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Introduction

Let F be free group on a non-empty set X .

Group presentation: X and a set R of words in X , written {X |R}.

If R is the normal closure of R in F , the group G defined by the
presentation is F/R and is written 〈X | R 〉.

Example

G = 〈a, b|a4, b2, ab = a−1〉

H = 〈a, b|a4, b2 = a2, ab = a−1〉

What can we discover about the structure of G or H?
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One area of substantial progress at algorithmic and computational
level is in the study of particular quotients of G .

Examples include abelian, p-quotient, soluble quotients.

May discover that G infinite, by examining the invariants of its
largest abelian quotient.

Can compute “useful" presentations for quotient Q of the group:
those which have prime-power order, are nilpotent, or are soluble.

Central feature of these presentations is that they provide a
solution to the word problem for Q:

Decide if two words in generators of Q represent the same element
of Q.
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Outline of lecture series

I Abelian quotients.
I Polycyclic generating sequences: basic properties.
I Polycyclic presentations: consistency and collection.
I Constructing polycyclic presentations.
I Generating descriptions of p-groups.
I An application: SmallGroups.
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Abelian quotients

Lemma
G/N abelian if and only if N ≥ G ′.

Largest abelian quotient of G is G/G ′.

Structure of this abelian group can be determined fairly readily.

Definition
B is in Smith Normal Form if for some k ≥ 0 the entries di = Bi ,i

for 1 ≤ i ≤ k are positive, B has no other non-zero entries, and
di |di+1 for 1 ≤ i ≤ k .
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Smith normal form

Example

B :=

 2 0 0 0 0
0 4 0 0 0
0 0 12 0 0


is in Smith normal form.
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Determine the structure of G/G ′

1 Abelianise the presentation of G by adding relations to make
G abelian.

2 G/G ′ ∼= Zn/B where B is a subgroup of Zn.

3 Describe B by a matrix S(B).

4 To obtain the structure of Zn/B , we apply row-and-column
operations to S(B) to convert it to Smith normal form S .

5 We read off abelian invariants of Zn/B from S .
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Lemma

Suppose

B :=



d1
d2

. . .
dk

0
. . .

0 0 · · · 0


is an m × n matrix in Smith normal form with m ≤ n. Then

Zn/S(B) ' Zd1 ⊕ · · · ⊕ Zdk ⊕ Zs ,

where s = n − k .
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Example

G = 〈x , y , z | (xyz−1)2, (x−1y2z)2, (xy−2z−1)
2〉

Abelianise to obtain

G/G ′ = 〈x , y , z | (xyz−1)2, (x−1y2z)2, (xy−2z−1)
2
,

xy = yx , xz = zx , yz = zy〉

Describe B by S(B) =

 2 2 −2
−2 4 2
2 −4 −2


Smith Normal form of S(B) is

2 0 0
0 6 0
0 0 0


Hence G/G ′ ∼= Z2 × Z6 × Z and so it is infinite.
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Polycyclic Groups

Definition
G is polycyclic if it has a descending chain of subgroups

G = G1 ≥ G2 ≥ · · · ≥ Gn+1 = 1

in which Gi+1 C Gi , and Gi/Gi+1 is cyclic. Such a chain of
subgroups is called a polycyclic series.

Polycyclic groups: solvable groups in which every subgroup is
finitely generated.

Example

G = Alt(4) = 〈(1, 3)(2, 4), (1, 2)(3, 4), (1, 2, 3)〉 where
V = 〈(1, 3)(2, 4), (1, 2)(3, 4)〉C G and Z2 = 〈(1, 3)(2, 4)〉C V .

So Alt(4)B V B Z2.
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Polycyclic sequences

Let G be polycyclic with polycyclic series

G = G1 ≥ G2 ≥ · · · ≥ Gn+1 = 1.

Since Gi/Gi+1 is cyclic, there exist xi ∈ G with 〈xiGi+1〉 = Gi/Gi+1
for every i ∈ {1, . . . , n}.

Definition
X = [x1, . . . , xn] such that 〈xiGi+1〉 = Gi/Gi+1 for 1 ≤ i ≤ n is a
polycyclic generating sequence (PCGS) for G .

Definition
Let X be a PCGS sequence for G . R(X ) := (r1, . . . , rn) defined by
ri := |Gi :Gi+1| ∈ N ∪ {∞} is the sequence of relative orders for X .
Let I (X ) := {i ∈ {1 . . . n} | ri finite}.
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Example

X := [(1, 2, 3), (1, 2)(3, 4), (1, 3)(2, 4)] is PCGS for Alt(4) where
R(X ) = (3, 2, 2) and I (X ) = {1, 2, 3}.

Relative orders exhibit information about G .

G is finite iff every entry in R(X ) is finite or, equivalently iff
I (X ) = {1 . . . n}.

If G is finite, then |G | = r1 · · · rn, the product of the entries in
R(X ).
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Example

Let G := 〈(1, 2, 3, 4), (1, 3)〉 ∼= D8.
a) Let G2 := 〈(1, 2, 3, 4)〉 ∼= C4.

Then G = G1 ≥ G2 ≥ G3 = 1 is polycyclic series for G .

X := [(1, 3), (1, 2, 3, 4)] and
Y := [(2, 4), (1, 4, 3, 2)] are PCGS defining this series.
R(X ) = R(Y ) = (2, 4) and I (X ) = I (Y ) = {1, 2}.

b) Let G2 := 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 ∼= V and
G3 := 〈(1, 3)(2, 4)〉 ∼= C2.

So G = G1 ≥ G2 ≥ G3 ≥ G4 = 1.

X := [(2, 4), (1, 2)(3, 4), (1, 3)(2, 4)] and
Y := [(1, 2, 3, 4), (1, 2)(3, 4), (1, 3)(2, 4)] are polycyclic
sequences defining this series.
R(X ) = R(Y ) = (2, 2, 2) and I (X ) = I (Y ) = {1, 2, 3}.

Eamonn O’Brien Algorithms for polycyclic groups



artlogo

Example

Let G := 〈a, b〉 with

a :=

(
−1 0
0 1

)
and b :=

(
−1 −1
0 1

)
.

G ∼= D∞, the infinite dihedral group.

A polycyclic sequence for G is X := [a, ab] with relative orders
R(X ) = (2,∞) and I (X ) = {1}.
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Lemma

Let X = [x1, . . . , xn] be a polycyclic sequence for G with the
relative orders R(X ) = (r1, . . . , rn). For every g ∈ G there exists a
sequence (e1, . . . , en), with ei ∈ Z for 1 ≤ i ≤ n and 0 ≤ ei < ri if
i ∈ I (X ), such that g = xe11 · · · xenn .

Proof.
Since G1/G2 = 〈x1G2〉, we find that gG2 = xe11 G2 for some e1 ∈ Z.

If 1 ∈ I (X ), then r1 <∞ and we can choose ei ∈ {0 . . . r1−1}.

Let h = x−e11 g ∈ G2.

By induction on the length of a polycyclic sequence, we can assume
that we know expression of the desired form for h; that is,
h = xe22 · · · xenn .

Hence g = xe11 xe22 · · · xenn as desired.
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Example

G = Alt(4)

X := [x1 = (1, 2, 3), x2 = (1, 2)(3, 4), x3 = (1, 3)(2, 4)]
is PCGS for G where R(X ) = (3, 2, 2) and I (X ) = {1, 2, 3}.

V = 〈x2, x3〉 and H = 〈x3〉.

g = (1, 2, 4).

gV = x2
1V so x−2

1 g = (1, 4)(2, 3) ∈ V .

Now v := (1, 4)(2, 3) satisfies vH = x2H, so
x−1
2 v = (1, 3)(2, 4) ∈ H. Hence x−1

2 v = x3 so v = x2x3.

Hence g = x2
1x2x3.
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Normal form

Definition

The expression g = xe11 · · · xenn is the normal form of g ∈ G with
respect to X .

The sequence expX (g) := (e1, . . . , en) is the exponent vector of g
with respect to X .

Can define an injective map G → Zn : g 7→ expX (g) from G into
the additive group of Zn. This is not a group homomorphism!
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Polycyclic group to presentation?

Exponent vectors of elements of G can be used to describe
relations for G in terms of X .

Lemma
Let X = [x1, . . . , xn] be a polycyclic sequence for G with relative
orders R(X ) = (r1, . . . , rn).
a) Let i ∈ I (X ). The normal form of a power x rii is

x rii = x
ai,i+1
i+1 · · · x

ai,n
n .

b) Let 1 ≤ j < i ≤ n. The normal form of a conjugate x−1
j xixj is

x−1
j xixj = x

bi,j,j+1
j+1 · · · xbi,j,nn .

c) Let 1 ≤ j < i ≤ n. The normal form of a conjugate xjxix
−1
j is

xjxix
−1
j = x

ci,j,j+1
j+1 · · · xci,j,nn .
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Polycyclic presentation

Definition
A presentation { x1, . . . , xn | R } is a polycyclic presentation if there
is a sequence S = (s1, . . . , sn) with si ∈ N ∪ {∞} and integers
ai ,k , bi ,j ,k , ci ,j ,k such that R consists of the following relations:

x sii = x
ai,i+1
i+1 · · · x

ai,n
n for 1 ≤ i ≤ n with si <∞,

x−1
j xixj = x

bi,j,j+1
j+1 · · · xbi,j,nn for 1 ≤ j < i ≤ n,

xjxix
−1
j = x

ci,j,j+1
j+1 · · · xci,j,nn for 1 ≤ j < i ≤ n.

We describe the presentation by Pc〈 x1, . . . , xn | R 〉. If G is defined
by such a polycyclic presentation then G is a PC-group.
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Group to presentation?

Every polycyclic group G has a polycyclic sequence X .

X induces a complete set of polycyclic relations.

The power exponents S of the presentation equal the relative orders
R(X ) in this case.

Theorem

Every polycyclic sequence determines a (unique) polycyclic
presentation. Thus every polycyclic group can be defined by a
polycyclic presentation.
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Example

Let D8 := 〈(1, 3), (1, 2, 3, 4)〉 with polycyclic sequence
X := [(1, 3), (1, 2, 3, 4)] and relative orders R(X ) = (2, 4).

Polycyclic presentation defined by X has generators x1, x2, power
exponents s1 = 2 and s2 = 4. Relations are x2

1 = 1, x4
2 = 1,

x1x2x
−1
1 = x3

2 and x−1
1 x2x1 = x3

2 .

Example
S4 has PCGS

X = [(3, 4), (2, 4, 3), (1, 3)(2, 4), (1, 2)(3, 4)]

where R(X ) = (2, 3, 2, 2).

Pc〈x1, x2, x3, x4 | x2
1 = x3

2 = x2
3 = x2

4 = 1, xx12 = x2
2 ,

xx13 = x3x4, x
x2
3 = x4, x

x2
4 = x3x4〉
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Presentation to group?

Every polycyclic presentation defines a polycyclic group.

Theorem

Let G be group defined by Pc〈 x1, . . . , xn | R 〉 with
power-exponents S . Then G is polycyclic and X = [x1, . . . , xn] is a

polycyclic sequence for G . Its relative orders (r1, . . . , rn) satisfy
ri ≤ si for 1 ≤ i ≤ n.

Proof.
Define Gi := 〈 xi , . . . , xn 〉 ≤ G . The conjugate relations in R
enforce that Gi+1 is normal in Gi for 1 ≤ i ≤ n. By construction,
Gi/Gi+1 is cyclic and hence G is polycyclic. Since Gi = 〈xiGi+1〉 by
definition, X is a polycyclic sequence for G . Finally, the power
relations enforce that ri = |Gi :Gi+1| ≤ si for 1 ≤ i ≤ n.
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Example
Let G be defined by the following polycyclic presentation with
power exponents S = (3, 2,∞).

G := Pc〈 x1, x2, x3 | x3
1 = x3, x

2
2 = x3,

x−1
1 x2x1 = x2x3, x1x2x

−1
1 = x2x3 〉.

Hence X = [x1, x2, x3] is a polycyclic sequence for G with relative
orders R(X ) ≤ (3, 2,∞).

But coset enumeration shows that the precise relative orders are
R(X ) = (3, 2, 1).

Hence the power exponents in a polycyclic presentation give an
upper bound for the relative orders only. Cannot read off from the
power exponents whether G is finite or infinite.
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Inconsistent presentations

Equivalently: polycyclic presentations in which two different
normal words represent the same element of the group.

Example

Pc〈x1, x2, x3 | x2
1 = x2, x

2
2 = x3, x

2
3 = 1,

[x2, x1] = x3, [x3, x1] = 1, [x3, x2] = 1 〉

x1x2 = x1x
2
1 = x2

1x1 = x2x1 = x1x2x3.

Hence, not every element of the presented group has a unique
normal form.
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Consistent presentations

A polycyclic presentation in which every element is represented by
exactly one normal word is consistent.

Equivalently: a polycyclic presentation Pc〈X | R 〉 with power
exponents S is consistent if R(X ) = S .

Effective algorithm to convert an inconsistent presentation to a
consistent one.

Example

G := Pc〈 x1, x2 | x3
1 = 1, x2

2 = 1, xx12 = x2〉 defines Z6.
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Collection

A method to determine the normal form for an element in a group
given by a polycyclic presentation.

Lemma

Let G = Pc〈X | R 〉 be a polycyclic presentation with power
exponents S . For every g ∈ G there exists a word representing g of
the form xe11 · · · xenn with ei ∈ Z and 0 ≤ ei < si if si <∞.
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Definition
Let G = Pc〈X | R 〉. Write word w in X as a string w = xa1

i1
· · · xarir

with aj ∈ Z. Assume that ij 6= ij+1 for 1 ≤ j ≤ r − 1 and aj 6= 0 for
1 ≤ j ≤ r .

a) A word w is collected if w = xa1
i1
· · · xarir with i1 < i2 < · · · < ir

and aj ∈ {1, . . . , sj−1} if sj <∞. Otherwise w is uncollected.

b) A word u in X is a minimal non-normal subword of the word w
if u is a subword of w and it has one of the following forms:

i) u = x
aj
ij
· xij+1 for ij > ij+1,

ii) u = x
aj
ij
· x−1

ij+1
for ij > ij+1,

iii) u = x
aj
ij

for rij 6=∞ and aj 6∈ {1 . . . sij−1}.

Word is collected if and only if it does not contain a minimal
non-normal subword.
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Collected words

Example
G = S4 has PCGS

X = [(3, 4), (2, 4, 3), (1, 3)(2, 4), (1, 2)(3, 4)]

where R(X ) = (2, 3, 2, 2) and

G = Pc〈x1, x2, x3, x4 | x2
1 = x3

2 = x2
3 = x2

4 = 1, xx12 = x2
2 ,

xx13 = x3x4, x
x2
3 = x4, x

x2
4 = x3x4〉

x2x1 7→ x1x
2
2

x1x
−1
2 7→ x1x

2
2

x−1
2 x4x1 7→ x1x2x4

x4x3x2x1 7→ x1x
2
2x4
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Finite p-groups

Usually write power-commutator presentation.

Pc〈x1, . . . , xn | xpi =
n∏

k=i+1

x
α(i ,k)
k , 0 ≤ α(i , k) < p , 1 ≤ i ≤ n ,

[xj , xi ] =
n∏

k=j+1

x
β(i ,j ,k)
k , 0 ≤ β(i , j , k) < p, 1 ≤ i < j ≤ n〉.
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An example

Let G be D16

Pc〈x1, x2, x3, x4 | x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1〉

Normal form for elements of G is

xα1
1 xα2

2 xα3
3 xα4

4

where 0 ≤ αi ≤ 1.
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Collection in finite p-groups

Every element of a p-group presented by a power-commutator
presentation on X := {x1, . . . , xn} can be written as normal word

xα1
1 xα2

2 . . . xαn
n

where 0 ≤ αi < p.

Collection: introduced by P. Hall (1934), in the context of nilpotent
groups.
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Consider collection in context of all semigroup words on X .
Inverses of words may be ignored since they can be eliminated using
the power relations.

The input to the process is a word, w .

I If w is normal the process terminates.

I If w is not normal, it has a minimal non-normal subword u,
where

u = xpi or u = xjxi

and 1 ≤ i < j ≤ n.

Now replace u by

n∏
k=i+1

x
α(i ,k)
k or xixj

n∏
k=j+1

x
β(i ,j ,k)
k ,

where 0 ≤ α(. . .), β(. . .) < p, respectively.

I Resulting word, w , is now input to the process.
Eamonn O’Brien Algorithms for polycyclic groups
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Replacement of minimal non-normal subwords by their normal
equivalents results in the construction of a normal word from an
arbitrary word.

Theorem
Collection terminates.

Proof uses induction on |X |: w 7→ x1v .

If w contains more than one minimal non-normal subword, a rule is
used to determine which of the subwords is replaced by its normal
equivalent, thereby ensuring that the process is well defined.
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Collection strategies

I Collection to the left – all occurrences of x1 are moved left to
the beginning of the word. Next, all occurrences of x2 are
moved left until they are adjacent to the x1’s. etc.
P. Hall (1934).

I Collection from the right – the minimal non-normal subword
occurring nearest the end of a word is selected for replacement.
Havas & Nicholson (1976).

I Collection from the left – the minimal non-normal subword
nearest the beginning of a word is chosen for collection.

Leedham-Green & Soicher (1990); Vaughan-Lee (1990).

Efficiency of the collection process is affected by the rule.

Collection from the left: most efficient.
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Example
Consider D16.

Pc〈x1, x2, x3, x4 | x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1〉

Suppose we collect x3x2x1.
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“To the left"

Pc〈x1, x2, x3, x4 | x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1〉

321 = 3123
= 13423
= 13243
= 12343
= 12334
= 1244
= 12
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“From the right"

Pc〈x1, x2, x3, x4 | x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1〉

321 = 3123
= 13423
= 13243
= 13234
= 12334
= 1244
= 12
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“From the left"

Pc〈x1, x2, x3, x4 | x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1〉

321 = 231
= 2134
= 12334
= 1244
= 12

Eamonn O’Brien Algorithms for polycyclic groups
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An exercise

G = S4

Pc〈x1, x2, x3, x4 | x2
1 = x3

2 = x2
3 = x2

4 , x
x1
2 = x2

2 ,

xx13 = x3x4, x
x2
3 = x4, x

x2
4 = x3x4〉

x3x2x1 7→ x1x
2
2x3

I 11 steps using “To the left".
I 5 steps using “From the left".
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Number of normal forms

Given a consistent power-commutator presentation, the set of
elements of G can be regarded as the set of normal words and the
group multiplication is defined by collection:

the product of two normal words is the word which results from
collecting their concatenation.

Order of G is the number of normal words.
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