
Git crash course

Thomas Breuer

Lehrstuhl für Algebra und Zahlentheorie, RWTH Aachen University, Germany

Summer School, September 06, 2021

1 / 11



Aim of this talk

• Version control systems: Why do we use them?

• How can we use the version control system git locally?

• How do we use git with the GitHub services,
for the development of OSCAR
(and for this summer school)?

• This is all very basic (but still looks complicated).

2 / 11



Version control systems – why?

• (for software development, writing papers, . . . )

• record the history of changes over time

• for each revision (timestamp):
Who changed what, when, and why?

• when working alone:
no danger to lose parts of the work (due to the backups),
undo changes

• when working with others:
“merge” contributions from different sides into one source

• “branch”: maintain different versions of one software

• if public: admit contributions from outside

3 / 11



Git

. . . is a version control system,

. . . is free,

. . . does not need a central server (is “decentralized”),
users’ repositories have the full history information,
the different repositories are equally good,

. . . has GUIs, but here we show just the command line version,

. . . calls the revisions/snapshots commits.

4 / 11



A live session with git

(commands in order of appearance)

git init,
git status,
git add <<files>>,
git commit,
git log,
git diff,
git diff --cached,
git diff <<old>> <<new>>,
git branch,
git checkout <<branch>>,
git merge <<branch>>,
git stash,
git stash pop.

5 / 11



GitHub: Use remote repositories

Up to now, we have used git on the local computer only.

For collaborative work,
we use also public remote repositories,
hosted by GitHub.com (https://github.com).
(There are alternatives; we use GitHub.)

The services are free and open.

The code is in git repositories.

We use branching and merging (in principle . . . ).

We interact with GitHub via the command line and via a web interface.

6 / 11



Proposed GitHub workflow
Do not directly merge your changes into the (central) remote
repository.

Create a so-called pull request from your branch,
which then can be discussed, improved, discussed, . . . ,
and eventually merged.

central
remote

-
fork

�

pull request

user’s
remote

?
clone

6
push

user’s

local

@
@
@
@R

pull

7 / 11



Proposed GitHub workflow: Setup
• Make sure that you have a GitHub account, and that local user

name and e-mail address fit to the values of the account.
Check with git config -l,
set with git config user.name "..." and
git config user.email "...".

• Create/take a central remote repository. (Here:
https://github.com/oscar-system/Summerschool21Exercises.jl)

• Create your own remote copy via fork.
(Click the button in the web page of the repository.)

• Create your own local copy via clone.
(Copy the URL under Code/Clone in the web page,
then execute git clone with this URL on your computer.)

• Notify the central remote repository. On your computer, call:
git remote add upstream <<url-central>>.
(Check with git remote -v.)
Now git pull -r upstream main should work.

8 / 11



Proposed Github workflow: Repeat
• In your local repository,

• create a new branch (git checkout -b <<name>>),
• edit some files,
• stage the changed files (git add),
• commit the changes (git commit),
• incorporate changes in the remote main branch

since you started editing (git pull -r upstream main;
-r means “rebase”: rewrite the history such that
the remote changes come first and the local changes come on top),

• commit the updated version,
• and then push the new version to origin (git push;

git will propose additional parameters).

• In the web page of the central remote repository,
GitHub will propose to create a pull request.
Check that these are the changes you want to propose;
if not then go to the previous step.
Edit the description if necessary.
Finally, create the pull request.

9 / 11



Proposed workflow: Repeat

• Wait for comments (reviews).
It may be necessary to get approvals from others
before the pull request can be merged.

• After merging, update main

(git checkout main; git pull -r upstream main,
and delete the local branch (git branch -D <<name>>).

10 / 11



Some links
git documentation

• man git, man giteveryday, man gittutorial

• Reference Manual: https://git-scm.com/doc

• Cheat sheet:
https://education.github.com/git-cheat-sheet-education.pdf

GitHub documentation

• Documentation: https://docs.github.com

• Tutorial:
https://product.hubspot.com/blog/git-and-github-

tutorial-for-beginners

Markdown syntax

• Documentation:
https://guides.github.com/features/mastering-markdown/

• Cheat sheet:
https://guides.github.com/pdfs/markdown-cheatsheet-online.pdf

11 / 11


