11358
{2} 02 ! S4 X CQ 25 3 204
{0,0/} (Cg X Dg) X 53 23. 3 3
{i, 2} Cg X GLQ(?)) 23 . 3 8
0,02}  C2xS; 23 2

where i € {0,0'}. The admissible one-class chain
LBy L UBy,3) = {Bs L UB1, B LAy L @By, @B}
yields the same stabilisers.

5.1.2. Quadratic forms in four variables. Now assume that K = E and dimg (V) =
4. By [16, Theorem 7.4.1] there are up to similarity exactly 481 one-class genera of
lattices if K = Q and additionally 607 such genera over 22 other base fields where
the largest degree is [K : Q] = 5 ([16, Theorem 7.4.2]). As we are only interested
in the case where the rank of U, is 2, we only need to consider pairs (L,p) where
L is one of these 1088 lattices and p a prime ideal such that V,, = H(K,) L H(K,).
In this case the building B of U, is of type A; & A; and not connected even after
oriflamme construction. We will not list the groups acting chamber transitively on
BT, also because of the numerous cases of one-class lattice chains in this situation.

To list the lattices we need some more notation. We denote by Q 1= Qg oy .. p, @
definite quaternion algebra over K = Q(«) which ramifies exactly at the finite places
pi,...,ps of K. Given an integral ideal a of Zg coprime to all p;, then Og oo, poia
denotes an Eichler order of level a in Q.

We omit the subscript a whenever K = Q. Similarly, the subscript a is omitted,
if @ = Zg, i.e. the order is maximal.

Then Og ooy, ps:a With the reduced norm form of Q yields a quaternary lattice
over Zg. By [24, Corollary 4.6] this lattice is unique in its genus, if and only if all
Eichler orders of level a in Q are conjugate.

Hence we identify such orders with their quaternary lattices.

Proposition 5.2. Let L be a p-normalised, quaternary lattice over Zy such that
L(L,p) is a fine p-admissible lattice chain of length 2 and class number one. Then
one of the following holds.
(1) K =Q and either
ep=2and L=0x3=Ay L Ay 0r Ogs.
e pec {3511} and L = Oy = Dy.
e p=23and L =B,
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(2) K = Q(+/5) and either
. NrK/Q( ) €{4,5,9,11,19,29,59} and L = O 5 . This lattice is called
Hy in [26].
o Nrg/g(p) € {5, 11} and L = O j5 .07, = Du.

o p =27k and L = Of,oo,a = ‘C(Of,oov )2 with NIK/Q(G) S {5, 11}.
(3) K = Q(v/2) and either
° NI’K/Q(]J) € {2, 7, 23} and L = 0\/5’00.
o Nrgjg(p) = 7 and L = O . g, = L(O54)2 or L is isometric
to a unimodular lattice of norm v/2Zg in (V,®) = (1,1,1,1). By [25,
IX:93], the genus of the latter lattice is uniquely determined and it has
class number one by [16].
o v =127 and L = O 500 = £<O\/5,oo7 a), with Nrgg(a) = 7.
(4) K = Q(V/3) and either
o p= V3Zx and L = (’)\/gpom,z or L is isometric to a unimodular lattice
of norm poy in (V,®) = (1,1,1,1). Again, this lattice is unique up to
1sometry.
o N =Py and L = O\/g,oo;\/gZK‘

(5) K = Q(v13) and Nrg/g(p) = 3 and L = O 3.00- This lattice is called Dy
in [26].

(6) K = Q(/17) and Nrgo(p) = 2 and L = Oyt7oo- This lattice is called

(7) K = Q(0y) is the mazimal totally real subfield of the cyclotomic field Q(o)
and p = 2Zk and L = O o p, -

(8) K = Q(a) @ Q[X]/(X? — X? — 3X + 1) is the unique totally real number
field of degree 3 and discriminant 148. Then either p = p5 and L = Og ooip,
orp=yps and L = Op o0ps -

(9) K = Q(a) @ Q[X]/(X? — X? — 4X + 2) is the unique totally real number
field of degree 3 and discriminant 316. Then p = py and L = Oy oorp, -

(10) K = Qo) = Q[X]/(X*—X?—3X2+ X +1) is the unique totally real number
field of degree 4 and discriminant 725. Then L = O, and Nrgg(p) €
{11,19} or p is the ramified prime ideal of norm 29.

(11) K = Q(a) & Q[X]/(X* — 4X? — X + 1) is the unique totally real number
field of degree 4 and discriminant 1957. Then p = ps and L = O, .

(12) K = Q(a) @2 Q[X]/(X*—X3—4X?+ X +2) is the unique totally real number
field of degree 4 and discriminant 2777. Then p = py and L = O, .

Here p, denotes a prime ideal of Zy of norm q. Conversely, in all these cases the
chain L(L,p) is p-admissible and has class number one.

5.2. Hermitian forms. In this section we treat the case that [E : K] = 2, so E
is a totally complex extension of degree 2 of the totally real number field K. The
automorphism groups of the hermitian lattices that occur in the tables below are
strongly related to maximal finite symplectic matrix groups classified in [14]. We
use the notation introduced in this thesis (see also [15]) to name the groups. All
hermitian lattices with class number < 2 are classified in [16, Section 8] and listed
explicitly for n > 3 in [16, pp 129-140].

Proposition 5.3. Let L(Lo,p) be a fine P-admissible chain of class number one and
of length at least 2. Then K = Q, d := dimg(V') € {3,4,5} and one the following
holds:
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(1) E=Q(V/=3), p = 3Z and Ly = By ®7 Z[*L=2] = (A3) /=
L(Lo,3) = {Lo, (A3 L WEE) =5, (As L Esm}.

Here the application of the oriflamme construction is not necessary. The
automorphism groups are as follows:

T Gr s
{0} Cs1 55 2735
{1} Cs 1S3 x y=3[£372.SLa(3)]3 26.35
{2} 06 X \/T3[SP4(3) X 03]4 27. 3°.5
{0,1} Co 152 x y=5[+31"%.Cgl3 24.35
{1, 2} 06 X m[ﬂ:(31++28L2(3) X 03)]4 24.3°
{0 1} C6 X m[i33 . 54 X 03]4 24.3°
{1 2} 06 X F[ (31+ SL2(3> X 03)]4 24 . 35
{O } 06 X \/7[:*:3 1+2 06 X 03] 22.3°

(2) E = @(\/_) p=2Z and Lo = (Es) /=

E((E8)Jj7’ 2) = {(ES)\/—777 (]DS)\/?% (D4 1 D4)¢T77 ((Q)DS)\/??}‘

After applying the variant of the oriflamme construction described in Remark
4.8, the lattice chain becomes

By = © ) © &

The automorphism groups are as follows:

T Gr #G sgdb
AT =1 3.Alt; 2T 5T —

{0,0'}, {3,3'} SLy(3) x C:2 2432 124
(0,31,{0,31,{0,3},{0",3}  SLo(7)  24.3.7 114
4T =3 2.9, 2.3 28
{0,0,3,3'} Q16 ! 9

(3) E=Q(V=3), p=2Z and L = (Eg) /—-

L((Es)y=3,2) = {(Es)y=3, (Da L Da) /=, (PEs) =5}
Here the application of the oriflamme construction is not necessary. The
automorphism groups are as follows:

T Gr #GH
{0}, {2} /=[Spa(3) x G5y 27-3%-5
{1} v3lSLa(3) x C5l3 27 - 3°
{0,2} 21 Alts x C5 27-3-5

{0,1},{172} SL2(3)202 X Cg 27'32
{0,172} (Qg?SQ)IOgXOg 273

(4) E=Q(v-1), p=2Z and Lo = (Eg) =

L((Es)=1,2) = {(Bs) =1, Ds) =1, (Da L D) =}

Here the application of the oriflamme construction is not necessary. After
applying the oriflamme construction, one obtains the following lattices
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T Gr ¥ess
{0}, {0} J[(2Y"YC4).Sela 27-32-5
(2} (DY Cy).S5)2 29 32
{0,2}, {0, 2} 293
{0,0'} 29.3
{0,2,0'} 2

(5) E = Q(v=3), p = 3Z and Ly = By @z Z[*£3] = (Eg) =5 Here the

application of the oriflamme construction is not necessary.

L(Lo,3) = {(A3) /=5, (Ay L OET) =, (PEs) =}

After applying the oriflamme construction, the chain becomes:

(0) (A3),/=3

(PEs) = @) ) (PEs) =

The automorphism groups are as follows:

T Gr #GF sgdb

{0} Cs 1S, 26 31 -
(242} =lSpu(3) x Cly 27-3' 5 —
{0,2},{0,2'} (£C%).S, 24.3* 3085
{2,2'} (Cs x 3472).85  24.3% 2895

{0,2,21  (CexC31C5).2 2234 68

6) E = Q(v/=7), p = 2Z and Ly = (DAY) —. After applying the variant o
p 6 )v=7
the oriflamme construction described in Remark 4.8, the chain becomes:

e 2 © @ @

The automorphism groups are as follows:

T Gr  #G
#T =1 =£C7;:3 3-7
4T =2 C; 3

{0,0,0y  Cy 1

5.3. Quaternionic hermitian forms. In this section we treat the case that [E :
K] =4, so E is a totally definite quaternion algebra over the totally real number
field K. All quaternionic hermitian lattices with class number < 2 are classified in
[16, Section 9] and listed explicitly for n > 2 in [16, pp 147-150].

Proposition 5.4. Suppose E is a definite quaternion algebra and let L(Lg,p) be a
fine P-admissible chain of length at least 2 and of class number one. Then K = Q,
d ;= dimg(V') = 2 and one of the following holds:
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(1) E = Qu 2, the rational quaternion algebra ramified at 2 and oo, p = 3Z and
Ly = (Eg)e2 is the unique M-structure of the Eg-lattice whose automor-
phism. group is called o 2[221* . Alts) in [24]. The oriflamme construction is
not necessary and the automorphism groups are

T Gr #Gr  sgdb
{0}, {28 225t Alts], 27-3-5  —
{11 Qs :SLy(3)  26-3 1022
{0,1},{1,2} Cy xSLy(3) 2*-3 32
{O, 2} 03 : SD16 24 -3 16
#T =3 02 X C6 22.3 9

(2) E = Qx3 and p = 2Z and Ly = (Eg)s s is the unique M-structure of
the Eg-lattice whose automorphism group is called « 3[SL3(9)]2 in [24]. The
oriflamme construction is not necessary and the automorphism groups are

T GT #GT sgdb
{0},{2} ~3[SLa(9)]2 2*-32-5 409
{1} SLy(3).55 2% 32 124
H#T =2 C5.54 2.3 28
{0,1,2} Q16 24 9
Note that the above quaternion algebras only have one conjugacy class of maximal

orders and for any such order M, the above M-lattice Ly is uniquely determined up
to 1sometry.

5.4. The exceptional groups. The exceptional groups have been dealt with in
[16, Chapter 10], where it is shown that only the group G, admits one-class genera
defined by a coherent family of parahoric subgroups. In all cases the number field
is the field of rational numbers. The one-class genera of lattice chains correspond
to the coherent families of parahoric subgroups (P,), prime Where for one prime p
the parahoric subgroup P, is the Iwahori subgroup, a stabiliser of a chamber in the
corresponding p-adic building. Hence [16, Theorem 10.3.1] shows directly that there
is a unique S-arithmetic group of type G with a discrete and chamber transitive
action. It is given by the Z-form Gy where each parahoric subgroup F, is hyper-
special. This integral model of Gy is described in [8] (see also [5] for more one-class
genera of Gy). Here Go(Z) = G5(2) and the S-arithmetic group is Go(Z[3]) (so
S ={(2)}). The extended Dynkin diagram of G, is as follows.

@ @ ©)

The stabilisers G of the simplices T C {0, 1,2} in the corresponding building of
Go(Q,) are given in [16, Section 10.3]:

T Gr #Gr sgdb
{0} Ga(2) 26.3%. 7 —
{2} 23.GL3(2) 260.3.7 814
{1} 2MM((Cs3 x C3).2) 20-32 8282

{1,2} 2175, 26.3 1494
{0, 2} ((04 X 04)2)53 26 -3 956
{0,1} 214 S, 26.3 988

{0,1,2} Syl (Ga(2)) 26 134
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One may visualise the chamber transitive action of G(Z[3]) on the Bruhat-Tits

building of G5(Q,) by indicating the three generators z,y, z of Go(Z[3]) of order 3
mapping the standard chamber to one of the (three times) two neighbours.

01 1-1-1—1 0 11 0-1—-1-1 0 2 2 0—1 0-2-1
0000001 1 1=1=1 0—1 0 102 0-1 0—1
0 1-1 0 0—1 1 1 1=1 0 0—1 0 L2 2 23221
zi=|110-10-10],y:=]|10-100-10],2:=2]2 2 0-1-2-2-1
00-10001 11 0-1 0-1—1 210 0 4-2-2 0-2
0-1 10000 01 0-1-1 0 0 2-2 0 1 2 0-1
010 0-1-1 0 1000000 02 0-1 0-2 1

To obtain a presentation in these generators, one only needs to compute the
relations between the pairs of generators that hold in the finite group generated by
the two matrices (in the stabiliser of a vertex).

6. CHAMBER TRANSITIVE ACTIONS ON p-ADIC BUILDINGS.

In this section we tabulate the chamber transitive actions on the p-adic buildings
obtained from the one-class genera of lattice chains given in the previous section.

We use the names and the local Dynkin diagrams as given in [31]. The name
for U, usually does not give the precise type of the p-adic group. For instance the
lattices [Eg and Dg define two non isomorphic non-split forms of the algebraic group
Og over Qo which we both denote by Og (Q2). To distinguish these groups, we also
give the Tits index as in [30] and [31, Section 4.4]. Note that the isomorphism
Oy = U, is given by the action of Og on the even part of the Clifford algebra.
So we find the one-class genera of lattice chains also in a hermitian geometry, for
L(Eg,2) (from 5.1 (3)) we get the same stabilisers as for L((Eg) —3,2) (from 5.3
(2)) in the projective group. Such coincidences are indicated by listing the lattices
Ly and the corresponding references (ref) in Table 1. The last column of Table 1
refers to a construction of the respective chamber transitive action in the literature.
For a more detailed description of the different unitary groups U, associated to the
various types of local Dynkin diagrams we refer the reader to [31, Section 4.4].
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