Periodicities of Taylor coefficients for half integral weight modular forms

Michael H. Mertens

Max-Planck-Institut für Mathematik, Bonn
26. September 2019, DMV-Tagung Karlsruhe
(1) Introduction and statement of results
(2) Application of Katz's q-expansion principle
(3) Examples

Table of Contents

(1) Introduction and statement of results
(2) Application of Katz's q-expansion principle
(3) Examples

Expansions of modular forms

$$
f: \mathfrak{H} \rightarrow \mathbb{C} \quad \text { (holomorphic) modular form }
$$

"Modular forms are functions on the complex plane that are inordinately symmetric. They satisfy so many internal symmetries that their mere existence seem like accidents. But they do exist." (Barry Mazur)

Expansions of modular forms

$$
\begin{aligned}
f: \mathfrak{H} & \rightarrow \mathbb{C} \quad \text { (holomorphic) modular form } \\
f\left(\frac{a \tau+b}{c \tau+d}\right) & =v(\gamma)(c \tau+d)^{k} f(\tau), \\
& \tau \in \mathfrak{H}, \quad \gamma=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in \Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})
\end{aligned}
$$

Expansions of modular forms

$$
\begin{aligned}
& f: \mathfrak{H} \rightarrow \mathbb{C} \quad \text { (holomorphic) modular form } \\
& f\left(\frac{a \tau+b}{c \tau+d}\right)=v(\gamma)(c \tau+d)^{k} f(\tau), \\
& \quad \tau \in \mathfrak{H}, \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})
\end{aligned}
$$

Modular forms have various kinds of expansions.

- Fourier expansion
- Hyperbolic expansion
- Elliptic/Taylor expansion

Fourier expansion

Some properties

- at ∞ (or a cusp of Γ)

Fourier expansion

Some properties

- at ∞ (or a cusp of Γ)
- $f(\tau)=\sum_{n=0}^{\infty} a_{f}(n) q^{n}, \quad q:=e^{2 \pi i \tau}$

Fourier expansion

Some properties

- at ∞ (or a cusp of Γ)
- $f(\tau)=\sum_{n=0}^{\infty} a_{f}(n) q^{n}, \quad q:=e^{2 \pi i \tau}$
- the "usual" way one sees modular forms

Fourier expansion

Some properties

- at ∞ (or a cusp of Γ)
- $f(\tau)=\sum_{n=0}^{\infty} a_{f}(n) q^{n}, \quad q:=e^{2 \pi i \tau}$
- the "usual" way one sees modular forms
- essentially Hecke eigenvalues (if f is an eigenform)

Fourier expansion

Some properties

- at ∞ (or a cusp of Γ)
- $f(\tau)=\sum_{n=0}^{\infty} a_{f}(n) q^{n}, \quad q:=e^{2 \pi i \tau}$
- the "usual" way one sees modular forms
- essentially Hecke eigenvalues (if f is an eigenform)
- coefficients are widely studied in many contexts

Fourier expansion

Some properties

- at ∞ (or a cusp of Γ)
- $f(\tau)=\sum_{n=0}^{\infty} a_{f}(n) q^{n}, \quad q:=e^{2 \pi i \tau}$
- the "usual" way one sees modular forms
- essentially Hecke eigenvalues (if f is an eigenform)
- coefficients are widely studied in many contexts
- $a_{f}(n)$ often encode arithmetically interesting quantities (divisor sums, number of points on elliptic curves over finite fields, partitions,...)

Fourier expansion

Some properties

- at ∞ (or a cusp of Γ)
- $f(\tau)=\sum_{n=0}^{\infty} a_{f}(n) q^{n}, \quad q:=e^{2 \pi i \tau}$
- the "usual" way one sees modular forms
- essentially Hecke eigenvalues (if f is an eigenform)
- coefficients are widely studied in many contexts
- $a_{f}(n)$ often encode arithmetically interesting quantities (divisor sums, number of points on elliptic curves over finite fields, partitions,...)
- congruences are well-studied (\rightsquigarrow Galois representations)

Hyperbolic expansion

Some properties

- at a geodesic $\eta=\left\{\eta_{1}, \eta_{2}\right\}$

Hyperbolic expansion

Some properties

- at a geodesic $\eta=\left\{\eta_{1}, \eta_{2}\right\}$

- $\operatorname{Stab}_{\Gamma}(\eta)=\left\langle\gamma_{\eta}\right\rangle \cong \mathbb{Z}, \gamma_{\eta}^{\sigma_{\eta}}=\left(\begin{array}{cc}\xi & 0 \\ 0 & \xi^{-1}\end{array}\right), \xi^{2}>1, w=\xi^{2 \tau}$;

$$
\left(\left.f\right|_{k} \sigma_{\eta}\right)(w)=\sum_{m \in \mathbb{Z}} b_{\eta}(m) w^{-k / 2+\pi i m / \log \xi}
$$

Hyperbolic expansion

Some properties

- at a geodesic $\eta=\left\{\eta_{1}, \eta_{2}\right\}$

- $\operatorname{Stab}_{\Gamma}(\eta)=\left\langle\gamma_{\eta}\right\rangle \cong \mathbb{Z}, \gamma_{\eta}^{\sigma_{\eta}}=\left(\begin{array}{cc}\xi & 0 \\ 0 & \xi^{-1}\end{array}\right), \xi^{2}>1, w=\xi^{2 \tau}$;

$$
\left(\left.f\right|_{k} \sigma_{\eta}\right)(w)=\sum_{m \in \mathbb{Z}} b_{\eta}(m) w^{-k / 2+\pi i m / \log \xi}
$$

- introduced by Petersson

Hyperbolic expansion

Some properties

- at a geodesic $\eta=\left\{\eta_{1}, \eta_{2}\right\}$

- $\operatorname{Stab}_{\Gamma}(\eta)=\left\langle\gamma_{\eta}\right\rangle \cong \mathbb{Z}, \gamma_{\eta}^{\sigma_{\eta}}=\left(\begin{array}{cc}\xi & 0 \\ 0 & \xi^{-1}\end{array}\right), \xi^{2}>1, w=\xi^{2 \tau}$;

$$
\left(\left.f\right|_{k} \sigma_{\eta}\right)(w)=\sum_{m \in \mathbb{Z}} b_{\eta}(m) w^{-k / 2+\pi i m / \log \xi}
$$

- introduced by Petersson
- related to work by Katok, Zagier, Kohnen (holomorphic kernel of the Shimura/Shintani lift) [Imamoğlu-O'Sullivan]

Taylor expansion I

Let $\tau_{0}=x_{0}+i y_{0} \in \mathfrak{H}$ be an interior point.

Usual Taylor expansion

$$
f(\tau)=\sum_{n=0}^{\infty}\left(\frac{d^{n} f}{d \tau^{n}}\right)\left(\tau_{0}\right) \frac{\left(\tau-\tau_{0}\right)^{n}}{n!}
$$

converges on $B_{y_{0}}\left(\tau_{0}\right)$
\mathfrak{H}

Taylor expansion I

Let $\tau_{0}=x_{0}+i y_{0} \in \mathfrak{H}$ be an interior point.

Consider Cayley transform $\mathfrak{H} \rightarrow B_{1}(0), \tau \mapsto w=\frac{\tau-\tau_{0}}{\tau-\bar{\tau}_{0}}$ and view f as a function of w.
\mathfrak{H}

Taylor expansion I

Let $\tau_{0}=x_{0}+i y_{0} \in \mathfrak{H}$ be an interior point.

Consider Cayley transform $\mathfrak{H} \rightarrow B_{1}(0), \tau \mapsto w=\frac{\tau-\tau_{0}}{\tau-\bar{\tau}_{0}}$ and view f as a function of w.
\mathfrak{H}

$$
\xrightarrow{\tau \mapsto w}
$$

Taylor expansion II

Proposition

We have

$$
(1-w)^{-k} f\left(\frac{\tau_{0}-\overline{\tau_{0}} w}{1-w}\right)=\sum_{n=0}^{\infty} \partial^{n} f\left(\tau_{0}\right) \frac{\left(4 \pi y_{0} w\right)^{n}}{n!}, \quad(|w|<1)
$$

where

$$
\begin{aligned}
& \partial=\partial_{k}=D-\frac{k}{4 \pi \operatorname{Im}(\tau)}, \quad D=\frac{1}{2 \pi i} \frac{d}{d \tau}=q \frac{d}{d q}, \\
& \partial^{n}=\partial_{k}^{n}=\partial_{k+2(n-1)} \circ \cdots \circ \partial_{k+2} \circ \partial_{k} \quad(n>0) .
\end{aligned}
$$

Taylor expansion III

- by $C M$ theory, Taylor coefficients are (essentially) algebraic numbers if τ_{0} is a CM point and f has algebraic Fourier coefficients

Taylor expansion III

- by $C M$ theory, Taylor coefficients are (essentially) algebraic numbers if τ_{0} is a CM point and f has algebraic Fourier coefficients
- related to special values of Hecke L-functions (Eisenstein series) [Rodriguez-Villegas \& Zagier]

Taylor expansion III

- by $C M$ theory, Taylor coefficients are (essentially) algebraic numbers if τ_{0} is a CM point and f has algebraic Fourier coefficients
- related to special values of Hecke L-functions (Eisenstein series) [Rodriguez-Villegas \& Zagier]
- which primes are sums of two cubes? [Rodriguez-Villegas \& Zagier]

Taylor expansion III

- by $C M$ theory, Taylor coefficients are (essentially) algebraic numbers if τ_{0} is a CM point and f has algebraic Fourier coefficients
- related to special values of Hecke L-functions (Eisenstein series) [Rodriguez-Villegas \& Zagier]
- which primes are sums of two cubes? [Rodriguez-Villegas \& Zagier]
- work on congruences by Larson-Smith (inert primes, integral weight, $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$), Datskovsky-Guerzhoy (split primes, integral weight, $\left(\Gamma=\mathrm{SL}_{2}(\mathbb{Z})\right)$).

Question What arithmetic properties do Taylor coefficients of half-integral weight modular forms have?

The Jacobi theta function

Example (Romik, 2018)

$$
\theta_{3}(\tau)=\sum_{n \in \mathbb{Z}} q^{n^{2} / 2}, \quad \quad \tau_{0}=i
$$

The Jacobi theta function

Example (Romik, 2018)

$$
\begin{gathered}
\theta_{3}(\tau)=\sum_{n \in \mathbb{Z}} q^{n^{2} / 2}, \quad \tau_{0}=i . \\
\rightsquigarrow(1-w)^{-1 / 2} \theta_{3}\left(i \frac{1+w}{1-w}\right)=\theta_{3}(i) \sum_{n=0}^{\infty} \frac{d(n)}{(2 n)!} \Phi^{n} w^{2 n}, \quad|w|<1 .
\end{gathered}
$$

The Jacobi theta function

Example (Romik, 2018)

$$
\begin{gathered}
\theta_{3}(\tau)=\sum_{n \in \mathbb{Z}} q^{n^{2} / 2}, \quad \tau_{0}=i \\
\rightsquigarrow(1-w)^{-1 / 2} \theta_{3}\left(i \frac{1+w}{1-w}\right)=\theta_{3}(i) \sum_{n=0}^{\infty} \frac{d(n)}{(2 n)!} \Phi^{n} w^{2 n}, \quad|w|<1 \\
d(n)=1,1,-1,51,849,-26199, \ldots
\end{gathered}
$$

The Jacobi theta function

Example (Romik, 2018)

$$
\begin{gathered}
\theta_{3}(\tau)=\sum_{n \in \mathbb{Z}} q^{n^{2} / 2}, \quad \tau_{0}=i \\
\rightsquigarrow(1-w)^{-1 / 2} \theta_{3}\left(i \frac{1+w}{1-w}\right)=\theta_{3}(i) \sum_{n=0}^{\infty} \frac{d(n)}{(2 n)!} \Phi^{n} w^{2 n}, \quad|w|<1 . \\
d(n) \equiv \overline{1,4} \quad(\bmod 5) \\
d(n) \equiv \overline{1,12,12,4,9,9,3,10,10,12,1,1,9,4,4,10,3,3} \quad(\bmod 13)
\end{gathered}
$$

The Jacobi theta function

Example (Romik, 2018)

$$
\begin{gathered}
\theta_{3}(\tau)=\sum_{n \in \mathbb{Z}} q^{n^{2} / 2}, \quad \tau_{0}=i . \\
\rightsquigarrow(1-w)^{-1 / 2} \theta_{3}\left(i \frac{1+w}{1-w}\right)=\theta_{3}(i) \sum_{n=0}^{\infty} \frac{d(n)}{(2 n)!} \Phi^{n} w^{2 n}, \quad|w|<1 . \\
d(n) \equiv 1,11,2, \overline{0} \quad(\bmod 3) \\
d(n) \equiv 1,1,6,2,2,2,1,0,3,0,6,0,6, \overline{0} \quad(\bmod 7)
\end{gathered}
$$

Romik's conjecture

Conjecture (Romik, 2018)

$\{d(n)\}_{n=0}^{\infty}$ is periodic modulo $p \equiv 1(\bmod 4)$ and $d(n)$ is ultimately 0 $(\bmod p)$ for $p \equiv 3(\bmod 4)$.

Romik's conjecture

Conjecture (Romik, 2018)

$\{d(n)\}_{n=0}^{\infty}$ is periodic modulo $p \equiv 1(\bmod 4)$ and $d(n)$ is ultimately 0 $(\bmod p)$ for $p \equiv 3(\bmod 4)$.

Theorem (Scherer, 2019)

Romik's conjecture is true for $p \equiv 3(\bmod 4)$ and for $p=5$.

Romik's conjecture

Conjecture (Romik, 2018)

$\{d(n)\}_{n=0}^{\infty}$ is periodic modulo $p \equiv 1(\bmod 4)$ and $d(n)$ is ultimately 0 $(\bmod p)$ for $p \equiv 3(\bmod 4)$.

Theorem (Scherer, 2019)

Romik's conjecture is true for $p \equiv 3(\bmod 4)$ and for $p=5$.

Question: Is this special for θ_{3} ?

Results I

Theorem 1 (Guerzhoy-M.-Rolen, 2019)

Let $f \in M_{k-1 / 2}\left(\Gamma_{1}(4 N)\right)$ with algebraic integer Fourier coefficients, τ_{0} a $C M$ point, and p a prime splitting in $\mathbb{Q}\left(\tau_{0}\right)$. Then there exists $\Omega=\Omega\left(\tau_{0}, p\right) \in \mathbb{C}^{\times}$such that for $n_{1}, n_{1}>A$ with $n_{1} \equiv n_{2}$ $\left(\bmod (p-1) p^{A}\right)$ we have

$$
\partial^{n_{1}} f\left(\tau_{0}\right) / \Omega^{2 k+4 n_{1}-1} \equiv \partial^{n_{2}} f\left(\tau_{0}\right) / \Omega^{2 k+4 n_{2}-1} \quad\left(\bmod p^{A+1}\right)
$$

Results II

Theorem 2 (Guerzhoy-M.-Rolen, 2019)

Assume $K=\mathbb{Q}\left(\tau_{0}\right)$ has class number 1 and the $C M$ curve $E=\mathbb{C} /\left\langle\omega, \omega \tau_{0}\right\rangle_{\mathbb{Z}}$ is defined over \mathbb{Q}. The there exists $\widetilde{\Omega}=\widetilde{\Omega}\left(\tau_{0}\right) \in \mathbb{C}^{\times}$ independent of p such that

$$
\partial^{n_{1}} f\left(\tau_{0}\right) / \widetilde{\Omega}^{2 k+4 n_{1}-1} \equiv \partial^{n_{2}} f\left(\tau_{0}\right) / \widetilde{\Omega}^{2 k+4 n_{2}-1} \quad\left(\bmod p^{A+1}\right) .
$$

Results II

Theorem 2 (Guerzhoy-M.-Rolen, 2019)

Assume $K=\mathbb{Q}\left(\tau_{0}\right)$ has class number 1 and the $C M$ curve $E=\mathbb{C} /\left\langle\omega, \omega \tau_{0}\right\rangle_{\mathbb{Z}}$ is defined over \mathbb{Q}. The there exists $\widetilde{\Omega}=\widetilde{\Omega}\left(\tau_{0}\right) \in \mathbb{C}^{\times}$ independent of p such that

$$
\partial^{n_{1}} f\left(\tau_{0}\right) / \widetilde{\Omega}^{2 k+4 n_{1}-1} \equiv \partial^{n_{2}} f\left(\tau_{0}\right) / \widetilde{\Omega}^{2 k+4 n_{2}-1} \quad\left(\bmod p^{A+1}\right)
$$

Corollary

Romik's conjecture is true.

Table of Contents

(1) Introduction and statement of results

(2) Application of Katz's q-expansion principle

(3) Examples

Quasimodular forms

Recall: $E_{2}(\tau)=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}$ is not modular, but $E_{2}^{*}(\tau)=E_{2}(\tau)-\frac{3}{\pi \operatorname{Im}(\tau)}$ is.

Quasimodular forms

Recall: $E_{2}(\tau)=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}$ is not modular, but $E_{2}^{*}(\tau)=E_{2}(\tau)-\frac{3}{\pi \operatorname{Im}(\tau)}$ is.

Prototypical example of a quasimodular form and its associated almost holomorphic modular form.

Quasimodular forms

Recall: $E_{2}(\tau)=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}$ is not modular, but $E_{2}^{*}(\tau)=E_{2}(\tau)-\frac{3}{\pi \operatorname{Im}(\tau)}$ is.

Prototypical example of a quasimodular form and its associated almost holomorphic modular form.

In general: $g \in \widetilde{M}_{k}(\Gamma)$ can be written uniquely as

$$
g=\sum_{r=0}^{\lfloor k / 2\rfloor} F_{k-2 r} E_{2}^{r} \in \mathbb{C} \llbracket q \rrbracket, \quad F_{k-2 r} \in M_{k-2 r}(\Gamma)
$$

and we have

$$
g^{*}=\sum_{r=0}^{\lfloor k / 2\rfloor} F_{k-2 r}\left(E_{2}^{*}\right)^{r}
$$

Damerell's theorem

Proposition 1 (Damerell, Katz)

Let K be a sufficiently large number field, $\tau_{0} \in K$ be a $C M$ point, and $k \in \mathbb{N}$. Then there exists $\omega \in \mathbb{C}^{\times}$such that

$$
g \in \widetilde{M}_{k}(\Gamma) \cap K \llbracket q \rrbracket \quad \Rightarrow g^{*}\left(\tau_{0}\right) / \omega^{k} \in K .
$$

Damerell's theorem

Proposition 1 (Damerell, Katz)

Let K be a sufficiently large number field, $\tau_{0} \in K$ be a $C M$ point, and $k \in \mathbb{N}$. Then there exists $\omega \in \mathbb{C}^{\times}$such that

$$
g \in \widetilde{M}_{k}(\Gamma) \cap K \llbracket q \rrbracket \quad \Rightarrow g^{*}\left(\tau_{0}\right) / \omega^{k} \in K .
$$

"If g has a nice q-expansion, then g^{*} has nice $C M$-values."

Damerell's theorem

Proposition 1 (Damerell, Katz)

Let K be a sufficiently large number field, $\tau_{0} \in K$ be a $C M$ point, and $k \in \mathbb{N}$. Then there exists $\omega \in \mathbb{C}^{\times}$such that

$$
g \in \widetilde{M}_{k}(\Gamma) \cap K \llbracket q \rrbracket \quad \Rightarrow g^{*}\left(\tau_{0}\right) / \omega^{k} \in K .
$$

"If g has a nice q-expansion, then g^{*} has nice $C M$-values."

Remark

- If $\omega \in \mathbb{C}^{*}$ works, then so daoes any K^{*}-multiple.

Damerell's theorem

Proposition 1 (Damerell, Katz)

Let K be a sufficiently large number field, $\tau_{0} \in K$ be a $C M$ point, and $k \in \mathbb{N}$. Then there exists $\omega \in \mathbb{C}^{\times}$such that

$$
g \in \widetilde{M}_{k}(\Gamma) \cap K \llbracket q \rrbracket \quad \Rightarrow g^{*}\left(\tau_{0}\right) / \omega^{k} \in K .
$$

"If g has a nice q-expansion, then g^{*} has nice $C M$-values."

Remark

- If $\omega \in \mathbb{C}^{*}$ works, then so daoes any K^{*}-multiple.
- If $\omega \in \mathbb{C}^{*}$ works for one $g \in \widetilde{M}_{k}(\Gamma) \cap K \llbracket q \rrbracket$, then it works for all such g.

q-expansion principle

Guiding mantra: " p-adically close modular forms have p-adically close values."

q-expansion principle

Guiding mantra: " p-adically close modular forms have p-adically close values."

Proposition 2 (Datskovsky-Guerzhoy)

If p splits in $\mathbb{Q}\left(\tau_{0}\right)$, pick $\omega_{p} \in \mathbb{C}^{*}$ such that $\omega_{p}^{p-1}=E_{p-1}\left(\tau_{0}\right)$ and

$$
g_{i}(\tau)=\sum_{n=0}^{\infty} b_{i}(n) q^{n} \in \widetilde{M}_{k_{i}}(\Gamma) \cap \mathcal{O} \llbracket q \rrbracket .
$$

If $g_{1} \equiv g_{2}\left(\bmod p^{A}\right)$, then

$$
g_{1}^{*}\left(\tau_{0}\right) / \omega_{p}^{k_{1}} \equiv g_{2}^{*}\left(\tau_{0}\right) / \omega_{p}^{k_{2}} \quad\left(\bmod p^{A}\right)
$$

q-expansion principle

Guiding mantra: " p-adically close modular forms have p-adically close values."

Proposition 2 (Datskovsky-Guerzhoy)

If p splits in $\mathbb{Q}\left(\tau_{0}\right)$, pick $\omega_{p} \in \mathbb{C}^{*}$ such that $\omega_{p}^{p-1}=E_{p-1}\left(\tau_{0}\right)$ and

$$
g_{i}(\tau)=\sum_{n=0}^{\infty} b_{i}(n) q^{n} \in \widetilde{M}_{k_{i}}(\Gamma) \cap \mathcal{O} \llbracket q \rrbracket .
$$

If $g_{1} \equiv g_{2}\left(\bmod p^{A}\right)$, then

$$
g_{1}^{*}\left(\tau_{0}\right) / \omega_{p}^{k_{1}} \equiv g_{2}^{*}\left(\tau_{0}\right) / \omega_{p}^{k_{2}} \quad\left(\bmod p^{A}\right)
$$

N.B.: By the von Staudt-Clausen Theorem, we have $E_{p-1} \equiv 1(\bmod p)$, so according to our mantra, we want " $E_{p-1}\left(\tau_{0}\right) \equiv 1(\bmod p)$ ".

Sketch of proof I

Lemma

For $H \in M_{k}(\Gamma)$ and $G \in M_{\ell}(\Gamma)\left(k, \ell \in \frac{1}{2} \mathbb{Z}\right)$ we have $G \cdot\left(D^{n} H\right) \in \widetilde{M}_{k+\ell+2 n}$ and $\left(G \cdot\left(D^{n} H\right)\right)^{*}=G \cdot\left(\partial^{n} H\right)$.

Sketch of proof I

Lemma

For $H \in M_{k}(\Gamma)$ and $G \in M_{\ell}(\Gamma)\left(k, \ell \in \frac{1}{2} \mathbb{Z}\right)$ we have $G \cdot\left(D^{n} H\right) \in \widetilde{M}_{k+\ell+2 n}$ and $\left(G \cdot\left(D^{n} H\right)\right)^{*}=G \cdot\left(\partial^{n} H\right)$.

Proof of Theorem 1.

- Choose $\Omega_{p}^{2}=\omega_{p}$ for ω_{p} as in Proposition.

Sketch of proof I

Lemma

For $H \in M_{k}(\Gamma)$ and $G \in M_{\ell}(\Gamma)\left(k, \ell \in \frac{1}{2} \mathbb{Z}\right)$ we have $G \cdot\left(D^{n} H\right) \in \widetilde{M}_{k+\ell+2 n}$ and $\left(G \cdot\left(D^{n} H\right)\right)^{*}=G \cdot\left(\partial^{n} H\right)$.

Proof of Theorem 1.

- Choose $\Omega_{p}^{2}=\omega_{p}$ for ω_{p} as in Proposition.
- $f\left(\tau_{0}\right) / \Omega_{p}^{2 k-1}, \Theta\left(\tau_{0}\right) / \Omega_{p} \in L$ (Damerell's Theorem)

Sketch of proof I

Lemma

For $H \in M_{k}(\Gamma)$ and $G \in M_{\ell}(\Gamma)\left(k, \ell \in \frac{1}{2} \mathbb{Z}\right)$ we have $G \cdot\left(D^{n} H\right) \in \widetilde{M}_{k+\ell+2 n}$ and $\left(G \cdot\left(D^{n} H\right)\right)^{*}=G \cdot\left(\partial^{n} H\right)$.

Proof of Theorem 1.

- Choose $\Omega_{p}^{2}=\omega_{p}$ for ω_{p} as in Proposition.
- $f\left(\tau_{0}\right) / \Omega_{p}^{2 k-1}, \Theta\left(\tau_{0}\right) / \Omega_{p} \in L$ (Damerell's Theorem)
- $\Theta D^{n_{1}} f \equiv \Theta D^{n_{2}} f\left(\bmod p^{A+1}\right)$ (Euler-Fermat)

Sketch of proof I

Lemma

For $H \in M_{k}(\Gamma)$ and $G \in M_{\ell}(\Gamma)\left(k, \ell \in \frac{1}{2} \mathbb{Z}\right)$ we have $G \cdot\left(D^{n} H\right) \in \widetilde{M}_{k+\ell+2 n}$ and $\left(G \cdot\left(D^{n} H\right)\right)^{*}=G \cdot\left(\partial^{n} H\right)$.

Proof of Theorem 1.

- Choose $\Omega_{p}^{2}=\omega_{p}$ for ω_{p} as in Proposition.
- $f\left(\tau_{0}\right) / \Omega_{p}^{2 k-1}, \Theta\left(\tau_{0}\right) / \Omega_{p} \in L$ (Damerell's Theorem)
- $\Theta D^{n_{1}} f \equiv \Theta D^{n_{2}} f\left(\bmod p^{A+1}\right)$ (Euler-Fermat)
- $\left(\Theta D^{n_{1}} f\right)^{*} / \omega_{p}^{k+2 n_{1}} \equiv\left(\Theta D^{n_{2}} f\right)^{*} / \omega_{p}^{k+2 n_{2}}\left(\bmod p^{A+1}\right)$ (Proposition)

Sketch of proof I

Lemma

For $H \in M_{k}(\Gamma)$ and $G \in M_{\ell}(\Gamma)\left(k, \ell \in \frac{1}{2} \mathbb{Z}\right)$ we have $G \cdot\left(D^{n} H\right) \in \widetilde{M}_{k+\ell+2 n}$ and $\left(G \cdot\left(D^{n} H\right)\right)^{*}=G \cdot\left(\partial^{n} H\right)$.

Proof of Theorem 1.

- Choose $\Omega_{p}^{2}=\omega_{p}$ for ω_{p} as in Proposition.
- $f\left(\tau_{0}\right) / \Omega_{p}^{2 k-1}, \Theta\left(\tau_{0}\right) / \Omega_{p} \in L$ (Damerell's Theorem)
- $\Theta D^{n_{1}} f \equiv \Theta D^{n_{2}} f\left(\bmod p^{A+1}\right)$ (Euler-Fermat)
- $\left(\Theta D^{n_{1}} f\right)^{*} / \omega_{p}^{k+2 n_{1}} \equiv\left(\Theta D^{n_{2}} f\right)^{*} / \omega_{p}^{k+2 n_{2}}\left(\bmod p^{A+1}\right)$ (Proposition)
- $\Theta\left(\tau_{0}\right)\left(\partial^{n_{1}} f\right)\left(\tau_{0}\right) / \omega_{p}^{k+2 n_{1}} \equiv \Theta\left(\tau_{0}\right)\left(\partial^{n_{2}} f\right)\left(\tau_{0}\right) / \omega_{p}^{k+2 n_{2}}\left(\bmod p^{A+1}\right)$ (Lemma)

Sketch of proof II

Proof.

Proof of Theorem 2

- Need to verify that there is a global choice of $\widetilde{\Omega}$ that differs from Ω_{p} in Theorem 1 by a p-adic unit.

Sketch of proof II

Proof.

Proof of Theorem 2

- Need to verify that there is a global choice of $\widetilde{\Omega}$ that differs from Ω_{p} in Theorem 1 by a p-adic unit.
- Follows essentially from the fact that the Hasse invariant $A(p)$ of $E=\mathbb{C} /\left\langle\omega, \omega \tau_{0}\right\rangle_{\mathbb{Z}}$ over \mathbb{F}_{p} satisfies

$$
\left(\frac{2 \pi i}{\omega}\right) E_{p-1}\left(\tau_{0}\right) \equiv A(p) \quad(\bmod p)
$$

Sketch of proof II

Proof.

Proof of Theorem 2

- Need to verify that there is a global choice of $\widetilde{\Omega}$ that differs from Ω_{p} in Theorem 1 by a p-adic unit.
- Follows essentially from the fact that the Hasse invariant $A(p)$ of $E=\mathbb{C} /\left\langle\omega, \omega \tau_{0}\right\rangle_{\mathbb{Z}}$ over \mathbb{F}_{p} satisfies

$$
\left(\frac{2 \pi i}{\omega}\right) E_{p-1}\left(\tau_{0}\right) \equiv A(p) \quad(\bmod p)
$$

- $A(p) \not \equiv 0(\bmod p) \Leftrightarrow p$ splits in $\mathbb{Q}\left(\tau_{0}\right)$.

Table of Contents

(1) Introduction and statement of results

(2) Application of Katz's q-expansion principle
(3) Examples

Modular forms for $\Gamma_{0}(4)$

Recall: $\bigoplus_{k} M_{k}\left(\Gamma_{0}(4)\right)=\mathbb{C}\left[\Theta, F_{2}\right]$ where

$$
\Theta(\tau)=\sum_{n \in \mathbb{Z}} q^{n^{2}}, \quad F_{2}(\tau)=\frac{\eta(4 \tau)^{8}}{\eta(2 \tau)^{4}}=\sum_{n \text { odd }} \sigma_{1}(n) q^{n}
$$

Proposition (Guerzhoy-M.-Rolen, 2019)

Let $f \in M_{k}\left(\Gamma_{0}(4)\right), k \in \frac{1}{2} \mathbb{Z}$ and $P(X, Y) \in \mathbb{C}[X, Y]$ such that $f=P\left(\Theta, F_{2}\right)$. Then we have

$$
\partial^{n} f(i)=\Theta(i)^{4 n+2 k} p_{n}((17-12 \sqrt{2}) / 16)
$$

where $p_{-1}(t)=0, p_{0}(t)=P\left(X, t X^{4}\right) / X^{2 k}$, and

$$
\begin{aligned}
p_{n+1}(t)= & \frac{1}{24}(80 t-1)(2 k+4 n) p_{n}(t)-\left(16 t^{2}-t\right) p_{n}^{\prime}(t) \\
& -\frac{1}{144} n(n+k-1)\left(256 t^{2}+224 t+1\right) p_{n-1}(t), \quad(n \geq 0) .
\end{aligned}
$$

An example I

Example

We find
$(1-w)^{-1 / 2} \Theta\left(i \frac{1+w}{1-w}\right)=\Theta(i) \sum_{n=0}^{\infty} \frac{c(n)}{n!}(\Phi w)^{n}, \quad \Phi=\frac{(17+12 \sqrt{2}) \Gamma\left(\frac{1}{4}\right)^{4}}{16 \pi^{2}}$,
with $(\varepsilon=1+\sqrt{2})$

n	0	1	2	3	4	5	6	7	8	9
$c(n)$	1	ε	1	-3ε	17	9ε	-111ε	2373ε	12513	86481ε

An example II

Example (continued)

Congruences:

$$
\begin{aligned}
\{c(n)\}_{n} & \equiv\left\{1, \overline{\varepsilon,}^{2}\right\} \quad(\bmod 5) \\
& \equiv\left\{1, \overline{\varepsilon, 1,22 \varepsilon, 17,9 \varepsilon, 14,23 \varepsilon, 13,6 \varepsilon, 21}^{7}\right\} \quad\left(\bmod 5^{2}\right)
\end{aligned}
$$

and that $c(n) \equiv 57 c(n+50)\left(\bmod 5^{3}\right)$ for $n \geq 11$.
For $p=13$, we obtain

$$
\{c(n)\}_{n} \equiv\left\{1, \overline{\varepsilon, 1,10 \varepsilon, 4,9 \varepsilon, 6}^{7}\right\} \quad(\bmod 13)
$$

Thank you for your attention.

