Mixed mock modular forms are vector-valued modular forms

Michael H. Mertens joint work in progress with Martin Raum
Universität zu Köln
University of North Texas, September 09, 2017

(1) Introduction

- Mock modular forms
- Higher depth modular forms
(2) Virtually real-arithmetic types
(3) Modular forms of vra types
- Classical modular forms
- Mixed mock modular forms
- Higher order modular forms

Table of Contents

(1) Introduction

- Mock modular forms
- Higher depth modular forms
(2) Virtually real-arithmetic types
(3) Modular forms of vra types
- Classical modular forms
- Mixed mock modular forms
- Higher order modular forms

4) Outlook

Table of Contents

(1) Introduction

- Mock modular forms
- Higher depth modular forms
(2) Virtually real-arithmetic types
(3) Modular forms of vra types
- Classical modular forms
- Mixed mock modular forms
- Higher order modular forms

4) Outlook

Ramanujan's deathbed letter

S. Ramanujan (1887-1920)

The modern definition

Definition

A mock modular form f of weight $k \in \mathbb{Z}$ for $\Gamma_{0}(N)$ is the holomorphic part \mathcal{M}^{+}of a harmonic Maaß form $\mathcal{M}: \mathbb{H} \rightarrow \mathbb{C}$, i.e.,
(1) $\left.\mathcal{M}\right|_{k, \gamma}=\mathcal{M}$ for all $\gamma \in \Gamma_{0}(N)$,

Space: $\mathbb{M}_{k}\left(\Gamma_{0}(N)\right)$

The modern definition

Definition

A mock modular form f of weight $k \in \mathbb{Z}$ for $\Gamma_{0}(N)$ is the holomorphic part \mathcal{M}^{+}of a harmonic Maaß form $\mathcal{M}: \mathbb{H} \rightarrow \mathbb{C}$, i.e.,
(1) $\left.\mathcal{M}\right|_{k, \gamma}=\mathcal{M}$ for all $\gamma \in \Gamma_{0}(N)$,
(2) \mathcal{M} is smooth and $\Delta_{k} \mathcal{M}=0$, where

$$
\Delta_{k}=-v^{2}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right)+i k v\left(\frac{\partial}{\partial u}+i \frac{\partial}{\partial v}\right)
$$

Space: $\mathbb{M}_{k}\left(\Gamma_{0}(N)\right)$

The modern definition

Definition

A mock modular form f of weight $k \in \mathbb{Z}$ for $\Gamma_{0}(N)$ is the holomorphic part \mathcal{M}^{+}of a harmonic Maaß form $\mathcal{M}: \mathbb{H} \rightarrow \mathbb{C}$, i.e.,
(1) $\left.\mathcal{M}\right|_{k, \gamma}=\mathcal{M}$ for all $\gamma \in \Gamma_{0}(N)$,
(2) \mathcal{M} is smooth and $\Delta_{k} \mathcal{M}=0$, where

$$
\Delta_{k}=-v^{2}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right)+i k v\left(\frac{\partial}{\partial u}+i \frac{\partial}{\partial v}\right)
$$

(3) growth condition at cusps.

Space: $\mathbb{M}_{k}\left(\Gamma_{0}(N)\right)$

The modern definition

Definition

A mock modular form f of weight $k \in \mathbb{Z}$ of type ρ is the holomorphic part \mathcal{M}^{+}of a harmonic Maaß form $\mathcal{M}: \mathbb{H} \rightarrow V(\rho)$, i.e.,
(1) $\left.\mathcal{M}\right|_{k, \rho} \gamma=\mathcal{M}$ for all $\gamma \in \operatorname{SL}_{2}(\mathbb{Z})$,
(2) \mathcal{M} is smooth and $\Delta_{k} \mathcal{M}=0$, where

$$
\Delta_{k}=-v^{2}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right)+i k v\left(\frac{\partial}{\partial u}+i \frac{\partial}{\partial v}\right)
$$

(3) growth condition at cusps.

Space: $\mathbb{M}_{k}(\rho)$

The modern definition

Definition

A mock modular form f of weight $k \in \mathbb{Z}$ of type ρ is the holomorphic part \mathcal{M}^{+}of a harmonic Maaß form $\mathcal{M}: \mathbb{H} \rightarrow V(\rho)$, i.e.,
(1) $\left.\mathcal{M}\right|_{k, \rho} \gamma=\mathcal{M}$ for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$,
(2) \mathcal{M} is smooth and $\Delta_{k} \mathcal{M}=0$, where

$$
\Delta_{k}=-v^{2}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right)+i k v\left(\frac{\partial}{\partial u}+i \frac{\partial}{\partial v}\right)
$$

(3) growth condition at cusps.

Space: $\mathbb{M}_{k}(\rho)$
Appear in

- combinatorial q-series (e.g. partition ranks)

The modern definition

Definition

A mock modular form f of weight $k \in \mathbb{Z}$ of type ρ is the holomorphic part \mathcal{M}^{+}of a harmonic Maaß form $\mathcal{M}: \mathbb{H} \rightarrow V(\rho)$, i.e.,
(1) $\left.\mathcal{M}\right|_{k, \rho} \gamma=\mathcal{M}$ for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$,
(2) \mathcal{M} is smooth and $\Delta_{k} \mathcal{M}=0$, where

$$
\Delta_{k}=-v^{2}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right)+i k v\left(\frac{\partial}{\partial u}+i \frac{\partial}{\partial v}\right)
$$

(3) growth condition at cusps.

Space: $\mathbb{M}_{k}(\rho)$
Appear in

- combinatorial q-series (e.g. partition ranks)
- quantum black holes and wall crossing

The modern definition

Definition

A mock modular form f of weight $k \in \mathbb{Z}$ of type ρ is the holomorphic part \mathcal{M}^{+}of a harmonic Maaß form $\mathcal{M}: \mathbb{H} \rightarrow V(\rho)$, i.e.,
(1) $\left.\mathcal{M}\right|_{k, \rho} \gamma=\mathcal{M}$ for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$,
(2) \mathcal{M} is smooth and $\Delta_{k} \mathcal{M}=0$, where

$$
\Delta_{k}=-v^{2}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right)+i k v\left(\frac{\partial}{\partial u}+i \frac{\partial}{\partial v}\right)
$$

(3) growth condition at cusps.

Space: $\mathbb{M}_{k}(\rho)$
Appear in

- combinatorial q-series (e.g. partition ranks)
- quantum black holes and wall crossing
- moonshine

The modern definition

Definition

A mock modular form f of weight $k \in \mathbb{Z}$ of type ρ is the holomorphic part \mathcal{M}^{+}of a harmonic Maaß form $\mathcal{M}: \mathbb{H} \rightarrow V(\rho)$, i.e.,
(1) $\left.\mathcal{M}\right|_{k, \rho} \gamma=\mathcal{M}$ for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$,
(2) \mathcal{M} is smooth and $\Delta_{k} \mathcal{M}=0$, where

$$
\Delta_{k}=-v^{2}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right)+i k v\left(\frac{\partial}{\partial u}+i \frac{\partial}{\partial v}\right)
$$

(3) growth condition at cusps.

Space: $\mathbb{M}_{k}(\rho)$
Appear in

- combinatorial q-series (e.g. partition ranks)
- quantum black holes and wall crossing
- moonshine...

Mixed mock modular forms

Definition

A mixed mock modular form of weight $\ell+k$ and type $\rho \otimes \rho^{\prime}$ is an element of the space $\mathbb{M}_{\ell}(\rho) \otimes M_{k}\left(\rho^{\prime}\right)$ ("product of a mock modular form and a modular form").

Mixed mock modular forms

Definition

A mixed mock modular form of weight $\ell+k$ and type $\rho \otimes \rho^{\prime}$ is an element of the space $\mathbb{M}_{\ell}(\rho) \otimes M_{k}\left(\rho^{\prime}\right)$ ("product of a mock modular form and a modular form").

Appear in

- Eichler-Selberg trace formula

Mixed mock modular forms

Definition

A mixed mock modular form of weight $\ell+k$ and type $\rho \otimes \rho^{\prime}$ is an element of the space $\mathbb{M}_{\ell}(\rho) \otimes M_{k}\left(\rho^{\prime}\right)$ ("product of a mock modular form and a modular form").

Appear in

- Eichler-Selberg trace formula
- shifted convolution Dirichlet series

Mixed mock modular forms

Definition

A mixed mock modular form of weight $\ell+k$ and type $\rho \otimes \rho^{\prime}$ is an element of the space $\mathbb{M}_{\ell}(\rho) \otimes M_{k}\left(\rho^{\prime}\right)$ ("product of a mock modular form and a modular form").

Appear in

- Eichler-Selberg trace formula
- shifted convolution Dirichlet series
- quantum black holes and wall crossing

Mixed mock modular forms

Definition

A mixed mock modular form of weight $\ell+k$ and type $\rho \otimes \rho^{\prime}$ is an element of the space $\mathbb{M}_{\ell}(\rho) \otimes M_{k}\left(\rho^{\prime}\right)$ ("product of a mock modular form and a modular form").

Appear in

- Eichler-Selberg trace formula
- shifted convolution Dirichlet series
- quantum black holes and wall crossing
- construction of mock modular forms with given shadow

Mixed mock modular forms

Definition

A mixed mock modular form of weight $\ell+k$ and type $\rho \otimes \rho^{\prime}$ is an element of the space $\mathbb{M}_{\ell}(\rho) \otimes M_{k}\left(\rho^{\prime}\right)$ ("product of a mock modular form and a modular form").

Appear in

- Eichler-Selberg trace formula
- shifted convolution Dirichlet series
- quantum black holes and wall crossing
- construction of mock modular forms with given shadow...

Problem

Multiplying holomorphic functions is natural, multiplying harmonic functions is usually a bad idea.

Table of Contents

(1) Introduction

- Mock modular forms
- Higher depth modular forms
(2) Virtually real-arithmetic types
(3) Modular forms of vra types
- Classical modular forms
- Mixed mock modular forms
- Higher order modular forms

4) Outlook

Higher depth modular forms I

Definition

A modular form of order 0 is a holomorphic modular form in the usual sense.

Higher depth modular forms I

Definition

A modular form of order 0 is a holomorphic modular form in the usual sense.
A holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is called a modular form of order $d>0$ and weight k for $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$ if

Higher depth modular forms I

Definition

A modular form of order 0 is a holomorphic modular form in the usual sense.
A holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is called a modular form of order $d>0$ and weight k for $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$ if
(1) $\left.f\right|_{k}(1-\gamma)$ is a modular form of order $d-1$ and weight k for all $\gamma \in \Gamma$.

Higher depth modular forms I

Definition

A modular form of order 0 is a holomorphic modular form in the usual sense.
A holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is called a modular form of order $d>0$ and weight k for $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$ if
(1) $\left.f\right|_{k}(1-\gamma)$ is a modular form of order $d-1$ and weight k for all $\gamma \in \Gamma$.
(2) f has at most polynomial growth at the cusps.

Higher depth modular forms I

Definition

A modular form of order 0 is a holomorphic modular form in the usual sense.
A holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is called a modular form of order $d>0$ and weight k for $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$ if
(1) $\left.f\right|_{k}(1-\gamma)$ is a modular form of order $d-1$ and weight k for all $\gamma \in \Gamma$.
(2) f has at most polynomial growth at the cusps.
$M_{k}^{[d]}(\Gamma)$: Space of modular forms of order d and weight k.

Higher depth modular forms II

- twists of Eisenstein series by modular symbols

Higher depth modular forms II

- twists of Eisenstein series by modular symbols
- originally introduced by Goldfeld to study distribution of modular symbols

Higher depth modular forms II

- twists of Eisenstein series by modular symbols
- originally introduced by Goldfeld to study distribution of modular symbols
- motivated by abc-conjecture

Higher depth modular forms II

- twists of Eisenstein series by modular symbols
- originally introduced by Goldfeld to study distribution of modular symbols
- motivated by abc-conjecture

Question

Is there a unified framework for (mixed) mock modular forms and higher order modular forms?

Table of Contents

(1) Introduction

- Mock modular forms
- Higher depth modular forms
(2) Virtually real-arithmetic types
(3) Modular forms of vra types
- Classical modular forms
- Mixed mock modular forms
- Higher order modular forms

4 Outlook

Symmetric powers

Definition

For $d \geq 0$ define the $d^{\text {th }}$ symmetric power representation of $\mathrm{SL}_{2}(\mathbb{R})$ denoted by sym ${ }^{d}$ by

$$
\operatorname{sym}^{d}(g) p(X):=\left.p(X)\right|_{-d} g^{-1}=(-c X+a)^{d} p\left(\frac{d X-b}{-c X+a}\right),
$$

where $p(X) \in \mathbb{C}[X], \operatorname{deg} p \leq d$ and $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$.

Symmetric powers

Definition

For $d \geq 0$ define the $d^{\text {th }}$ symmetric power representation of $\mathrm{SL}_{2}(\mathbb{R})$ denoted by sym ${ }^{d}$ by

$$
\operatorname{sym}^{d}(g) p(X):=\left.p(X)\right|_{-d} g^{-1}=(-c X+a)^{d} p\left(\frac{d X-b}{-c X+a}\right),
$$

where $p(X) \in \mathbb{C}[X], \operatorname{deg} p \leq d$ and $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$.

Fact

Complex, irreducible, finite-dimensional representations of $\mathrm{SL}_{2}(\mathbb{R})$ are exhausted by sym ${ }^{d}$.

Universal parabolic extensions

Notation

For two arithmetic types ρ, ρ^{\prime} and an extension class $\varphi \in \operatorname{Ext}^{1}\left(\rho, \rho^{\prime}\right)$ let $\rho \boxplus_{\varphi} \rho^{\prime}$ denote the extension corresponding to φ, i.e. we have the short exact sequence

$$
\rho \hookrightarrow \rho \boxplus_{\varphi} \rho^{\prime} \rightarrow \rho^{\prime} .
$$

Universal parabolic extensions

Notation

For two arithmetic types ρ, ρ^{\prime} and an extension class $\varphi \in \operatorname{Ext}^{1}\left(\rho, \rho^{\prime}\right)$ let $\rho \boxplus_{\varphi} \rho^{\prime}$ denote the extension corresponding to φ, i.e. we have the short exact sequence

$$
\rho \hookrightarrow \rho \boxplus_{\varphi} \rho^{\prime} \rightarrow \rho^{\prime} .
$$

Definition

For $d \geq 0$ and arithmetic types ρ, ρ^{\prime} we call the representation denoted by $\rho \boxplus_{\mathrm{pb}}^{d} \rho^{\prime}$ their universal parabolic extension of degree d. Here we have

Universal parabolic extensions

Notation

For two arithmetic types ρ, ρ^{\prime} and an extension class $\varphi \in \operatorname{Ext}^{1}\left(\rho, \rho^{\prime}\right)$ let $\rho \boxplus_{\varphi} \rho^{\prime}$ denote the extension corresponding to φ, i.e. we have the short exact sequence

$$
\rho \hookrightarrow \rho \boxplus_{\varphi} \rho^{\prime} \rightarrow \rho^{\prime} .
$$

Definition

For $d \geq 0$ and arithmetic types ρ, ρ^{\prime} we call the representation denoted by $\rho \boxplus_{\mathrm{pb}}^{d} \rho^{\prime}$ their universal parabolic extension of degree d. Here we have

- $\rho \boxplus_{\mathrm{pb}}^{d} \rho^{\prime}$ fits into the short exact sequence

$$
\rho \hookrightarrow \rho \boxplus_{\mathrm{pb}}^{d} \rho^{\prime} \rightarrow \rho^{\prime} \otimes \operatorname{sym}^{d} \otimes \operatorname{Ext}_{\mathrm{pb}}^{1}\left(\rho, \rho^{\prime} \otimes \operatorname{sym}^{d}\right)
$$

Universal parabolic extensions

Notation

For two arithmetic types ρ, ρ^{\prime} and an extension class $\varphi \in \operatorname{Ext}^{1}\left(\rho, \rho^{\prime}\right)$ let $\rho \boxplus_{\varphi} \rho^{\prime}$ denote the extension corresponding to φ, i.e. we have the short exact sequence

$$
\rho \hookrightarrow \rho \boxplus_{\varphi} \rho^{\prime} \rightarrow \rho^{\prime} .
$$

Definition

For $d \geq 0$ and arithmetic types ρ, ρ^{\prime} we call the representation denoted by $\rho \boxplus_{\mathrm{pb}}^{d} \rho^{\prime}$ their universal parabolic extension of degree d. Here we have

- $\rho \boxplus_{\mathrm{pb}}^{d} \rho^{\prime}$ fits into the short exact sequence

$$
\rho \hookrightarrow \rho \boxplus_{\mathrm{pb}}^{d} \rho^{\prime} \rightarrow \rho^{\prime} \otimes \operatorname{sym}^{d} \otimes \operatorname{Ext}_{\mathrm{pb}}^{1}\left(\rho, \rho^{\prime} \otimes \operatorname{sym}^{d}\right)
$$

- For each $\varphi \in \operatorname{Ext}_{\mathrm{pb}}^{1}\left(\rho, \rho^{\prime} \otimes \operatorname{sym}^{d}\right) \backslash\{0\}$ we have a direct summand

$$
\rho \boxplus_{\varphi} \rho^{\prime} \otimes \operatorname{sym}^{d} \leq \rho \boxplus_{\mathrm{pb}}^{d} \rho^{\prime} .
$$

Socle series

Definition

- The socle $\operatorname{soc}(\rho)$ of a representation is the intersection of its essential submodules.

Socle series

Definition

- The socle $\operatorname{soc}(\rho)$ of a representation is the intersection of its essential submodules.
- The socle series of ρ is $\operatorname{soc}^{0}(\rho) \subset \ldots \subset \operatorname{soc}^{d}(\rho)$, where d is called the socle length of ρ and

Socle series

Definition

- The socle $\operatorname{soc}(\rho)$ of a representation is the intersection of its essential submodules.
- The socle series of ρ is $\operatorname{soc}^{0}(\rho) \subset \ldots \subset \operatorname{soc}^{d}(\rho)$, where d is called the socle length of ρ and
- $\operatorname{soc}^{0}(\rho)=\{0\}$,

Socle series

Definition

- The socle $\operatorname{soc}(\rho)$ of a representation is the intersection of its essential submodules.
- The socle series of ρ is $\operatorname{soc}^{0}(\rho) \subset \ldots \subset \operatorname{soc}^{d}(\rho)$, where d is called the socle length of ρ and
- $\operatorname{soc}^{0}(\rho)=\{0\}$,
- $\operatorname{soc}^{j}(\rho)=\operatorname{soc}\left(\rho / \operatorname{soc}^{j-1}(\rho)\right)$ for all $1 \leq j \leq d$.

Virtually real-arithmetic types

Definition

We call an arithmetic type ρ real-arithmetic if its socle factors are direct sums of symmetric powers. We call ρ virtually real-arithmetic (vra) type if its restriction to a finite index subgroup is real-arithmetic.

Virtually real-arithmetic types

Definition

We call an arithmetic type ρ real-arithmetic if its socle factors are direct sums of symmetric powers. We call ρ virtually real-arithmetic (vra) type if its restriction to a finite index subgroup is real-arithmetic.

Some facts

- Arithmetic types with finite index kernel are vra types.

Virtually real-arithmetic types

Definition

We call an arithmetic type ρ real-arithmetic if its socle factors are direct sums of symmetric powers. We call ρ virtually real-arithmetic (vra) type if its restriction to a finite index subgroup is real-arithmetic.

Some facts

- Arithmetic types with finite index kernel are vra types.
- Finite index induction preserves vra types.

Virtually real-arithmetic types

Definition

We call an arithmetic type ρ real-arithmetic if its socle factors are direct sums of symmetric powers. We call ρ virtually real-arithmetic (vra) type if its restriction to a finite index subgroup is real-arithmetic.

Some facts

- Arithmetic types with finite index kernel are vra types.
- Finite index induction preserves vra types.
- If ρ, ρ^{\prime} have finite index kernel, then $\rho \boxplus_{\mathrm{pb}}^{d} \rho^{\prime}$ is a vra type.

Table of Contents

(1) Introduction

- Mock modular forms
- Higher depth modular forms
(2) Virtually real-arithmetic types
(3) Modular forms of vra types
- Classical modular forms
- Mixed mock modular forms
- Higher order modular forms

4) Outlook

Table of Contents

(1) Introduction

- Mock modular forms
- Higher depth modular forms
(2) Virtually real-arithmetic types
(3) Modular forms of vra types
- Classical modular forms
- Mixed mock modular forms
- Higher order modular forms

4) Outlook

Classical modular forms I

Proposition 1

Let ρ be an arithmetic type and $k \in \mathbb{Z}$. Then the map

$$
R_{k}: \mathscr{C}_{k}^{\infty}(\rho) \rightarrow \mathscr{C}_{k+1}^{\infty}(\operatorname{std} \otimes \rho), f \mapsto(X-\tau) \partial_{\tau} f-k f
$$

is covariant wrt $\mathrm{SL}_{2}(\mathbb{Z})$. If ρ is a vra type, R_{k} is covariant wrt $\mathrm{SL}_{2}(\mathbb{R})$.

Classical modular forms I

Proposition 1

Let ρ be an arithmetic type and $k \in \mathbb{Z}$. Then the map

$$
R_{k}: \mathscr{C}_{k}^{\infty}(\rho) \rightarrow \mathscr{C}_{k+1}^{\infty}(\operatorname{std} \otimes \rho), f \mapsto(X-\tau) \partial_{\tau} f-k f
$$

is covariant wrt $\mathrm{SL}_{2}(\mathbb{Z})$. If ρ is a vra type, R_{k} is covariant wrt $\mathrm{SL}_{2}(\mathbb{R})$.

- $\mathscr{C}_{k}^{\infty}(\rho)$: smooth functions with $\left.\right|_{k, \rho}$ action
- $\operatorname{std}=\operatorname{sym}^{1}$: standard representation of $\mathrm{SL}_{2}(\mathbb{R}), V(\operatorname{std}) \cong \mathbb{C}[X]_{\leq 1}$.

Classical modular forms II

Theorem 1 (Kuga-Shimura, 1960; M.-Raum, 2017)
For $\kappa, d \in \mathbb{N}_{0}, k \in \mathbb{Z}$ and an arithmetic type ρ define the map

$$
p_{\kappa} R_{k}^{d}: \mathscr{C}_{k}^{\infty}(\rho) \rightarrow \mathscr{C}_{k+d-\kappa}^{\infty}\left(\operatorname{sym}^{d+\kappa} \otimes \rho\right), f \mapsto(X-\tau)^{\kappa} R_{k}^{d} f .
$$

Classical modular forms II

Theorem 1 (Kuga-Shimura, 1960; M.-Raum, 2017)

For $\kappa, d \in \mathbb{N}_{0}, k \in \mathbb{Z}$ and an arithmetic type ρ define the map

$$
p_{\kappa} R_{k}^{d}: \mathscr{C}_{k}^{\infty}(\rho) \rightarrow \mathscr{C}_{k+d-\kappa}^{\infty}\left(\operatorname{sym}^{d+\kappa} \otimes \rho\right), f \mapsto(X-\tau)^{\kappa} R_{k}^{d} f
$$

If $\left[\operatorname{SL}_{2}(\mathbb{Z}): \operatorname{Kern}(\rho)\right]<\infty, k+d$ is odd and $k>d$ or $k<-d$, then $\bigoplus_{\substack{j=-d \\ j \equiv d(2)}}^{d} M_{k+j}(\rho) \rightarrow M_{k}\left(\operatorname{sym}^{d} \otimes \rho\right), \quad\left(f_{-d}, \ldots, f_{d}\right) \mapsto \sum_{\substack{j=-d \\ j \equiv d(2)}}^{d} p_{\frac{d+j}{2}} R_{k+j}^{\frac{d-j}{2}} f_{j}$
is an isomorphism.

Table of Contents

(1) Introduction

- Mock modular forms
- Higher depth modular forms
(2) Virtually real-arithmetic types
(3) Modular forms of vra types
- Classical modular forms
- Mixed mock modular forms
- Higher order modular forms
(4) Outlook

Cocycles

For $f \in \mathscr{C}_{k}^{\infty}(\rho), k \in \mathbb{Z}$, we define its cocycle by

$$
\varphi_{f}(\gamma):=\left.f\right|_{k, \rho}(1-\gamma), \quad \gamma \in \mathrm{SL}_{2}(\mathbb{Z})
$$

Cocycles

For $f \in \mathscr{C}_{k}^{\infty}(\rho), k \in \mathbb{Z}$, we define its cocycle by

$$
\varphi_{f}(\gamma):=\left.f\right|_{k, \rho}(1-\gamma), \quad \gamma \in \mathrm{SL}_{2}(\mathbb{Z})
$$

Fact (Fay, Bruinier-Funke,...)

Let ρ be an arithmetic type with finite index kernel.

- For $f \in \mathbb{M}_{\ell}(\rho)$ and $\ell \in 2 \mathbb{Z}_{\leq 0}$, we have $\varphi_{f} \in \mathbb{C}[\tau]_{\leq-\ell} \otimes V(\rho)$.

Cocycles

For $f \in \mathscr{C}_{k}^{\infty}(\rho), k \in \mathbb{Z}$, we define its cocycle by

$$
\varphi_{f}(\gamma):=\left.f\right|_{k, \rho}(1-\gamma), \quad \gamma \in \mathrm{SL}_{2}(\mathbb{Z})
$$

Fact (Fay, Bruinier-Funke,...)

Let ρ be an arithmetic type with finite index kernel.

- For $f \in \mathbb{M}_{\ell}(\rho)$ and $\ell \in 2 \mathbb{Z}_{\leq 0}$, we have $\varphi_{f} \in \mathbb{C}[\tau]_{\leq-\ell} \otimes V(\rho)$.
- For $f \in \mathbb{M}_{\ell}(\rho) \otimes M_{k}^{\prime}\left(\rho^{\prime}\right)$, we have

$$
\varphi_{f}=\left.f\right|_{k+\ell, \rho \otimes \rho^{\prime}}(1-\gamma) \in \mathbb{C}[\tau]_{\leq-\ell} \otimes V(\rho) \otimes M_{k}^{!}\left(\rho^{\prime}\right), \quad \gamma \in \mathrm{SL}_{2}(\mathbb{Z})
$$

Mixed mock modular forms as vra type modular forms

Theorem 2 (M. - Raum)

Let $d \in 2 \mathbb{N}_{0}$ and ρ an arithmetic type with finite index kernel. There is a well-defined map

$$
\mathbb{M}_{-d}(\rho) \rightarrow M_{-d}^{!}\left(\rho \boxplus \boxplus_{\mathrm{pb}}^{d} \mathbb{1}\right), f \mapsto f \boxplus(X-\tau)^{d} \otimes \varphi_{f} .
$$

Mixed mock modular forms as vra type modular forms

Theorem 2 (M. - Raum)

Let $d \in 2 \mathbb{N}_{0}$ and ρ an arithmetic type with finite index kernel. There is a well-defined map

$$
\mathbb{M}_{-d}(\rho) \rightarrow M_{-d}^{!}\left(\rho \boxplus_{\mathrm{pb}}^{d} \mathbb{1}\right), f \mapsto f \boxplus(X-\tau)^{d} \otimes \varphi_{f} .
$$

If $k \in \mathbb{Z}$ and ρ^{\prime} with finite index kernel, let

$$
\mathcal{I}_{k}^{!}\left(\rho^{\prime}\right)=\sum f(\tau) f^{\vee} \in M_{k}^{!}\left(\rho^{\prime}\right) \otimes M_{k}^{!}\left(\rho^{\prime}\right)^{\vee}
$$

where f runs through a basis of $M_{k}^{!}\left(\rho^{\prime}\right)$ and f^{\vee} is the dual of f. Then there is a map

$$
\begin{aligned}
\mathbb{M}_{-d}(\rho) \otimes M_{k}^{!}\left(\rho^{\prime}\right) & \rightarrow M_{k-d}^{!}\left(\rho \rho^{\prime} \boxplus_{\mathrm{pb}}^{d} \rho^{\prime} M_{k}^{!}\left(\rho^{\prime}\right)^{\vee}\right), \\
f & \mapsto \quad f \boxplus(X-\tau)^{d} \mathcal{I}_{k}^{!}\left(\rho^{\prime}\right) \otimes \varphi_{f} .
\end{aligned}
$$

Table of Contents

(1) Introduction

- Mock modular forms
- Higher depth modular forms
(2) Virtually real-arithmetic types
(3) Modular forms of vra types
- Classical modular forms
- Mixed mock modular forms
- Higher order modular forms
(4) Outlook

Higher order modular forms

Let $\mathbb{1}^{[0]}:=\mathbb{1}$ and define for $d>0$ the representation $\mathbb{1}^{[d]}$ of $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$ recursively by

$$
\mathbb{1} \hookrightarrow \mathbb{1}^{[d]} \rightarrow \mathbb{1}^{[d-1]} \otimes \mathrm{H}^{1}(\Gamma, \mathbb{1}) .
$$

Higher order modular forms

Let $\mathbb{1}^{[0]}:=\mathbb{1}$ and define for $d>0$ the representation $\mathbb{1}^{[d]}$ of $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$ recursively by

$$
\mathbb{1} \hookrightarrow \mathbb{1}^{[d]} \rightarrow \mathbb{1}^{[d-1]} \otimes \mathrm{H}^{1}(\Gamma, \mathbb{1}) .
$$

Theorem 3 (M.-Raum)

Let $d \geq 0$ and $k \in \mathbb{Z}$. Then the map

$$
M_{k}\left(\mathbb{1}^{[d]}\right) \rightarrow M_{k}^{[d]}, f \boxplus * \mapsto f
$$

is surjective. In particular, we have

$$
M_{k}\left(\mathbb{1}^{[d]}\right) \cong \bigoplus_{j=0}^{d} M_{k}^{[j]} \otimes \mathrm{H}(\Gamma, \mathbb{1})^{\otimes(d-j)}
$$

Table of Contents

(1) Introduction

- Mock modular forms
- Higher depth modular forms
(2) Virtually real-arithmetic types
(3) Modular forms of vra types
- Classical modular forms
- Mixed mock modular forms
- Higher order modular forms

4 Outlook

Further things to investigate

- Brown's iterated modular integrals as vra type modular forms

Further things to investigate

- Brown's iterated modular integrals as vra type modular forms
- Eisenstein and Poincaré series

Further things to investigate

- Brown's iterated modular integrals as vra type modular forms
- Eisenstein and Poincaré series
- connection to Rademacher sums (?)

Further things to investigate

- Brown's iterated modular integrals as vra type modular forms
- Eisenstein and Poincaré series
- connection to Rademacher sums (?)
- Petersson scalar products and pairings

Further things to investigate

- Brown's iterated modular integrals as vra type modular forms
- Eisenstein and Poincaré series
- connection to Rademacher sums (?)
- Petersson scalar products and pairings
- Hecke theory

Further things to investigate

- Brown's iterated modular integrals as vra type modular forms
- Eisenstein and Poincaré series
- connection to Rademacher sums (?)
- Petersson scalar products and pairings
- Hecke theory
- trace formulas (?)

Further things to investigate

- Brown's iterated modular integrals as vra type modular forms
- Eisenstein and Poincaré series
- connection to Rademacher sums (?)
- Petersson scalar products and pairings
- Hecke theory
- trace formulas (?)
- differential structure (?)

Thank you for your attention.

