
artlogo

Algorithms for polycyclic groups

Eamonn O’Brien

University of Auckland

September 2021

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Introduction

Let F be free group on a non-empty set X .

Group presentation: X and a set R of words in X , written {X |R}.

If R is the normal closure of R in F , the group G defined by the
presentation is F/R and is written 〈X | R 〉.

Example

G = 〈a, b|a4, b2, ab = a−1〉

H = 〈a, b|a4, b2 = a2, ab = a−1〉

What can we discover about the structure of G or H?

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

One area of substantial progress at algorithmic and computational
level is in the study of particular quotients of G .

Examples include abelian, p-quotient, soluble quotients.

May discover that G infinite, by examining the invariants of its
largest abelian quotient.

Can compute “useful" presentations for quotient Q of the group:
those which have prime-power order, are nilpotent, or are soluble.

Central feature of these presentations is that they provide a
solution to the word problem for Q:

Decide if two words in generators of Q represent the same element
of Q.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Outline of lecture series

I Abelian quotients.
I Polycyclic generating sequences: basic properties.
I Polycyclic presentations: consistency and collection.
I Constructing polycyclic presentations.
I Generating descriptions of p-groups.
I An application: SmallGroups.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Abelian quotients

Lemma
G/N abelian if and only if N ≥ G ′.

Largest abelian quotient of G is G/G ′.

Structure of this abelian group can be determined fairly readily.

Definition
B is in Smith Normal Form if for some k ≥ 0 the entries di = Bi ,i

for 1 ≤ i ≤ k are positive, B has no other non-zero entries, and
di |di+1 for 1 ≤ i ≤ k .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Smith normal form

Example

B :=

 2 0 0 0 0
0 4 0 0 0
0 0 12 0 0


is in Smith normal form.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Determine the structure of G/G ′

1 Abelianise the presentation of G by adding relations to make
G abelian.

2 G/G ′ ∼= Zn/B where B is a subgroup of Zn.

3 Describe B by a matrix S(B).

4 To obtain the structure of Zn/B , we apply row-and-column
operations to S(B) to convert it to Smith normal form S .

5 We read off abelian invariants of Zn/B from S .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Lemma

Suppose

B :=



d1
d2

. . .
dk

0
. . .

0 0 · · · 0


is an m × n matrix in Smith normal form with m ≤ n. Then

Zn/S(B) ' Zd1 ⊕ · · · ⊕ Zdk ⊕ Zs ,

where s = n − k .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Example

G = 〈x , y , z | (xyz−1)2, (x−1y2z)2, (xy−2z−1)
2〉

Abelianise to obtain

G/G ′ = 〈x , y , z | (xyz−1)2, (x−1y2z)2, (xy−2z−1)
2
,

xy = yx , xz = zx , yz = zy〉

Describe B by S(B) =

 2 2 −2
−2 4 2
2 −4 −2


Smith Normal form of S(B) is

2 0 0
0 6 0
0 0 0


Hence G/G ′ ∼= Z2 × Z6 × Z and so it is infinite.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Polycyclic Groups

Definition
G is polycyclic if it has a descending chain of subgroups

G = G1 ≥ G2 ≥ · · · ≥ Gn+1 = 1

in which Gi+1 C Gi , and Gi/Gi+1 is cyclic. Such a chain of
subgroups is called a polycyclic series.

Polycyclic groups: solvable groups in which every subgroup is
finitely generated.

Example

G = Alt(4) = 〈(1, 3)(2, 4), (1, 2)(3, 4), (1, 2, 3)〉 where
V = 〈(1, 3)(2, 4), (1, 2)(3, 4)〉C G and Z2 = 〈(1, 3)(2, 4)〉C V .

So Alt(4) B V B Z2.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Polycyclic sequences

Let G be polycyclic with polycyclic series

G = G1 ≥ G2 ≥ · · · ≥ Gn+1 = 1.

Since Gi/Gi+1 is cyclic, there exist xi ∈ G with 〈xiGi+1〉 = Gi/Gi+1
for every i ∈ {1, . . . , n}.

Definition
X = [x1, . . . , xn] such that 〈xiGi+1〉 = Gi/Gi+1 for 1 ≤ i ≤ n is a
polycyclic generating sequence (PCGS) for G .

Definition
Let X be a PCGS sequence for G . R(X) := (r1, . . . , rn) defined by
ri := |Gi :Gi+1| ∈ N ∪ {∞} is the sequence of relative orders for X .
Let I (X) := {i ∈ {1 . . . n} | ri finite}.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Example

X := [(1, 2, 3), (1, 2)(3, 4), (1, 3)(2, 4)] is PCGS for Alt(4) where
R(X) = (3, 2, 2) and I (X) = {1, 2, 3}.

Relative orders exhibit information about G .

G is finite iff every entry in R(X) is finite or, equivalently iff
I (X) = {1 . . . n}.

If G is finite, then |G | = r1 · · · rn, the product of the entries in
R(X).

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Example

Let G := 〈(1, 2, 3, 4), (1, 3)〉 ∼= D8.
a) Let G2 := 〈(1, 2, 3, 4)〉 ∼= C4.

Then G = G1 ≥ G2 ≥ G3 = 1 is polycyclic series for G .

X := [(1, 3), (1, 2, 3, 4)] and
Y := [(2, 4), (1, 4, 3, 2)] are PCGS defining this series.
R(X) = R(Y) = (2, 4) and I (X) = I (Y) = {1, 2}.

b) Let G2 := 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 ∼= V and
G3 := 〈(1, 3)(2, 4)〉 ∼= C2.

So G = G1 ≥ G2 ≥ G3 ≥ G4 = 1.

X := [(2, 4), (1, 2)(3, 4), (1, 3)(2, 4)] and
Y := [(1, 2, 3, 4), (1, 2)(3, 4), (1, 3)(2, 4)] are polycyclic
sequences defining this series.
R(X) = R(Y) = (2, 2, 2) and I (X) = I (Y) = {1, 2, 3}.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Example

Let G := 〈a, b〉 with

a :=

(
−1 0
0 1

)
and b :=

(
−1 −1
0 1

)
.

G ∼= D∞, the infinite dihedral group.

A polycyclic sequence for G is X := [a, ab] with relative orders
R(X) = (2,∞) and I (X) = {1}.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Lemma

Let X = [x1, . . . , xn] be a polycyclic sequence for G with the
relative orders R(X) = (r1, . . . , rn). For every g ∈ G there exists a
sequence (e1, . . . , en), with ei ∈ Z for 1 ≤ i ≤ n and 0 ≤ ei < ri if
i ∈ I (X), such that g = xe11 · · · xenn .

Proof.
Since G1/G2 = 〈x1G2〉, we find that gG2 = xe11 G2 for some e1 ∈ Z.

If 1 ∈ I (X), then r1 <∞ and we can choose e1 ∈ {0 . . . r1−1}.

Let h = x−e11 g ∈ G2.

By induction on the length of a polycyclic sequence, we can assume
that we know expression of the desired form for h; that is,
h = xe22 · · · xenn .

Hence g = xe11 xe22 · · · xenn as desired.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Example

G = Alt(4)

X := [x1 = (1, 2, 3), x2 = (1, 2)(3, 4), x3 = (1, 3)(2, 4)]
is PCGS for G where R(X) = (3, 2, 2) and I (X) = {1, 2, 3}.

V = 〈x2, x3〉 and H = 〈x3〉.

g = (1, 2, 4).

gV = x2
1V so x−2

1 g = (1, 4)(2, 3) ∈ V .

Now v := (1, 4)(2, 3) satisfies vH = x2H, so
x−1
2 v = (1, 3)(2, 4) ∈ H. Hence x−1

2 v = x3 so v = x2x3.

Hence g = x2
1x2x3.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Normal form

Definition

The expression g = xe11 · · · xenn is the normal form of g ∈ G with
respect to X .

The sequence expX (g) := (e1, . . . , en) is the exponent vector of g
with respect to X .

Can define an injective map G → Zn : g 7→ expX (g) from G into
the additive group of Zn. This is not a group homomorphism!

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Polycyclic group to presentation?

Exponent vectors of elements of G can be used to describe
relations for G in terms of X .

Lemma
Let X = [x1, . . . , xn] be a polycyclic sequence for G with relative
orders R(X) = (r1, . . . , rn).
a) Let i ∈ I (X). The normal form of a power x rii is

x rii = x
ai,i+1
i+1 · · · x

ai,n
n .

b) Let 1 ≤ j < i ≤ n. The normal form of a conjugate x−1
j xixj is

x−1
j xixj = x

bi,j,j+1
j+1 · · · xbi,j,nn .

c) Let 1 ≤ j < i ≤ n. The normal form of a conjugate xjxix
−1
j is

xjxix
−1
j = x

ci,j,j+1
j+1 · · · xci,j,nn .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Polycyclic presentation

Definition
A presentation { x1, . . . , xn | R } is a polycyclic presentation if there
is a sequence S = (s1, . . . , sn) with si ∈ N ∪ {∞} and integers
ai ,k , bi ,j ,k , ci ,j ,k such that R consists of the following relations:

x sii = x
ai,i+1
i+1 · · · x

ai,n
n for 1 ≤ i ≤ n with si <∞,

x−1
j xixj = x

bi,j,j+1
j+1 · · · xbi,j,nn for 1 ≤ j < i ≤ n,

xjxix
−1
j = x

ci,j,j+1
j+1 · · · xci,j,nn for 1 ≤ j < i ≤ n.

We describe the presentation by Pc〈 x1, . . . , xn | R 〉. If G is defined
by such a polycyclic presentation then G is a PC-group.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Group to presentation?

Every polycyclic group G has a polycyclic sequence X .

X induces a complete set of polycyclic relations.

The power exponents S of the presentation equal the relative orders
R(X) in this case.

Theorem

Every polycyclic sequence determines a (unique) polycyclic
presentation. Thus every polycyclic group can be defined by a
polycyclic presentation.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Example

Let D8 := 〈(1, 3), (1, 2, 3, 4)〉 with polycyclic sequence
X := [(1, 3), (1, 2, 3, 4)] and relative orders R(X) = (2, 4).

Polycyclic presentation defined by X has generators x1, x2, power
exponents s1 = 2 and s2 = 4. Relations are x2

1 = 1, x4
2 = 1,

x1x2x
−1
1 = x3

2 and x−1
1 x2x1 = x3

2 .

Example
S4 has PCGS

X = [(3, 4), (2, 4, 3), (1, 3)(2, 4), (1, 2)(3, 4)]

where R(X) = (2, 3, 2, 2).

Pc〈x1, x2, x3, x4 | x2
1 = x3

2 = x2
3 = x2

4 = 1, xx12 = x2
2 ,

xx13 = x3x4, x
x2
3 = x4, x

x2
4 = x3x4〉

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Presentation to group?

Every polycyclic presentation defines a polycyclic group.

Theorem

Let G be group defined by Pc〈 x1, . . . , xn | R 〉 with
power-exponents S . Then G is polycyclic and X = [x1, . . . , xn] is a

polycyclic sequence for G . Its relative orders (r1, . . . , rn) satisfy
ri ≤ si for 1 ≤ i ≤ n.

Proof.
Define Gi := 〈 xi , . . . , xn 〉 ≤ G . The conjugate relations in R
enforce that Gi+1 is normal in Gi for 1 ≤ i ≤ n. By construction,
Gi/Gi+1 is cyclic and hence G is polycyclic. Since Gi = 〈xiGi+1〉 by
definition, X is a polycyclic sequence for G . Finally, the power
relations enforce that ri = |Gi :Gi+1| ≤ si for 1 ≤ i ≤ n.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Example
Let G be defined by the following polycyclic presentation with
power exponents S = (3, 2,∞).

G := Pc〈 x1, x2, x3 | x3
1 = x3, x

2
2 = x3,

x−1
1 x2x1 = x2x3, x1x2x

−1
1 = x2x3 〉.

Hence X = [x1, x2, x3] is a polycyclic sequence for G with relative
orders R(X) ≤ (3, 2,∞).

But coset enumeration shows that the precise relative orders are
R(X) = (3, 2, 1).

Hence the power exponents in a polycyclic presentation give an
upper bound for the relative orders only. Cannot read off from the
power exponents whether G is finite or infinite.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Inconsistent presentations

Equivalently: polycyclic presentations in which two different
normal words represent the same element of the group.

Example

Pc〈x1, x2, x3 | x2
1 = x2, x

2
2 = x3, x

2
3 = 1,

[x2, x1] = x3, [x3, x1] = 1, [x3, x2] = 1 〉

x1x2 = x1x
2
1 = x2

1x1 = x2x1 = x1x2x3.

Hence, not every element of the presented group has a unique
normal form.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Consistent presentations

A polycyclic presentation in which every element is represented by
exactly one normal word is consistent.

Equivalently: a polycyclic presentation Pc〈X | R 〉 with power
exponents S is consistent if R(X) = S .

Effective algorithm to convert an inconsistent presentation to a
consistent one.

Example

G := Pc〈 x1, x2 | x3
1 = 1, x2

2 = 1, xx12 = x2〉 defines Z6.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Collection

A method to determine the normal form for an element in a group
given by a polycyclic presentation.

Lemma

Let G = Pc〈X | R 〉 be a polycyclic presentation with power
exponents S . For every g ∈ G there exists a word representing g of
the form xe11 · · · xenn with ei ∈ Z and 0 ≤ ei < si if si <∞.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Definition
Let G = Pc〈X | R 〉. Write word w in X as a string w = xa1

i1
· · · xarir

with aj ∈ Z. Assume that ij 6= ij+1 for 1 ≤ j ≤ r − 1 and aj 6= 0 for
1 ≤ j ≤ r .

a) A word w is collected if w = xa1
i1
· · · xarir with i1 < i2 < · · · < ir

and aj ∈ {1, . . . , sj−1} if sj <∞. Otherwise w is uncollected.

b) A word u in X is a minimal non-normal subword of the word w
if u is a subword of w and it has one of the following forms:

i) u = x
aj
ij
· xij+1 for ij > ij+1,

ii) u = x
aj
ij
· x−1

ij+1
for ij > ij+1,

iii) u = x
aj
ij

for rij 6=∞ and aj 6∈ {1 . . . sij−1}.

Word is collected if and only if it does not contain a minimal
non-normal subword.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Collected words

Example
G = S4 has PCGS

X = [(3, 4), (2, 4, 3), (1, 3)(2, 4), (1, 2)(3, 4)]

where R(X) = (2, 3, 2, 2) and

G = Pc〈x1, x2, x3, x4 | x2
1 = x3

2 = x2
3 = x2

4 = 1, xx12 = x2
2 ,

xx13 = x3x4, x
x2
3 = x4, x

x2
4 = x3x4〉

x2x1 7→ x1x
2
2

x1x
−1
2 7→ x1x

2
2

x−1
2 x4x1 7→ x1x2x4

x4x3x2x1 7→ x1x
2
2x4

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Finite p-groups

Usually write power-commutator presentation.

Pc〈x1, . . . , xn | xpi =
n∏

k=i+1

x
α(i ,k)
k , 0 ≤ α(i , k) < p , 1 ≤ i ≤ n ,

[xj , xi] =
n∏

k=j+1

x
β(i ,j ,k)
k , 0 ≤ β(i , j , k) < p, 1 ≤ i < j ≤ n〉.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

An example

Let G be D16

Pc〈x1, x2, x3, x4 | x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1〉

Normal form for elements of G is

xα1
1 xα2

2 xα3
3 xα4

4

where 0 ≤ αi ≤ 1.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Collection in finite p-groups

Every element of a p-group presented by a power-commutator
presentation on X := {x1, . . . , xn} can be written as normal word

xα1
1 xα2

2 . . . xαn
n

where 0 ≤ αi < p.

Collection: introduced by P. Hall (1934), in the context of nilpotent
groups.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Consider collection in context of all semigroup words on X .
Inverses of words may be ignored since they can be eliminated using
the power relations.

The input to the process is a word, w .

I If w is normal the process terminates.

I If w is not normal, it has a minimal non-normal subword u,
where

u = xpi or u = xjxi

and 1 ≤ i < j ≤ n.

Now replace u by

n∏
k=i+1

x
α(i ,k)
k or xixj

n∏
k=j+1

x
β(i ,j ,k)
k ,

where 0 ≤ α(. . .), β(. . .) < p, respectively.

I Resulting word, w , is now input to the process.
Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Replacement of minimal non-normal subwords by their normal
equivalents results in the construction of a normal word from an
arbitrary word.

Theorem
Collection terminates.

Proof uses induction on |X |: w 7→ x1v .

If w contains more than one minimal non-normal subword, a rule is
used to determine which of the subwords is replaced by its normal
equivalent, thereby ensuring that the process is well defined.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Collection strategies

I Collection to the left – all occurrences of x1 are moved left to
the beginning of the word. Next, all occurrences of x2 are
moved left until they are adjacent to the x1’s. etc.
P. Hall (1934).

I Collection from the right – the minimal non-normal subword
occurring nearest the end of a word is selected for replacement.
Havas & Nicholson (1976).

I Collection from the left – the minimal non-normal subword
nearest the beginning of a word is chosen for collection.

Leedham-Green & Soicher (1990); Vaughan-Lee (1990).

Efficiency of the collection process is affected by the rule.

Collection from the left: most efficient.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Example
Consider D16.

Pc〈x1, x2, x3, x4 | x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1〉

Suppose we collect x3x2x1.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

“To the left"

Pc〈x1, x2, x3, x4 | x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1〉

321 = 3123
= 13423
= 13243
= 12343
= 12334
= 1244
= 12

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

“From the right"

Pc〈x1, x2, x3, x4 | x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1〉

321 = 3123
= 13423
= 13243
= 13234
= 12334
= 1244
= 12

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

“From the left"

Pc〈x1, x2, x3, x4 | x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1〉

321 = 231
= 2134
= 12334
= 1244
= 12

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

An exercise

G = S4

Pc〈x1, x2, x3, x4 | x2
1 = x3

2 = x2
3 = x2

4 , x
x1
2 = x2

2 ,

xx13 = x3x4, x
x2
3 = x4, x

x2
4 = x3x4〉

x3x2x1 7→ x1x
2
2x3

I 11 steps using “To the left".
I 5 steps using “From the left".

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Number of normal forms

Given a consistent power-commutator presentation, the set of
elements of G can be regarded as the set of normal words and the
group multiplication is defined by collection:

the product of two normal words is the word which results from
collecting their concatenation.

Order of G is the number of normal words.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Finite p-groups

Usually write power-commutator presentation.

Pc〈x1, . . . , xn | xpi =
n∏

k=i+1

x
α(i ,k)
k , 0 ≤ α(i , k) < p , 1 ≤ i ≤ n ,

[xj , xi] =
n∏

k=j+1

x
β(i ,j ,k)
k , 0 ≤ β(i , j , k) < p, 1 ≤ i < j ≤ n〉.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

An example

Let G be D16

Pc〈x1, x2, x3, x4 | x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1〉

Normal form for elements of G is

xα1
1 xα2

2 xα3
3 xα4

4

where 0 ≤ αi ≤ 1.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Power-commutator presentations: Additional properties

Assume that G , a d-generator p-group of order pn, has a consistent
power-commutator presentation on n generators, a1, . . . , an.

For both mathematical and computational reasons, the
power-commutator presentation for G has additional structure:

1 {a1, . . . , ad} is a generating set for G .

2 For each ak in {ad+1, . . . , an}, there is at least one relation
whose right hand side is ak . Exactly one of these relations is
taken as the definition of ak . Either:

I api = ak where i < k and ai is a pth power of some generator
or i ≤ d ,

I [aj , ai] = ak where i < j < k and i ≤ d .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

3. The power-commutator presentation has a weight function
defined on it: a generator is assigned a weight corresponding
to the stage at which it is added.

A function, ω, is defined on the generators of the
power-commutator presentation according to the following
rules:
(i) ω(ai) = 1 for i = 1, . . . , d ;

(ii) if the definition of ak is api = ak , then ω(ak) = ω(ai) + 1;

(iii) if the definition of ak is [aj , ai] = ak , then
ω(ak) = ω(aj) + ω(ai).

ω(an) is the class of G .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Example

Pc〈a1, a2, a3, a4, a5 | a2
1 = a4, a

2
2 = a3,

a2
3 = a5, a

2
4 = a5,

[a2, a1] = a3, [a3, a1] = a5〉

a3 has definition [a2, a1] and weight 2;

a4 has definition a2
1 and weight 2;

a5 has definition [a3, a1] and weight 3.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Why are such features desirable?

Because they permit more efficient algorithms to be developed,
both at construction and application stage.

For example, the weights of generators can be used to reduce the
amount of computation needed to decide whether or not a given
power-commutator presentation is consistent.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

How do we compute such presentations?

Given a finitely-presented group, how can we compute a polycyclic
presentation for a quotient?

A power-commutator presentation for a finite p-quotient may be
constructed using a p-quotient algorithm.

First such algorithm described by Macdonald (1974).

Focus on an algorithm developed by Havas, Newman and O’Brien:
H & N (1980), N & O’B (1996).

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

The p-quotient algorithm: A top-level outline

Let G be a p-group.

Algorithm uses a chain of normal subgroups

G = G0 ≥ G1 ≥ . . . ≥ Gk ≥ Gk+1 . . . ≥ Gc = 1

Works down this chain, using the power-commutator presentation
constructed for G/Gk to write down a presentation for G/Gk+1.

Write down a presentation for a group H∗ which is a downward
extension of H := G/Gk and has K := G/Gk+1 as a quotient.

Factor a normal subgroup from H∗ to obtain a presentation for K .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

A central series

p-quotient algorithm uses a variation of the lower central series
known as the lower exponent-p central series.

G = P0(G) ≥ . . . ≥ Pi−1(G) ≥ Pi (G) ≥ . . .

where Pi (G) = [Pi−1(G),G]Pi−1(G)p for i ≥ 1.

Observe Pi (G)/Pi+1(G) ≤ Z (G/Pi+1(G)) and Pi (G)/Pi+1(G) is
elementary abelian.

If Pc(G) = 1 and c is the smallest such integer then G has
exponent-p class c .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Basic properties of the central series

1 A group with exponent-p class c is nilpotent and has
nilpotency class at most c .

2 If θ is a homomorphism of G then Pi (G)θ = Pi (Gθ).

3 If N C G and the quotient G/N has class c then Pc(G) ≤ N.

4 If G is a finite p-group then P1(G) is the Frattini subgroup of
G .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Example

D16 = Pc〈a1, a2, a3, a4 | a2
1 = 1, a2

2 = a3a4,

a2
3 = a4, a

2
4 = 1,

[a2, a1] = a3, [a3, a1] = a4,

[a3, a2] = 1, [a4, a1] = 1,
[a4, a2] = 1, [a4, a3] = 1〉

Can read off terms of central series.

P0(G) = G

P1(G) = 〈a3, a4〉
P2(G) = 〈a4〉
P3(G) = 1

G has (nilpotency and exponent p-) class 3.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

A summary

Given a description of a group G , a prime p, and a positive integer
c , the p-quotient algorithm constructs a weighted consistent
power-commutator presentation for the largest p-quotient of G
having class c .

Description of G is usually a finite presentation.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

The initial step

First iteration of the p-quotient algorithm computes a consistent
power-commutator presentation for G/P1(G) and an epimorphism
from G onto G/P1(G).

Since P1(G) = [G ,G]Gp = Φ(G), G/P1(G) is the Frattini
quotient of G .

How do we compute G/P1(G)?

Fp-presentation is used to set up a homogeneous system of
equations over GF (p):

these equations are obtained by abelianising the relations, taking
exponents modulo p, and then writing the result additively.

Solve them to obtain rank of G/P1(G).

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

An example

Assume that the input finite presentation is:

{b1, . . . , b6 | b1b2 = b3, b2b3 = b4, b3b4 = b5,

b4b5 = b6, b5b6 = b1, b6b1 = b2}

and that p = 2.

Equations are the following:

b1 + b2 = b3 b2 + b3 = b4 b3 + b4 = b5

b4 + b5 = b6 b5 + b6 = b1 b1 + b6 = b2

Solve this system of equations by row-echelonisation to obtain the
following solutions:

b3 = b1 + b2, b4 = b1, b5 = b2, b6 = b1 + b2 .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Solution space has dimension 2 and a consistent power-commutator
presentation is

Pc〈a1, a2 : a2
1 = 1, a2

2 = 1, [a2, a1] = 1〉

Mod P1(G), b1 = a1, b2 = a2, b3 = a1a2,
b4 = a1, b5 = a2, b6 = a1a2.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

In general, if d is the dimension of the solution space, then the
output from the first iteration is power-commutator presentation
for G/P1(G):

Pc〈a1, . . . , ad | api = 1, [aj , ai] = 1, 1 ≤ i < j ≤ d〉

Mod P1(G), each bi can be expressed in terms of the aj .

{a1, . . . , ad} is a subset of {b1, . . . , bn}.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

The general iteration

Takes as input:
1 the finite presentation {X |R} for G ;
2 a consistent power-commutator presentation for the factor

group H = G/Pk(G);
3 an epimorphism θ : G 7→ H, specified by the images of the

generators of G .

The output of this iteration is:
1 a consistent power-commutator presentation for the factor

group K = G/Pk+1(G);
2 an epimorphism from G to K .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

The general iteration

Can be divided into 4 distinct steps.

Step 1. Write down presentation for p-covering group

Assume we have constructed a consistent power-commutator
presentation for H = G/Pk(G).

We now construct a group H∗ which has the property that
K = G/Pk+1(G) is a homomorphic image.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

We want H∗ to satisfy the following:

(i) H∗/Pk(H∗) is isomorphic to H.
(ii) G/Pk+1(G) is a homomorphic image of H∗.
(iii) H∗ is a d-generator group;
(iv) H∗ has class at most k + 1;
(v) H∗ is the largest group satisfying (i) to (iv).

H∗ is the p-covering group of H = G/Pk(G).

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Defining the p-covering group

Theorem
Let H be a d-generator p-group, let F be the free group of rank d ,
and let F/R ∼= H. Then the p-covering group, H∗, of H is
F/[R,F]Rp.

[R,F]Rp

F

R

R/[R,F]Rp is elementary abelian and can be viewed as a vector
space over GF (p).

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Construct pcp for p-covering group of G/Pk(G)

Look at output of k th stage of the algorithm.

This is a consistent power-commutator presentation,
say {a1, . . . , an : . . .}, for H := G/Pk(G).

Each of the n− d generators, ad+1, . . . , an, is defined by one of the
relations – it occurs as the right hand side of one of the relations.

Thus, there are n − d definitions that define the generators
ad+1, . . . , an.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

The remaining q relations are non-defining and have general form:

[aj , ai] = a
αj+1
j+1 . . . a

αn
n , 1 ≤ i < j ≤ n

or api = a
αi+1
i+1 . . . a

αn
n ,

where 1 ≤ i ≤ n and 0 ≤ αk < p.
To obtain presentation for H∗, we transform the power-commutator
presentation for H := G/Pk(G) as follows.

1 New generators an+1, . . . , an+q are introduced, one for each
non-defining relation.

2 Each of the remaining (non-definition) relations is modified by
inserting one of these generators to its right hand side.

3 Relations making these new generators central and of order p
are added.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Example
G := C2 × C2:

{ a1, a2 | [a2, a1] = 1,
a2
1 = 1
a2
2 = 1}

Add new generators or tails corresponding to a generating set for
R/[R,F]Rp and relations to make these central and of order p.

{ a1, a2, a3, a4, a5 | [a2, a1] = a3,

a2
1 = a4,

a2
2 = a5,

a2
j = 1, [aj , ai] = 1, 3 ≤ i < j ≤ 5}

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Example
Let H = D8.

{a1, a2, a3 | [a2, a1] = a3,

[a3, a1] = 1, [a3, a2] = 1,
a2
1 = 1, a2

2 = a3, a
2
3 = 1}

{a1, a2, a3, a4, . . . , a8 | [a2, a1] = a3,

[a3, a1] = a4,

[a3, a2] = a5

a2
1 = a6, a

2
2 = a3a7,

a2
3 = a8,

a2
j = 1, 4 ≤ j ≤ 8,

[aj , ai] = 1, 4 ≤ i < j ≤ 8}

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Step 2. Make the presentation for H∗ consistent

The presentation for H∗ obtained in this way on
{a1, . . . , an, an+1, . . . , an+q} is usually not consistent.

How do we make it consistent?

Wamsley (1974) and Vaughan-Lee (1984):

Certain associativity conditions suffice to ensure that a
power-commutator presentation is consistent.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Consistency Theorem

Theorem
A power-commutator presentation on {a1, . . . , an} is consistent if
the following are satisfied:

(akaj)ai = ak(ajai), 1 ≤ i < j < k ≤ n , i ≤ d ;

(ap−1
j aj)ai = ap−1

j (ajai), 1 ≤ i < j ≤ n , i ≤ d ;

(ajai)a
p−1
i = aj(aia

p−1
i), 1 ≤ i < j ≤ n ;

(aia
p−1
i)ai = ai (a

p−1
i ai), 1 ≤ i ≤ n .

How do we interpret this theorem? The words on each side of a
condition are collected, where the brackets indicate the subwords to
be replaced first in the collection.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

The consistency algorithm

This theorem provides the basis of an algorithm which takes as
input a power-commutator presentation for a p-group and modifies
it to produce a consistent one.

Consider the list of words obtained from these conditions: if each
pair of words collects to the same normal word, then the
presentation is consistent.

Otherwise, the quotient of the two different words obtained from
one of these conditions is formed and equated to the identity word.

This procedure gives a new relation which holds in the group.

Since the presentation for G/Pk(G) was consistent, this relation
only involves the new generators introduced.

We deduce that one of an+1, . . . , an+q is redundant.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Applying the tests

Consider the inconsistent presentation for G :

{ a1, a2, a3 | a2
1 = a2, a

2
2 = a3, a

2
3 = 1,

[a2, a1] = a3, [a3, a1] = 1, [a3, a2] = 1 } .

Apply the 4th of the tests to a3
1:

a3
1 = (a1a1)a1 = a2a1 = a1a2a3

but
a3
1 = a1(a1a1) = a1a2 .

Deduce the relation that a3 = 1 and, therefore, a
power-commutator presentation for G is

{ a1, a2 | a2
1 = a2, a

2
2 = 1, [a2, a1] = 1 } .

If we apply our consistency algorithm, it is now consistent.
Eamonn O’Brien Algorithms for polycyclic groups

artlogo

The p-covering group of D8

{a1, a2, a3, a4, . . . , a8 | [a2, a1] = a3, [a3, a1] = a4, [a3, a2] = a5

a2
1 = a6, a

2
2 = a3a7,

a2
3 = a8, a

2
j = 1, 4 ≤ j ≤ 8

[aj , ai] = 1, 4 ≤ i < j ≤ 8}

a3
2 = a2(a2a2) = a2a3a7

a3
2 = (a2a2)a2 = a3a7a2 = a3a2a7 = a2a3a5a7.

Hence a5 is trivial.

a2(a2a1) = a1a3a5a7a8

(a2
2)a1 = a1a3a4a7

Hence a4 = a5a8. Conclude a2
3 = a4a5.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

A consistent power-commutator presentation for the 2-covering
group of D8 is

{a1, a2, a3, a4, a6, a7 | [a2, a1] = a3,

[a3, a1] = a4,

[a3, a2] = 1
a2
1 = a6,

a2
2 = a3a7,

a2
3 = a4,

a2
j = 1, 4 ≤ j ≤ 7

[aj , ai] = 1, 4 ≤ j ≤ 7}

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Application of this algorithm provides us with a homogeneous
system of equations over GF (p).

Each equation is obtained by collecting each of the relevant test
words in the two ways indicated, equating the resulting normal
words, and reducing resulting relation as much as possible.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Step 3. Enforce defining relations

Know that K = G/Pk+1(G) is a homomorphic image of H∗.

We have as input an epimorphism θ : G 7→ H, specified by the
images of the generators of G .

Define a map
τ : G 7→ K : g 7→ (gθ)ug

where ug is an unknown element of Pk(G)/Pk+1(G).

Hence ug is central and of order p in K .

τ is a homomorphism and the images of the generators of G under
τ satisfy relators of G .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

θ : G 7→ H and τ : G 7→ K : g 7→ (gθ)ug
Let r be a relator of G .

Evaluate r in the images of the generators of G under τ .

Collect the result to give normal word in the generators
an+1, . . . , an+q of H∗.

The image rτ has form (rθ)ur where ur is a word in the ug .

Since r is a relator of G , and rθ = 1, deduce the relation ur = 1.

Hence, the images of the relations are collected to yield a
homogeneous system of equations over GF (p).

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Step 4. Elimination

Final step eliminates the redundancies which arise among the new
generators from consistency and imposition of defining relations.

Suppose that t new generators are added and that r independent
relations are found between them.

Then a consistent power-commutator presentation for the largest
class k + 1 quotient has t − r more generators than one for the
largest class k quotient.

All relations involve only an+1, . . . , an+t .

Eliminating r of these generators using the relations amounts to
solving a system of r linear equations in t unknowns over GF (p).

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Let M = 〈an+1, . . . , an+q〉. Let N be kernel of natural
homomorphism from K onto H; so N is homomorphic image of M.

To obtain pcp for K , compute the kernel of map from M to N.

Theorem
The result of collecting the set of words in {a1, . . . , an} listed in
Consistency Theorem in the power-commutator presentation for H∗

is a set S contained in M.

The result of evaluating the relators of G in the images of the
generators of G under θ in the power-commutator presentation for
H∗ is a set T contained in M.

Then N is isomorphic to M/〈S ∪ T 〉.

Since we have a vector space defined over GF (p), use Gaussian
Elimination to obtain a basis for N. If all the new generators are
eliminated, deduce that G/Pk(G) is the largest p-quotient of G .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Summary of procedure for one class

1 Add new generators (tails) to the presentation for H –
corresponding to a generating set for R/[R,F]Rp.

Add relevant relations to make these central and of order p.
So obtain presentation for H∗.

2 Make the resulting presentation consistent.

3 Impose the relations in R.

4 Eliminate the redundancies among the new generators from
resulting presentation.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

A sample calculation

Calculate the largest 2-quotient of G having finite presentation:

{ b1, b2, b3 | b1b2 = b3, b2b3 = b1, b3b1 = b2 } .

The solution space for G/P1(G) has dimension 2; b3 is eliminated
at the first stage, so a consistent power-commutator presentation
for G/P1(G) is

{ a1, a2 | a2
1 = 1, a2

2 = 1, [a2, a1] = 1 }

Mod P1(G), b1 = a1, b2 = a2, b3 = a1a2.

Now construct G/P2(G).

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

A cpcp for 2-covering group of C2 × C2 is:

{ a1, a2, a3, a4, a5 | [a2, a1] = a3,

a2
1 = a4,

a2
2 = a5,

a2
j = 1, [aj , ai] = 1, 3 ≤ i < j ≤ 5}

Now impose relations where

θ : b1 7→ a1,

b2 7→ a2,

b3 7→ a1a2

Collect the relations to get equations: for example,
b2b3 = b1 implies that a2a1a2 = a1 so a1a3a5 = a1.

a1a2 = a1a2, a1a3a5 = a1, a2a3a4 = a2

Deduce that a3 = a4 = a5.
Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Hence consistent power-commutator presentation for class 2
quotient is

{ a1, a2, a3 | a2
1 = a3, a

2
2 = a3, [a2, a1] = a3 } .

G has Q8 as a quotient.

If we now seek to construct G/P3(G), all new generators
introduced are later eliminated.

Therefore, largest 2-quotient of G is Q8.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Why are such presentations useful?

I If we have a consistent power-commutator presentation for G ,
we can solve the word problem for G .

Given two arbitrary words w1 and w2 in the generators of G ,
compute normal forms for each of w1 and w2. If normal forms
are identical, then the two words are identical.

I Such a presentation exhibits a normal series {Gk} for G . Many
of the algorithms developed to compute properties of p-groups
work down a chain of factor groups.

General paradigm: Solve the problem for G/Gk .

Now extend to solve the problem for G/Gk+1.

Example: determine the number of conjugacy classes of G .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Applications

I The Burnside Problem
I Proving groups infinite

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

The Burnside Problem

One motivation for the development of a p-quotient algorithm
came from study of long-standing Burnside Problem.

Burnside (1902) posed two questions:
(i) Given a finitely-generated group in which every element has

finite order, is the group necessarily finite?

(ii) Let B(d , n) denote the largest d-generator group in which
every element has exponent dividing n: that is, gn = 1 for all
g ∈ G . Is B(d , n) finite? If so, what is its order?

Burnside: B(d , 2) is finite, abelian, and has order 2d .

Golod (1964): using work with Šafarevič, answer to (i) is “no".

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Levi & van der Waerden (1933): the order of B(d , 3) is 3d+(d2)+(d3).

Tobin (1954): order of B(2, 4) is 212.

Sanov (1940) and M. Hall (1958): all groups of exponent 4 and 6
are finite.

Adian & Novikov (1968): “no" for all odd n ≥ 4381.

Other improvements.

Grün (1940) posed related problem, now known as Restricted
Burnside Problem:

Problem
Is there a largest finite quotient, R(d , n), of B(d , n) and, if so,
what is its order?

Zel’manov (1991): There is always a largest finite quotient.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Implementations of the p-quotient algorithm have been used to
determine the order and compute power-commutator presentations
for various of these groups.

Group Order Authors
B(3, 4) 269 Bayes, Kautsky & Wamsley (1974)
R(2, 5) 534 Havas, Wall & Wamsley (1974)
B(4, 4) 2422 Alford, Havas & Newman (1975)
R(3, 5) 52282 Vaughan-Lee (1988); N & O’B (1996)
B(5, 4) 22728 Newman & O’B (1996)
R(2, 7) 720416 O’B & Vaughan-Lee (2002)

Survey article on the (Restricted) Burnside problem:
Vaughan-Lee & Zel’manov (1999).

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Proving groups infinite

Golod-Šafarevič: if H is a non-trivial finite p-group, then
r(H) > d(H)2/4.

Let G be a group and p prime. Let P1(G) = [G ,G]Gp and
P2(G) = [P1(G),G]P1(G)p. Then G/P1(G) and P1(G)/P2(G) are
elementary abelian, of ranks dp(G) and ep(G) respectively.
Newman (1990) proved the following.

Theorem

Let G be a group with a finite presentation on b generators and r
relators. For some prime p, let d = dp(G) and e = ep(G). If any of
the following conditions hold
(i) r − b ≤ d2/4− d ;
(ii) r − b < d2/2 + (−1)pd/2− d − e;
(iii) r−b ≤ d2/2+(−1)pd/2−d−e+(e−(−1)pd/2−d2/4)d/2;
then G has arbitrarily large finite p-quotients; so is infinite.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

The generalised Fibonacci groups

Gn(m, k) = 〈 x1, . . . , xn | xixi+m = xi+k (i = 1, . . . , n) 〉

where the subscripts are taken modulo n.

Fibonacci groups where m = 1, k = 2: introduced by Conway
(1965).

For n ≥ 10, all such groups infinite.

Newman (1990) proved G9(1, 2) infinite using previous theorem.

Remaining cases: G9(1, 3) and G9(1, 4)

Cavicchiolli, O’B and Spaggiari (2008) study these.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

The p-group generation algorithm

Description of the algorithm: O’Brien (1990), Newman (1977).

The p-group generation algorithm calculates (presentations for)
particular extensions, immediate descendants, of a finite p-group.

Let G be a d-generator finite p-group of class c .

H is a descendant of G if H has generator number d and
H/Pc(H) ∼= G .

A group is an immediate descendant of G if it is a descendant of G
and has class c + 1.

Example

D8 = Pc〈 a1, a2, a3 | [a2, a1] = a3 〉 is immediate descendant of
C2 × C2. Also D16 is descendant of C2 × C2.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Specification of input and output

Algorithm takes as input a d-generator p-group, G , and a
description of the automorphism group of G .

It produces as output a complete and irredundant list of the
immediate descendants of G together with a description of their
automorphism groups.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

G is a p-quotient of F/R and is described by a power-commutator
presentation.

A consistent power-commutator presentation is written down for
the p-covering group, F/R∗, of G , where R∗ = [R,F]Rp.

Theorem
Every immediate descendant of G is isomorphic to a factor group of
F/R∗.

R/R∗ is elementary abelian and is the p-multiplicator of G .

The nucleus of G is Pc(G ∗).

An allowable subgroup is a subgroup of R/R∗ which is the kernel of
a homomorphism from G ∗ onto an immediate descendant of G .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

The allowable subgroups are characterised as follows.

Lemma
A subgroup is allowable if and only if it is a proper subgroup of the
p-multiplicator of G which supplements the nucleus.

R∗ = [R,F]Rp

U ∩ N

N U

F

R

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Example
The 2-covering group G ∗ of G := D16 is

Pc〈 a1, . . . , a4, a5, a6, a7 | a2
1 = a6, a

2
2 = a3a4a7,

a2
3 = a4a5, a

2
4 = a5, [a2, a1] = a3,

[a3, a1] = a4, [a4, a1] = a5〉.

The 2-multiplicator is 〈a5, a6, a7〉 and the nucleus is 〈a5〉.

The subgroups 〈a6, a7〉, 〈a5a6, a7〉, 〈a6, a5a7〉 are allowable and the
corresponding immediate descendants have order 32.

The subgroup 〈a5a6, a5a7〉 is also allowable, but the resulting
quotient is isomorphic to the quotient of G ∗ by 〈a6, a5a7〉.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

On taking factor groups of G ∗ by all allowable subgroups a
complete list of immediate descendants is obtained.

This list usually contains redundancies.

To eliminate these redundancies, an obvious equivalence relation is
defined on the allowable subgroups.

Definition
Two allowable subgroups U1/R

∗ and U2/R
∗ are equivalent if and

only if their quotients F/U1 and F/U2 are isomorphic.

A complete and irredundant set of immediate descendants of G can
be obtained by factoring G ∗ by one representative of each
equivalence class.

Definition is useful only because the equivalence relation can be
given a different characterisation by using the automorphism group
of G .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Action of automorphisms of G

An extension of each automorphism, α, of G to an automorphism,
α∗, of G ∗ is defined.

Aut(G) induces a linear action on R/R∗.
For α ∈ Aut(G), extend it to automorphism α∗ of G ∗.

If G is generated by a1, a2, . . . , ad then we choose preimages
x1, x2, . . . , xd in G ∗ for a1, a2, . . . , ad , and preimages y1, y2, . . . , yd
in G ∗ for a1α, a2α, . . . , adα.

Then x1, x2, . . . , xd generate G ∗.

Define α∗ by setting xiα
∗ = yi for i = 1, 2, . . . , d .

Lemma
The action of α∗ when restricted to R/R∗ is uniquely determined
by α, and α∗ induces a permutation of the allowable subgroups.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Theorem
The equivalence classes of allowable subgroups are exactly the orbits
of the allowable subgroups under the action of these permutations.

Hence, to solve the isomorphism problem, we determine orbits of
supplements to N/R∗ in R/R∗ under the induced action of Aut(G).

Designate one element of each orbit as its representative and factor
G ∗ by each representative in turn to obtain a complete and
irredundant list of immediate descendants of G .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

An example

We construct the immediate descendants of G := C2 × C2

Pc〈 a1, a2 | a2
1 = 1, a2

2 = 1, [a2, a1] = 1 〉.

Its 2-covering group G ∗ is

Pc〈 a1, . . . , a5 | a2
1 = a4, a

2
2 = a5, [a2, a1] = a3 〉

where we list only non-trivial relations.

The 2-multiplicator 〈a3, a4, a5〉 is elementary abelian and it
coincides with the nucleus.

Hence every proper subgroup of the 2-multiplicator supplements the
nucleus and so is allowable.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

The automorphism group of G is isomorphic to GL(2, 2).

Choose as its generators

α1 : a1 7−→ a1a2 , α2 : a1 7−→ a2
a2 7−→ a2 a2 7−→ a1 .

Extensions of these automorphisms to G ∗ are:

α∗1 : a3 7−→ a3 , α∗2 : a3 7−→ a3
a4 7−→ a3a4a5 a4 7−→ a5
a5 7−→ a5 a5 7−→ a4 .

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Construct the immediate descendants of order 8.

The 7 allowable subgroups of rank 2 are

〈a4, a5〉, 〈a4, a3a5〉, 〈a3a4, a5〉, 〈a3, a5〉, 〈a3, a4a5〉, 〈a3, a4〉, 〈a3a4, a3a5〉

The orbits of the allowable subgroups induced by α∗1 and α∗2 are

{〈a4, a5〉, 〈a4, a3a5〉, 〈a3a4, a5〉}, {〈a3a4, a3a5〉}, {〈a3, a5〉, 〈a3, a4a5〉, 〈a3, a4〉}.

Choose one rep from each orbit and factor it from G ∗ to obtain as
immediate descendants:

Pc〈 a1, a2, a3 | [a2, a1] = a3 〉
Pc〈 a1, a2, a3 | a2

1 = a3, a
2
2 = a3, [a2, a1] = a3 〉

Pc〈 a1, a2, a3 | a2
1 = a3 〉.

These are: D8, Q8 and C2 × C4, respectively.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Now construct immediate descendants of C2 × C2 having order 16.

Generators for the seven cyclic allowable subgroups are

a3, a
δ
3a
γ
4a5, a

ζ
3a4,

where each of δ, γ, ζ is 0 or 1.

The orbits of the allowable subgroups induced by α∗1 and α∗2 are

{〈a3〉}, {〈a5〉, 〈a3a4a5〉, 〈a4〉}, {〈a4a5〉, 〈a3a5〉, 〈a3a4〉}.

We choose 1 rep from each orbit to obtain 3 immediate
descendants of order 16.
For example, factor G ∗ by a3 to obtain C4 × C4:

Pc〈 a1, a2, a3, a4 | a2
1 = a3, a

2
2 = a4 〉

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Now construct immediate descendants of C2 × C2 having order 32.

Factor G ∗ by trivial allowable subgroup:

Pc〈 a1, . . . , a5 | a2
1 = a4, a

2
2 = a5, [a2, a1] = a3 〉

where we list only non-trivial relations.
So C2 × C2 has 1 immediate descendant of order 25.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Practical issues

Central limitation: # of allowable subspaces and consequent size of
orbits.

Let’s focus on p-class 2 for a moment.

G = Zd
p . M := R/R∗ has rank m :=

(d+1
2

)
as vector space.

Aim: Construct all immediate descendants of order p(d+k).

All subspaces of dimension m − k are allowable.

of such subspaces is O(p(m−k)k), precisely
∏k−1

i=0 (pm−pi)∏k−1
i=0 (pk−pi)

Example

Let G = Z6
2, elementary abelian of order 26. M has dimension 21.

To construct immediate descendants of order 28, must construct
orbits on 733006703275 19-dimensional subspaces.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Exploit characteristic structure

G = Zd
p acting on V , d-dimensional space.

A = Aut(G) ∼= GL(d, p) and acts on M.

Since M is a vector space of degree m over GF(p), it is an
A-module.

In fact M = V1 ⊕ V2, where V1 has dimension
(d
2

)
and V2 has

dimension d .

Action of A on V1 is the alternating square representation Λ2(V)
for V = GF(p)d .

Action on V2 is as GL(V).

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

I We consider orbits for action of A on V1.

I For each orbit rep U, compute its stabiliser S in A.

I Now compute orbits of M/U under S .

More generally given G p-group, A := Aut(G). M is a A-module.
Apply Meataxe to M to identify submodules. Process chain of
submodules.

Example

Let G = Z6
2, elementary abelian of order 26. V1 has dimension 15.

First step: construct orbits on 178940587 13-dimensional
subspaces.

Second step: consider orbits of 10795 2-dimensional spaces in
8-dimensional space.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

A requirement

We need to know the automorphism group of G , the input group to
the algorithm.

A description of the aut gp of an immediate descendant is also
returned by the algorithm.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

The SmallGroups project

Classification: a topic of long-standing interest.

Cayley (1850s): initiated classification of groups.

Hölder (1890s): groups of square-free order, etc.

Most classifications: by hand, case-by-case, prone to error.

Besche, Eick, and O’B (2000): The “millennium project".
Determination / count of groups of order up to 2000 and of “small"
composition length.

Many extensions: Dietrich, Eick, Horn and others. Most known up
to 20000.

Output available as SmallGroups

Most algorithms part of “grpconst"

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Asymptotics

Let gnu(n) be number of groups of order n.

Pyber (1993)

gnu(n) ≤ n(2/27+o(1))µ(n)2

µ(n) is largest exponent in the prime-power factorisation of n.

Higman (1960): lower bound for p-class 2 groups of order pn is
p2n3/27.

Sims (1965): upper bound for groups of order pn

gnu(pn) is p2n3/27+O(n8/3).

Blackburn, Neumann & Venkataraman: 8/3 can be reduced to 5/2.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

The problem: “Almost all" groups are p-groups of class 2

210 #
class 2 48 803 495 722
others 423 173 058

Higman (1960): lower bound for p-class 2 of order pn is p2n3/27

Sims (1965): gnu(pn) is p2n3/27+O(n8/3).

Higman: Lower bound for # of orbits of subspaces in Λ2(V)⊕ V
under action of GL(V).

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

ClassTwo

Eick & O’Brien (1999): precise version of this for given d and p.

Consequence: can count these groups using Cauchy-Frobenius
Theorem to count fixed-points for GL(d, p) conjugacy class reps,
so deduce # of orbits.

Record log10 of the # for p = 2, 3, 5.

p = 2 p = 3 p = 5
p8 4 5 7
p9 6 9 13
p10 10 15 22
p11 15 22 33
p12 21 32 46

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Groups of order p6 and p7

Newman, O’B, Vaughan-Lee (2004)

O’B, Vaughan-Lee (2005)

p6: various earlier classifications including Easterfield (1940),
James (1980).

Classifications available in GAP and Magma as part of SmallGroups

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Groups of order pk for k = 1, 2, . . . , 6

p = 2 p = 3 p ≥ 5
p 1 1 1
p2 2 2 2
p3 5 5 5
p4 14 15 15
p5 51 67 u

p6 267 504 v

u = 2p + 61 + 2 gcd(p − 1, 3) + gcd(p − 1, 4)

v = 3p2+39p+344+24 gcd(p−1, 3)+11 gcd(p−1, 4)+2 gcd(p−1, 5)

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Order p7

p = 2 p = 3 p = 5
2328 9310 34297

For p > 5 the number of groups of order p7 is

3p5 + 12p4 + 44p3 + 170p2 + 707p + 2455
+(4p2 + 44p + 291) gcd(p − 1, 3)

+(p2 + 19p + 135) gcd(p − 1, 4)

+(3p + 31) gcd(p − 1, 5)

+4 gcd(p − 1, 7) + 5 gcd(p − 1, 8)

+ gcd(p − 1, 9)

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Classification of p-groups for arbitrary p

Classify groups of order pn for n = 6, 7 and p > 5 by classifying
corresponding nilpotent Lie rings of order pn.

Lazard correspondence: isomorphism between the category of
nilpotent Lie rings with order pn and the category of finite p-groups
with order pn provided p ≥ n.

Use analogue of p-group generation algorithm to classify the Lie
rings.

Use the Baker-Campbell-Hausdorff formula to translate Lie ring
presentations into group presentations.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Higman’s 1960 PORC conjecture

Conjecture
Fix n. The number of groups of order pn is Polynomial On Residue
Classes.

Higman (1960): the number of groups of order pn whose Frattini
subgroup is elementary abelian and central is PORC.

Evseev (2008): the number of isomorphism classes of groups of
order pn whose Frattini subgroup is central, considered as a
function of the prime p, is PORC.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Variants of the p-group generation algorithm

I Automorphism group
I Isomorphism testing

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

Current implementations

ANU p-Quotient Program: C code; p-quotient algorithm, p-group
generation algorithm, isomorphism testing, aut gp.

Program is available
I as a share package with GAP;
I as part of Magma;

A discussion of implementation aspects of the p-quotient algorithm
in the GAP language: Celler, Newman, Nickel & Niemeyer (1993);
also NNN (1997).

Implementation is also in GAP language.

Some of the algorithms also implemented in Magma language.

Eamonn O’Brien Algorithms for polycyclic groups

artlogo

References

Papers available from www.math.auckland.ac.nz/˜obrien

Derek F. Holt, Bettina Eick and E.A. O’Brien, Handbook of
Computational Group Theory, 2005.

Charles C. Sims, Computing with finitely-presented groups, 1994.

Eamonn O’Brien Algorithms for polycyclic groups

