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Chapter 1

Introduction to the SingerAlg Package

1.1 Aims of the SingerAlg Package

The mathematical aims of the package are

• to document the computational results used in the papers [BHHK20] and [BHHK21],

• to give access to GAP and Julia [BEKS17] implementations of the relevant functions (see
Chapter 3), and

• to give access to the known data about the Singer algebras A[q,z] with 1 ≤ z ≤ 10000 (see
Section 1.2 for the background and Chapter 4 for the database).

From the viewpoint of programming, the package provides examples how the GAP/Julia integration
via the JuliaInterface package [BGH21] can be used (see Section 1.3). From the viewpoint of teach-
ing, some aspects of this package and of the papers mentioned above would be suitable for a course in
elementary number theory, with accompanying computational experiments. Note that one can neglect
the representation theoretic background, and restrict the needed theory to knowledge of the group of
prime residues modulo an integer, g.c.d. computations, and linear algebra; for examples, see Chapter
2, in particular Section 2.2, and Chapter 4.

1.2 Theoretical Background: Singer algebras

Let z be a positive integer, and q ∈ {2,3, . . . ,z + 1} be coprime to z. Let n = ordz(q) denote the
multiplicative order of q modulo z, and let e = (qn− 1)/z. We define the Singer algebra A[q,z] as
the free Z-module spanned by (b0,b1, . . . ,bz) where the multiplication is given by bi ·b j = bi+ j if the
pointwise sum of the q-adic expansions of ie and je does not exceed q−1 (that is, there is no carry in
the q-adic addition of ie and je), and bi ·b j = 0 otherwise.

Another interpretation of A[q,z] and the basis of bi is as follows (see [BHHK21, Section 1]).
Consider the factor of the polynomial ring R = Z[X1,X2, . . . ,Xn] modulo the ideal I spanned by
Xq

1 ,X
q
2 , . . . ,X

q
n . Then A[q,z] is isomorphic to a subalgebra of this algebra, via mapping bk to the

monomial xi1
1 xi2

2 · · ·xin
n , where i1 +qi2 + · · ·+qn−1in = ke and xi = Xi + I. This interpretation motivates

the terms “monomials” for the bi and “degree” for the sum i1 + i2 + · · · in; these terms occur in the
names and descriptions of several functions of this package.

The algebra A[q,z] is called A(q,n,e) and A[q,n,z] in [BHHK20] and [BHHK21], where n is
required to be a multiple of orde(q) or ordz(q), respectively, and q can be any integer larger than 1
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that is coprime to e or z, respectively. For the purposes of this GAP package, it is more suitable to
consider the parameters q and z, as introduced above. In particular, these numbers are small for low
dimensional algebras, whereas the number e can be quite large, see Section 2.2.1.

Note that A[q,n,z] is isomorphic to A[q,ordz(q),z] for each multiple n of ordz(q), by [BHHK21,
Lemma 7.1], and A[q,z] is isomorphic to A[q′,z] whenever q and q′ generate the same subgroup of
prime residues modulo z, by [BHHK21, Lemma 7.5].

For any prime integer p, A[q,z]p =
⊕

0≤i≤zFpbi denotes the reduction of A[q,z] modulo p. We call
(b0,b1, . . . ,bz) the canonical basis of A[q,z] and A[q,z]p, and denote it by B(A[q,z]) and B(A[q,z]p),
respectively. Note that the i-th basis vector is B(A[q,z])i = bi−1.

The name “Singer algebra” was chosen because these algebras occur in the following context.
Let p be a prime, n be a positive integer, F be the field with pn elements, and F1 be the prime field

of F .
We choose an element σ of order pn−1 in the group GL(n,F1), a so-called Singer cycle, let e be

a divisor of pn−1, and set z = (pn−1)/e.
The cyclic group H = 〈σ z〉 of order e acts naturally on the elementary abelian group P =

〈x1,x2, . . . ,xn〉 of order pn. This action extends to the group algebra FP, and we may consider the
algebra (FP)H of fixed points in FP under this action. As is described in [BHHK21, Section 2], we
can construct an F-basis of FP that consists of eigenvectors for the action of H. This yields a basis
of (FP)H , for which the multiplication rules stated above for A[q,z] can be derived. In other words,
(FP)H is isomorphic with F⊗F1 A[q,z]p.

1.3 GAP-Julia Integration in the SingerAlg Package

If the SingerAlg package is used together with the GAP package JuliaInterface [BGH21] then both
GAP and Julia implementations of most of the package’s functions are available. For example, there
are the functions LoewyLengthGAP (3.1.6) and LoewyLengthJulia (3.1.6) for computing the Loewy
length of a Singer algebra from its defining parameters. There is also the function LoewyLength
(3.1.6), which uses one of the two implementations. By default, the Julia code is used for computa-
tions if JuliaInterface is available, and the GAP code is used by default if not.

Note that some of the Julia functions call GAP functions. For example, the factorization of
large integers in GAP and its package FactInt [Koh19] are (currently) faster than the corresponding
functions from Julia’s Primes package. In order to achieve a “fair” comparison of the runtimes in
GAP and Julia, we call the GAP function Factors (Reference: Factors) in both situations.

Note also that Julia objects are stored as the values of GAP attributes such as
LoewyStructureInfoJulia (3.1.11), and some Julia functions take a GAP object as an argument,
in order to benefit from its attribute values if applicable.

One can also use the Julia functions in a Julia session, by loading the file julia/SingerAlg.jl
into Julia with include; afterwards the Julia functions are accessible in the Julia module
"SingerAlg". This approach requires the Julia package GAP.jl (and thus a Julia compatible in-
stallation of GAP).

1.4 Installation of the SingerAlg Package

The SingerAlg package itself consists only of GAP (and Julia) code, it is in principle enough to
unpack the archive in a pkg directory of a GAP installation, and then to load the package into the
GAP session.
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However, if one wants to use the Julia implementations of the package’s functions then the
GAP package JuliaInterface [BGH21] must be available. In particular, the GAP installation must
be done using Julia’s garbage collector in this case; one can check this by looking at the value of
GAPInfo.KernelInfo.GC: If it is "Julia GC" then JuliaInterface can be loaded (provided it is
installed), otherwise Julia features are not available.

The easiest way to install GAP with Julia’s garbage collector is to install Julia (see
https://julialang.org/downloads/), then ask Julia’s package manager to download and install
GAP (by entering using Pkg; Pkg.add( "GAP" ) at the Julia prompt), and then to use the Singer-
Alg package with this version of GAP.

For one function of the package (SingerAlg.ProposedPermutationIsomorphism (3.4.2)), the
interface to [McK90] provided by GAP’s GraPe package [Soi19] is needed; if one wants to use this
function –see for example Section 4.3.4– then GraPe must be installed.

1.5 Acknowledgements

The development of this GAP package has been supported by the SFB-TRR 195 “Symbolic Tools in
Mathematics and their Applications” (Project-ID 286237555, since 2017).

Thanks to the coauthors of the papers [BHHK20] and [BHHK21], Erzsébet Horváth, László
Héthelyi, and Burkhard Külshammer, for many discussions and suggestions that contributed to this
package.

Thanks to Bettina Eick for hints about invariants, see Section 3.5.

https://julialang.org/downloads/
https://www.computeralgebra.de/sfb/
https://www.computeralgebra.de/sfb/


Chapter 2

Tutorial for the SingerAlg package

This chapter shows small introductory computations with the functions of the package. More examples
can be found in Section 4.3.

In order to force that the examples in this manual consist only of ASCII characters, we set the
user preference DisplayFunction of the package (see Section 3.2.3) to the value "Print". This is
necessary because the LATEX and HTML versions of GAPDoc documents do not support non-ASCII
characters.

Example
gap> origpref:= UserPreference( "SingerAlg", "DisplayFunction" );;
gap> SetUserPreference( "SingerAlg", "DisplayFunction", "Print" );

2.1 How to Study Singer Algebras

The definition of Singer algebras given in Section 1.2 suggests that GAP’s tools for algebras defined
by structure constants (see Section (Reference: Constructing Algebras by Structure Constants))
might be suitable for them, and Section 3.1 takes this approach.

However, the fact that the canonical bases of Singer algebras have a very special structure –the
product of two basis elements is either another basis element or zero– implies that many interesting
subalgebras and subspaces can be described in terms of subsets of the canonical basis. Thus many
questions can be answered using combinatorial computations, without the need to add or multiply or
even create elements of the algebra. Section 3.3 lists functions where this approach is taken.

Most of the functions of the SingerAlg package do not involve objects that represent algebraic
structures. In particular, the Julia code does not introduce such objects.

2.2 Number Theoretic Caveats

When one deals with Singer algebras A[q,z] = A(q,n,e), with qn− 1 = ez, seemingly trivial compu-
tations can become expensive even if the dimensions (equal to z+ 1) and the parameters q and n are
small, because the number e can still be huge; see Section 2.2.1 for examples. The point is that there
are situations where one can (and then should) avoid dealing with large numbers, but there are also
situations where this is not possible. Since GAP knows just one type of integers, there is no need
to write different GAP code for computations with small or large integers. This is different in Julia,
where one can (and wants to) write special code for computing with small integers whenever one
knows in advance that there will be no overflow.
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Other computational problems arise from factorization questions. One instance is the computation
of the multiplicative order of q modulo z or e; an example where calling OrderMod( q, e ) runs into
problems is shown in the documentation of OrderModExt (3.6.2). Here the point is that one should
enter a known multiple of the desired multiplicative order as the third argument of OrderModExt
(3.6.2) whenever this is possible.

Also primality tests in the context of natural questions about Singer algebras may run into prob-
lems, see Section 2.2.2.

2.2.1 Large values of e

Computational examples in the study of A(q,n,e) often avoid dealing with e because this number can
be very large when the algebra itself has small dimension. Let us look at the database of A[q,z] with
z≤ 10000.

Example
gap> cand:= AllSingerAlgebraInfos( "e", e -> e > 2^64 );;
gap> Length( cand );
543989
gap> cand:= AllSingerAlgebraInfos( "e", e -> e > 10^10000 );;
gap> Length( cand );
12
gap> SortParallel( List( cand, r -> r.e ), cand );
gap> cand[ Length( cand ) ];
rec( LL := 3, d := [ 1, 9438 ], dec := 0, diff := 0,

e := <integer 646...617 (12666 digits)>, isom := [ 9439, 2 ],
m := 99099, n := 9438, q := 22, vprime := [ 1, 9438, 1 ], z := 9439

)

We see that for the majority of entries in the database, the value of e cannot be represented by a
64-bit integer, and that the largest value of e in the database is bigger than 1012666.

When one deals with A[q,z], one of the basic tasks is to compute the q-adic coefficients of some
multiple of e, i. e., to write ke = ∑

n
i=0 aiqi, with 0≤ ai < q. By [BHHK21, Remark 2.23 (iv)], one can

compute the ai without dealing explicitly with numbers of the magnitude of e.
Example

gap> q:= 22;; n:= 9438;; z:= 9439;;
gap> e:= (q^n-1)/z;;
gap> coeffs1:= CoefficientsQadic( e, q );;
gap> coeffs2:= CoefficientsQadicReversed( 1, z, q, n );;
gap> Length( coeffs1 );
9436
gap> Length( coeffs2 );
9438
gap> coeffs1 = Reversed( coeffs2 ){[1..9436]};
true

Note that CoefficientsQadicReversed (3.1.12) is several times faster than
CoefficientsQadic (Reference: CoefficientsQadic); the two functions in question are inter-
preted GAP functions. The Julia variant Julia.SingerAlg.CoefficientsQadicReversed is
faster than the GAP function CoefficientsQadicReversed (3.1.12), whereas the Julia variant
Julia.SingerAlg.CoefficientsQadic needs about the same time as CoefficientsQadic
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(Reference: CoefficientsQadic). Note that computations with small integers are much faster in Julia
than in GAP, but that the Julia data type of big integers is not supported well.

2.2.2 Primality tests

Suppose we want to check whether [BHHK21, Thm. 4.3 (i)] yields that the Loewy length of a given
Singer algebra A(q,n,e) is equal to the upper bound bn(q−1)/m(q,e)c+1; for that, we have to decide
whether e/2 is a prime power.

In the case of (q,z) = (8390,21), GAP prints a message and then nothing happens for a long time.
Example

ap> z:= 8390;
8390
gap> r:= OneSingerAlgebraInfo( "z", z, "q", 21 );;
gap> LogInt( r.e, 10 );
550
gap> IsEvenInt( r.e );
true
gap> IsPrimePowerInt( r.e/2 );
#I Straightforward Fermat-Lucas primality proof failed on 6096...
[...]

(Fortunately, we need not check whether e/2 is a prime power; if we look into the proof of
[BHHK21, Thm. 4.3 (i)], we find out that a cheaper criterion can be used.)

2.3 Some Examples from the Papers

We show the examples of Singer algebras A(q,n,e) that appear in [BHHK20]. See Section 1.2 for the
meaning of the term “monomial”, and Section DisplaySingerMonomials (3.2.1) for the meaning of
the output that is shown.

(q,n,e) = (3,4,5), [BHHK20, Example 3.2]:
Example

gap> DisplaySingerMonomials( 3, 4, 5 );
A[3,4,16]

0 | 1 | 0
1 | 6 | 1 2 3 6 9 11
2 | 7 | 4 5 7 8 12 13 15
3 | 2 | 10 14
4 | 1 | 16
gap> DisplaySingerMonomials( 3, 4, 5 : m );
A[3,4,16]

0 | 1 | (0,0,0,0)
1 | 6 | (0,0,2,1) (0,1,0,1) (0,2,1,0) (1,0,0,2) (1,0,1,0) (2,1,0,0)
2 | 7 | (0,1,2,2) (0,2,0,2) (1,1,1,1) (1,2,2,0) (2,0,1,2) (2,0,2,0)

| | (2,2,0,1)
3 | 2 | (1,2,1,2) (2,1,2,1)
4 | 1 | (2,2,2,2)

(q,n,e) = (13,2,8), [BHHK20, Example 3.3]:
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Example
gap> DisplaySingerMonomials( 13, 2, 8 );
A[13,2,21]

0 | 1 | 0
1 | 4 | 1 2 5 13
2 | 5 | 3 4 7 10 18
3 | 4 | 6 9 12 15
4 | 5 | 8 11 14 17 20
5 | 2 | 16 19
6 | 1 | 21
gap> DisplaySingerMonomials( 13, 2, 8 : m );
A[13,2,21]

0 | 1 | ( 0, 0)
1 | 4 | ( 0, 8) ( 1, 3) ( 3, 1) ( 8, 0)
2 | 5 | ( 1,11) ( 2, 6) ( 4, 4) ( 6, 2) (11, 1)
3 | 4 | ( 3, 9) ( 5, 7) ( 7, 5) ( 9, 3)
4 | 5 | ( 4,12) ( 6,10) ( 8, 8) (10, 6) (12, 4)
5 | 2 | ( 9,11) (11, 9)
6 | 1 | (12,12)

(q,n,e) = (5,4,78), [BHHK20, Example 5.1]:
Example

gap> DisplaySingerMonomials( 5, 4, 78 );
A[5,4,8]

0 | 1 | 0
1 | 3 | 1 2 5
2 | 3 | 3 4 7
3 | 1 | 6
4 | 1 | 8
gap> DisplaySingerMonomials( 5, 4, 78 : m );
A[5,4,8]

0 | 1 | (0,0,0,0)
1 | 3 | (0,3,0,3) (1,1,1,1) (3,0,3,0)
2 | 3 | (1,4,1,4) (2,2,2,2) (4,1,4,1)
3 | 1 | (3,3,3,3)
4 | 1 | (4,4,4,4)

(q,n,e) = (11,2,4), [BHHK20, Example 5.2]:
Example

gap> DisplaySingerMonomials( 11, 2, 4 );
A[11,2,30]

0 | 1 | 0
1 | 3 | 1 3 11
2 | 5 | 2 4 6 14 22
3 | 5 | 5 7 9 17 25
4 | 5 | 8 10 12 20 28
5 | 3 | 13 15 23
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6 | 3 | 16 18 26
7 | 3 | 19 21 29
8 | 1 | 24
9 | 1 | 27

10 | 1 | 30
gap> DisplaySingerMonomials( 11, 2, 4 : m );
A[11,2,30]

0 | 1 | ( 0, 0)
1 | 3 | ( 0, 4) ( 1, 1) ( 4, 0)
2 | 5 | ( 0, 8) ( 1, 5) ( 2, 2) ( 5, 1) ( 8, 0)
3 | 5 | ( 1, 9) ( 2, 6) ( 3, 3) ( 6, 2) ( 9, 1)
4 | 5 | ( 2,10) ( 3, 7) ( 4, 4) ( 7, 3) (10, 2)
5 | 3 | ( 4, 8) ( 5, 5) ( 8, 4)
6 | 3 | ( 5, 9) ( 6, 6) ( 9, 5)
7 | 3 | ( 6,10) ( 7, 7) (10, 6)
8 | 1 | ( 8, 8)
9 | 1 | ( 9, 9)

10 | 1 | (10,10)

2.4 Example: The case n = 4

For fixed (small) n, we are interested in the question for which values of q and z the upper bound
bn(q−1)/m(q,e)c+1 on the Loewy length of A[q,n,z] is not attained.

If n≤ 3 holds then we know by [BHHK20, Cor. 7.1] that the upper bound is always attained. For
n = 5, the database of Singer algebras contains a few examples where the bound is not attained (cf.
[BHHK21, Remark 7.13]).

Example
gap> expls:= AllSingerAlgebraInfos( "n", 5,
> r -> r.LL = Int( r.n * ( r.q-1 ) / r.m ) + 1, false );;
gap> Length( expls );
13
gap> expls[1];
rec( LL := 7, d := [ 43, 408 ], dec := 0, diff := 1, e := 407592814,

isom := [ 1353, 223 ], m := 148, n := 5, q := 223,
vprime := [ 1, 261, 375, 395, 260, 61, 1 ], z := 1353 )

From now on, we fix n = 4. The upper bound is attained for all relevant entries in the database.
Example

gap> OneSingerAlgebraInfo( "n", 4,
> r -> r.LL = Int( r.n * ( r.q-1 ) / r.m ) + 1, false );
fail

We comute the Loewy lengths of the algebras A[q,4,z], for 2 ≤ q ≤ 40 and for all divisors z of
q4−1, and compare them with the upper bound.

Example
gap> n:= 4;;
gap> for q in [ 2 .. 40 ] do
> for z in DivisorsInt( q^n-1 ) do
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> if z > SingerAlg.MaxZ then
> A:= SingerAlgebra( q, n, z );
> m:= MinimalDegreeOfSingerAlgebra( A );
> if LoewyLength( A ) <> Int( n * (q-1) / m ) + 1 then
> Print( "found an example\n" );
> fi;
> fi;
> od;
> od;

The above computations should need less than a minute, provided that the Julia code can be used;
much more time is needed if only GAP can be used. [BHHK21, Section 1] states that the bound is
always attained for q≤ 100; the computations for that need several hours (using Julia).

In some of the examples, such as for (q,e) = (29,48), the computation of m(q,e) without calling
LoewyStructureInfoJulia (3.1.11) is more expensive than calling this function directly and then
reading off the Loewy length (and m(q,e)).



Chapter 3

Functions for Singer algebras

3.1 Singer Algebras as Algebraic Structures

3.1.1 SingerAlgebra

. SingerAlgebra(q[, n], z[, R]) (function)

. SingerAlgebra(arec[, R]) (function)

For nonnegative integers q , z with q > 1, and a field R (with default the field of Rationals,
see Rationals (Reference: Rationals)), let n be the multiplicative order of q modulo z , set e =
(q n − 1)/z , and define A[q ,z ] as the free R -module with basis (b0,b1, . . . ,bz) and multiplication
defined as follows. If there is no carry in the addition of the q -adic expansions of ie and je then
bib j = bi+ j holds, and otherwise bib j is zero.

This function returns the algebra A[q ,z ].
Alternatively, a record arec can be given, which must have the components q and z or the com-

ponents q, n, e.
The idea is to use the algebra object first of all as a container for the attributes that belong to

the parameters q and z , see LoewyLength (3.1.6), MinimalDegreeOfSingerAlgebra (3.1.8), and
LoewyStructureInfo (3.1.11). This works well also for high dimensional algebras.

If one really wants to do computations beyond this context, for example compute with ele-
ments of the algebra, then special methods for CanonicalBasis (Reference: CanonicalBasis),
Representative (Reference: Representative), GeneratorsOfAlgebra (Reference: Generator-
sOfAlgebra), or GeneratorsOfAlgebraWithOne (Reference: GeneratorsOfAlgebraWithOne)
will trigger the computation of a structure constants table, and afterwards the algebra behaves like
other algebras in GAP that are defined via structure constants.

Example
gap> A:= SingerAlgebra( 6, 2, 7 );
A[6,2,7]
gap> Dimension( A ); # is always z+1
8
gap> LeftActingDomain( A );
Rationals
gap> A2:= SingerAlgebra( 6, 2, 7, GF(2) );
A[6,2,7,GF(2)]
gap> Print( A2, "\n" );
SingerAlgebra( 6, 2, 7, GF(2) )

13
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gap> String( A2 );
"SingerAlgebra( 6, 2, 7, GF(2) )"
gap> SingerAlgebra( rec( q:= 6, n:= 2, e:= 5 ) );
A[6,2,7]

3.1.2 IsSingerAlgebra

. IsSingerAlgebra(A) (Category)

This filter is set in all algebras constructed with SingerAlgebra (3.1.1).
Example

gap> A:= SingerAlgebra( 6, 7 );
A[6,2,7]
gap> IsSingerAlgebra( A );
true
gap> AA:= AlgebraByStructureConstants( Rationals,
> StructureConstantsTable( Basis( A ) ) );
<algebra of dimension 8 over Rationals>
gap> IsSingerAlgebra( AA );
false

3.1.3 ParametersOfSingerAlgebra

. ParametersOfSingerAlgebra(A) (attribute)

For a Singer algebra A= A[q,n,z] (see SingerAlgebra (3.1.1)), the value is the list [q,n,z].
Example

gap> A:= SingerAlgebra( 6, 7 );
A[6,2,7]
gap> ParametersOfSingerAlgebra( A );
[ 6, 2, 7 ]

3.1.4 DimensionsLoewyFactors

. DimensionsLoewyFactors(A) (attribute)

. LoewyVector(A) (attribute)

For a Singer algebra A (see SingerAlgebra (3.1.1)), this function returns the Loewy vector of
A , that is, the list of nonzero dimensions Ji−1/Ji, for i ≥ 1, where J is the Jacobson radical of A and
J0 =A .

LoewyVector is a synonym of DimensionsLoewyFactors.
Example

gap> A:= SingerAlgebra( 6, 2, 7 );
A[6,2,7]
gap> DimensionsLoewyFactors( A );
[ 1, 6, 1 ]
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In the GAP Reference Manual, this attribute is declared for groups, see
DimensionsLoewyFactors (Reference: DimensionsLoewyFactors). In that context, it means the
dimensions of the Loewy factors of the group algebra of its argument over the field with p elements,
where the argument is required to be a finite p-group. Note that this value can be computed just from
the group, without constructing a group algebra.

3.1.5 LoewyVectorAbbreviated and LoewyVectorExpanded

. LoewyVectorAbbreviated(v) (function)

. LoewyVectorExpanded(v) (function)

For a dense list v of positive integers, LoewyVectorAbbreviated returns a new list in which each
maximal sublist of at least two consecutive equal entries is replaced by the list containing this element
and its multiplicity.

For a dense list v whose entries are non-lists and pairs whose second entries are positive integers,
LoewyVectorExpanded returns a new list in which each such pair is replaced by a sublist that contains
the first entry with multiplicity given by the second entry.

Example
gap> LoewyVectorAbbreviated( [ 1, 1, 1, 1 ] );
[ [ 1, 4 ] ]
gap> LoewyVectorAbbreviated( [ 1, 7, 7, 3, 3, 1, 1, 1 ] );
[ 1, [ 7, 2 ], [ 3, 2 ], [ 1, 3 ] ]
gap> LoewyVectorExpanded( [ [ 1, 4 ] ] );
[ 1, 1, 1, 1 ]
gap> LoewyVectorExpanded( [ 1, [ 7, 2 ], [ 3, 2 ], [ 1, 3 ] ] );
[ 1, 7, 7, 3, 3, 1, 1, 1 ]

3.1.6 LoewyLength

. LoewyLength(A) (attribute)

. LoewyLength(q[, n], z[, m]) (operation)

. LoewyLengthGAP(A) (attribute)

. LoewyLengthGAP(q[, n], z[, m]) (operation)

. LoewyLengthJulia(A) (attribute)

. LoewyLengthJulia(q[, n], z[, m]) (operation)

Let q , n , z be positive integers such that z divides q^n - 1; the default for n is the multiplicative
order of q modulo z . These functions return the Loewy length of the Singer algebra A[q ,n ,z ], see
SingerAlgebra (3.1.1).

Alternatively, also a Singer algebra A can be given as an argument.
Note that it may be cheap to compute the Loewy length of this algebra, using criteria from

[BHHK20] and [BHHK21], even if computing its Loewy vector (see DimensionsLoewyFactors
(3.1.4)) would be hard.

If Julia is available then LoewyLength uses LoewyLengthJulia, otherwise it uses
LoewyLengthGAP.

Example
gap> A:= SingerAlgebra( 6, 2, 7 );
A[6,2,7]
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gap> LoewyLength( A );
3

3.1.7 SufficientCriterionForLoewyBoundAttained

. SufficientCriterionForLoewyBoundAttained(q, n, z, m) (function)

Returns: a string.
Let q , n , z , m be positive integers, where q and z are coprime.

SufficientCriterionForLoewyBoundAttained returns a string that describes the criterion
from [BHHK20] or [BHHK21] from which it follows that the Loewy length of the algebra A[q ,z ]
is equal to the upper bound bn(q − 1)/mc+ 1, where n = OrderMod(q, z), e = (qn − 1)/z , and
m = m(q ,e); if no such criterion was found then the returned string is empty.

Example
gap> expls:= [ [3,2], [2,5], [3,70], [13,70], [19,70], [5,72],
> [2,73], [5,76], [11,80], [13,80], [2,85], [4,123],
> [3,164], [4,369], [2,771], [15,791] ];;
gap> for l in expls do
> q:= l[1]; z:= l[2]; n:= OrderMod( q, z ); e:= (q^n-1)/z;
> nn:= OrderModExt( q, e, n );
> m:= MinimalDegreeOfSingerAlgebra( q, nn, e );
> Print( "q = ", String( q, 2 ), ", z = ", String( z, 3 ), ": ",
> SufficientCriterionForLoewyBoundAttained( q, n, z, m ), "\n" );
> od;
q = 3, z = 2: Cor. I.7.1 (n <= 3)
q = 2, z = 5: z < 70
q = 3, z = 70:
q = 13, z = 70: Thm. I.7.1
q = 19, z = 70: La. I.7.1 (iii)
q = 5, z = 72: La. II.4.1 for r = 1
q = 2, z = 73: Prop. II.6.1 (e <= 32)
q = 5, z = 76: Prop. II.5.1 (ii)
q = 11, z = 80: Prop. II.5.3, II.5.6 (e | (q^n-1)/(q-1), n <= 5)
q = 13, z = 80: Prop. II.3.15
q = 2, z = 85: La. I.6.3
q = 4, z = 123: Prop. II.5.1 (iii)
q = 3, z = 164: La. II.5.2 (ii)
q = 4, z = 369: Prop. II.5.1 (i)
q = 2, z = 771: La. II.4.1
q = 15, z = 791: Thm. II.4.3 (iii)

3.1.8 MinimalDegreeOfSingerAlgebra

. MinimalDegreeOfSingerAlgebra(A) (attribute)

. MinimalDegreeOfSingerAlgebra(q, e) (operation)

. MinimalDegreeOfSingerAlgebraGAP(A) (attribute)

. MinimalDegreeOfSingerAlgebraGAP(q, e) (operation)

. MinimalDegreeOfSingerAlgebraJulia(A) (attribute)

. MinimalDegreeOfSingerAlgebraJulia(q, e) (operation)

Returns: a positive integer.
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For two coprime positive integers q and e , MinimalDegreeOfSingerAlgebra computes the min-
imal number of powers of q such that e divides the sum of these powers.

If a Singer algebra A[q,z] is given as the argument A (see SingerAlgebra (3.1.1)) then the value
for the parameters q and e = (qn− 1)/z is returned, where n is the multiplicate order of q modulo z,
see OrderMod (Reference: OrderMod); note that the minimal degree does not depend on n.

The same value is returned by MinimalDegreeOfSingerAlgebraGAP and
MinimalDegreeOfSingerAlgebraJulia, which use implementations in GAP and Julia, re-
spectively. MinimalDegreeOfSingerAlgebra delegates to the Julia variant if the package
JuliaInterface is available, and to the GAP variant otherwise.

Example
gap> A:= SingerAlgebra( 6, 2, 7 );
A[6,2,7]
gap> MinimalDegreeOfSingerAlgebra( A );
5
gap> MinimalDegreeOfSingerAlgebra( 6, 5 );
5

3.1.9 RadicalSeriesOfAlgebra

. RadicalSeriesOfAlgebra(A) (attribute)

For an algebra A with radical J (see RadicalOfAlgebra (Reference: RadicalOfAlgebra)),
RadicalSeriesOfAlgebra returns the list [J0,J1,J2,J3, . . . ,Jk], where k is the smallest index such
that Jk is zero.

Example
gap> A:= SingerAlgebra( 2, 7 );
A[2,3,7]
gap> ser:= RadicalSeriesOfAlgebra( A );
[ A[2,3,7], <algebra of dimension 7 over Rationals>,

<algebra of dimension 4 over Rationals>,
<algebra of dimension 1 over Rationals>,
<algebra of dimension 0 over Rationals> ]

3.1.10 SocleSeriesOfAlgebra

. SocleSeriesOfAlgebra(A) (attribute)

For an algebra A , SocleSeriesOfAlgebra returns the list [S0,S1,S2,S3, . . . ,Sk], where S0 is the
trivial subalgebra of A and Si+1/Si is the socle of A/Si and k is the smallest index such that Sk = A
holds. (Thus S_1 is the socle of A .)

Example
gap> A:= SingerAlgebra( 2, 7 );
A[2,3,7]
gap> ser:= SocleSeriesOfAlgebra( A );
[ <algebra of dimension 0 over Rationals>,

<algebra of dimension 1 over Rationals>,
<algebra of dimension 4 over Rationals>,
<algebra of dimension 7 over Rationals>, A[2,3,7] ]
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3.1.11 LoewyStructureInfo

. LoewyStructureInfo(A) (attribute)

. LoewyStructureInfoGAP(A) (attribute)

. LoewyStructureInfoJulia(A) (attribute)

. LoewyStructureInfo(q[, n], z) (operation)

. LoewyStructureInfoGAP(q[, n], z) (operation)

. LoewyStructureInfoJulia(q[, n], z) (operation)

For a Singer algebra A (see SingerAlgebra (3.1.1)) with parameters q , n , z , or for these param-
eters themselves, these three operations compute the distribution of the canonical basis in A[q ,z ] to
Loewy layers, using the algorithm from [BHHK20, Proposition 3.2].

Let e = (qn −1)/z .
LoewyStructureInfoJulia returns a Julia dictionary whose keys are the following symbols.

:monomials
the array of reversed (see CoefficientsQadicReversed (3.1.12)) q -adic expansions for mul-
tiples of e, each of length n ,

:layers
the array of the Loewy layers to which the monomials belong,

:chain
an array of positions of monomials of a longest ascending chain,

:m the value m(q ,e) (see MinimalDegreeOfSingerAlgebra (3.1.8)

:LL the Loewy length of A (see LoewyLength (3.1.6)), equal to the length of the :layers value
plus 1,

:parameters
the array [ q, n, z ] of parameters of A .

LoewyStructureInfoGAP returns a GAP record whose components correspond to the keys listed
above. LoewyStructureInfo returns the same; however, if Julia is available then this result is com-
puted by converting the result of LoewyStructureInfoJulia to a GAP object.

Example
gap> LoewyStructureInfo( 6, 7 );
rec( LL := 3, chain := [ 8, 2, 1 ],

layers := [ 0, 1, 1, 1, 1, 1, 1, 2 ], m := 5,
monomials := [ [ 0, 0 ], [ 0, 5 ], [ 1, 4 ], [ 2, 3 ], [ 3, 2 ],

[ 4, 1 ], [ 5, 0 ], [ 5, 5 ] ], parameters := [ 6, 2, 7 ] )

3.1.12 CoefficientsQadicReversed

. CoefficientsQadicReversed(k, z, q, n) (function)

Let k , z , q , n be positive integers such that 0≤ k ≤ z , q > 1, and n > 0.
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This function computes the coefficients of the q -adic expansion of e = k (q^n−1)/z , of length
n , without creating this number, which may be a large integer although all arguments are small (see
[BHHK21, Remark 2.23 (iv)] and section 2.2.1).

If e = vn q 0 + vn−1 q 1 + · · ·+ v1 q n−1 then the returned array is [v1,v2, . . . ,vn].
Example

gap> CoefficientsQadicReversed( 2, 7, 6, 2 );
[ 1, 4 ]
gap> e:= (6^2-1)/7;
5
gap> CoefficientsQadic( 2*e, 6 );
[ 4, 1 ]

3.2 Visualization of Singer Algebras

The following functions can be used to show the canonical basis of a Singer algebra in a two-
dimensional array, where the rows correspond to Loewy layers.

3.2.1 DisplaySingerMonomials

. DisplaySingerMonomials(A) (function)

. DisplaySingerMonomials(q, z) (function)

. DisplaySingerMonomials(q, n, e) (function)

Returns: nothing.
Let A be a Singer algebra A[q ,n,z ], where n is the multiplicative order of q modulo z , or let q

and z be two coprime integers that define such an algebra A[q ,n,z ], or let q , n , e be parameters such
that z = (qn −1)/e holds.

DisplaySingerMonomials prints a table showing three column parts: The first column contains
the positions 0,1, . . . of the Loewy layers of A , the second column contains the dimensions of the
Loewy layers, and the remaining columns describe the elements of the canonical basis of A in each
layer; by default, the element bi is represented by i, but when the global option m is present (which
stands for “monomials”) then Bi is represented by the coefficients of the q -adic expansion of ie .

Example
gap> DisplaySingerMonomials( 2, 7 ); # e = 1
A[2,3,7]

0 | 1 | 0
1 | 3 | 1 2 4
2 | 3 | 3 5 6
3 | 1 | 7
gap> DisplaySingerMonomials( 2, 7 : m ); # same, show monomials
A[2,3,7]

0 | 1 | (0,0,0)
1 | 3 | (0,0,1) (0,1,0) (1,0,0)
2 | 3 | (0,1,1) (1,0,1) (1,1,0)
3 | 1 | (1,1,1)
gap> DisplaySingerMonomials( 9, 8 : m ); # uniserial case
A[9,1,8]
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0 | 1 | (0)
1 | 1 | (1)
2 | 1 | (2)
3 | 1 | (3)
4 | 1 | (4)
5 | 1 | (5)
6 | 1 | (6)
7 | 1 | (7)
8 | 1 | (8)
gap> DisplaySingerMonomials( 6, 7 : m ); # Loewy length 3
A[6,2,7]

0 | 1 | (0,0)
1 | 6 | (0,5) (1,4) (2,3) (3,2) (4,1) (5,0)
2 | 1 | (5,5)
gap> DisplaySingerMonomials( 14, 15 : m ); # wrapped output
A[14,2,15]

0 | 1 | ( 0, 0)
1 | 14 | ( 0,13) ( 1,12) ( 2,11) ( 3,10) ( 4, 9) ( 5, 8) ( 6, 7)

| | ( 7, 6) ( 8, 5) ( 9, 4) (10, 3) (11, 2) (12, 1) (13, 0)
2 | 1 | (13,13)

3.2.2 BrowseSingerMonomials

. BrowseSingerMonomials(A) (function)

. BrowseSingerMonomials(q, z) (function)

. BrowseSingerMonomials(q, n, e) (function)

Returns: nothing.
Let A be a Singer algebra A[q ,n,z ], where n is the multiplicative order of q modulo z , or let q

and z be two coprime integers that define such an algebra A[q ,n,z ], or let q , n , e be parameters such
that z = (qn −1)/e holds.

BrowseSingerMonomials opens a Browse table showing three column parts: The first column
contains the positions 0,1, . . . of the Loewy layers of A , the second column contains the dimensions of
the Loewy layers, and the remaining columns describe the elements of the canonical basis of A in each
layer; by default, the element bi is represented by i, but when the global option m is present (which
stands for “monomials”) then Bi is represented by the coefficients of the q -adic expansion of ie . The
first two columns are regarded as row labels, that is, their horizontal position is fixed on the screen
when one scrolls to the left or right in the third column

BrowseSingerMonomials is based on the NCurses.BrowseDenseList (Browse:
NCurses.BrowseDenseList) function from the Browse package [BL20]; it is available only if
this package is available.

Example
gap> if IsBound( BrowseSingerMonomials ) then
> n:= [ 14, 14, 14 ];; # ‘‘do nothing’’ input
> BrowseData.SetReplay( Concatenation( n, n, "Q" ) );
> BrowseSingerMonomials( 2, 7 );
> BrowseData.SetReplay( false );
> fi;
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3.2.3 Changing the display format: User preference DisplayFunction

The way how the function DisplaySingerMonomials (3.2.1) shows tabular information can be cus-
tomized via the user preference "DisplayFunction" of the SingerAlg package. The value must be a
string that evaluates to a GAP function. Useful values are "Print" (see Print (Reference: Print)),
"PrintFormattedString" (see PrintFormattedString (GAPDoc: PrintFormattedString) in
[LN19]), and "SingerAlg.Pager", which means that Pager (Reference: Pager) is called with the
formatted option, which is necessary for switching off GAP’s automatic line breaking. The de-
fault value is "SingerAlg.Pager" if GAPInfo.TermEncoding has the value "UTF-8", and "Print"
otherwise.

3.3 Singer Algebras as Combinatorial Structures

Many interesting subalgebras and subspaces U , say, of a Singer algebra A = A[q,z] or A = A[q,z]p
have vector space bases that are subsets of the canonical basis B(A), that is, U is spanned by the set
U ∩B(A). We call these subspaces combinatorial, and write B(U) = U ∩B(A), the canonical basis
of U . The examples of combinatorial subspaces for which implementations are provided are listed
below.

Each of the GAP functions in question returns the set of indices i such that the basis vec-
tors B(A[q,z])i are members of B(U). The idea is that this set can be computed combinatorially,
without performing computations with elements of the algebra A, and that for example the prod-
uct space of two combinatorial subspaces is again combinatorial. The availability of the attribute
GeneratingSubsetOfCanonicalBasisOfSingerAlgebra (3.3.1) in a subspace U marks U as com-
binatorial, and the attribute value is the set of indices of B(U).

3.3.1 GeneratingSubsetOfCanonicalBasisOfSingerAlgebra

. GeneratingSubsetOfCanonicalBasisOfSingerAlgebra(U) (attribute)

Let U be a subspace of a Singer algebra A, say. If this attribute is set in U then the value is a strictly
sorted list of nonnegative integers such that the corresponding subset of the canonical basis of A is a
basis of U . In particular, U is a combinatorial subspace of A, see the introduction of Section 3.3.

There is no default method for computing the value of this attribute. On the other hand, if the
value is known then there are efficient methods to compute annihilators, product spaces, etc.

Example
gap> A:= SingerAlgebra( 3, 7 );
A[3,6,7]
gap> J:= RadicalOfAlgebra( A );;
gap> HasGeneratingSubsetOfCanonicalBasisOfSingerAlgebra( J );
true
gap> GeneratingSubsetOfCanonicalBasisOfSingerAlgebra( J );
[ 2 .. 8 ]
gap> P:= ProductSpace( J, J );
<vector space of dimension 1 over Rationals>
gap> HasGeneratingSubsetOfCanonicalBasisOfSingerAlgebra( P );
true
gap> GeneratingSubsetOfCanonicalBasisOfSingerAlgebra( P );
[ 8 ]
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gap> V:= Subspace( A, Basis( A ){ [ 2, 3 ] } );;
gap> HasGeneratingSubsetOfCanonicalBasisOfSingerAlgebra( V );
false

3.3.2 SingerAlg.MultTable

. SingerAlg.MultTable(data) (function)

Let data be the record returned by LoewyStructureInfoGAP (3.1.11) that describes a Singer
algebra A[q,z], and let B = B(A). SingerAlg.MultTable returns the (z+ 1)× (z+ 1) matrix that
contains at the position (i, j) the value i+ j−1 if the product Bi ·B j is nonzero (hence equal to Bi+ j−1,
the i+ j−1-th basis vector), and 0 otherwise.

Example
gap> data:= LoewyStructureInfoGAP( 2, 3, 7 );;
gap> Display( SingerAlg.MultTable( data ) );
[ [ 1, 2, 3, 4, 5, 6, 7, 8 ],

[ 2, 0, 4, 0, 6, 0, 8, 0 ],
[ 3, 4, 0, 0, 7, 8, 0, 0 ],
[ 4, 0, 0, 0, 8, 0, 0, 0 ],
[ 5, 6, 7, 8, 0, 0, 0, 0 ],
[ 6, 0, 8, 0, 0, 0, 0, 0 ],
[ 7, 8, 0, 0, 0, 0, 0, 0 ],
[ 8, 0, 0, 0, 0, 0, 0, 0 ] ]

The multiplication table of a Singer algebra of dimension N has the value N on the antidiagonal
(i+ j = N+1), is zero below the antidiagonal, and contains only N− i and zero on the i parallel above
the antidiagonal.

3.3.3 SingerAlg.BasisOfSum and SingerAlg.BasisOfIntersection

. SingerAlg.BasisOfSum(data, I, J) (function)

. SingerAlg.BasisOfIntersection(data, I, J) (function)

For two subsets I , J of {1,2, . . . ,z+1}, these functions just return the union and the intersection,
respectively, of I and J .

I and J describe subsets of a basis, which generate the spaces U and V , say, then the result
describes the subset of this basis that generates the sum and the intersection, respectively, of U and V .

Example
gap> SingerAlg.BasisOfSum( data, [ 1, 2, 3 ], [ 2, 4, 6 ] );
[ 1, 2, 3, 4, 6 ]
gap> SingerAlg.BasisOfIntersection( data, [ 1, 2, 3 ], [ 2, 4, 6 ] );
[ 2 ]

3.3.4 SingerAlg.BasisOfProductSpace

. SingerAlg.BasisOfProductSpace(data, I, J) (function)
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Let data be the record returned by LoewyStructureInfoGAP (3.1.11) that describes a Singer
algebra A = A[q,z], let B = B(A), and let I , J be subsets of {1,2, . . . ,z+1}, describing subspaces U ,
V of A with bases (Bi; i ∈ I) and (Bi; i ∈ J), respectively. SingerAlg.BasisOfProductSpace returns
the subset K of {1,2, . . . ,z+1} such that (Bi; i ∈ K) is a basis of the product space U ·V .

Example
gap> data:= LoewyStructureInfoGAP( 2, 7 );;
gap> radser:= SingerAlg.BasesOfRadicalSeries( data );
[ [ 2 .. 8 ], [ 4, 6, 7, 8 ], [ 8 ] ]
gap> SingerAlg.BasisOfProductSpace( data, radser[1], radser[1] );
[ 4, 6, 7, 8 ]
gap> SingerAlg.BasisOfProductSpace( data, radser[1], radser[2] );
[ 8 ]
gap> SingerAlg.BasisOfProductSpace( data, radser[2], radser[2] );
[ ]

3.3.5 SingerAlg.BasisOfIdeal

. SingerAlg.BasisOfIdeal(data, I) (function)

Let data be the record returned by LoewyStructureInfoGAP (3.1.11) that describes a Singer
algebra A = A[q,z], let B = B(A), and let I be a subset of {1,2, . . . ,z+1}, describing a subspace U of
A with basis (Bi; i ∈ I). SingerAlg.BasisOfIdeal returns the subset J of {1,2, . . . ,z+1} such that
(Bi; i ∈ J) is a basis of the ideal U ·A.

Example
gap> data:= LoewyStructureInfoGAP( 2, 7 );;
gap> SingerAlg.BasisOfIdeal( data, [ 4 ] );
[ 4, 8 ]

3.3.6 SingerAlg.BasisOfAnnihilator

. SingerAlg.BasisOfAnnihilator(data, I) (function)

Let data be the record returned by LoewyStructureInfoGAP (3.1.11) that describes a Singer
algebra A = A[q,z], let B = B(A), and let I be a subset of {1,2, . . . ,z+ 1}, describing a subspace U
of A with basis (Bi; i ∈ I). SingerAlg.BasisOfAnnihilator returns the subset J of {1,2, . . . ,z+1}
such that (Bi; i ∈ J) is a basis of the annihilator {x ∈ A;x ·U = 0} of U in A.

Example
gap> data:= LoewyStructureInfoGAP( 2, 7 );;
gap> radser:= SingerAlg.BasesOfRadicalSeries( data );
[ [ 2 .. 8 ], [ 4, 6, 7, 8 ], [ 8 ] ]
gap> List( radser, I -> SingerAlg.BasisOfAnnihilator( data, I ) );
[ [ 8 ], [ 4, 6, 7, 8 ], [ 2, 3, 4, 5, 6, 7, 8 ] ]

3.3.7 SingerAlg.BasesOfRadicalSeries

. SingerAlg.BasesOfRadicalSeries(data) (function)
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Let data be the record returned by LoewyStructureInfoGAP (3.1.11) that describes a Singer al-
gebra A=A[q,z], and let B=B(A). SingerAlg.BasesOfRadicalSeries returns the list [I1, I2, . . . , Il]
of subsets of {1,2, . . . ,z+1} such that (Bi; i ∈ I j) is a basis of the j-th power of the Jacobson radical
J of A, and such that Jl is nonzero and Jl+1 is zero.

Example
gap> data:= LoewyStructureInfoGAP( 2, 7 );;
gap> radser:= SingerAlg.BasesOfRadicalSeries( data );
[ [ 2 .. 8 ], [ 4, 6, 7, 8 ], [ 8 ] ]

3.3.8 SingerAlg.BasesOfSocleSeries

. SingerAlg.BasesOfSocleSeries(data) (function)

Let data be the record returned by LoewyStructureInfoGAP (3.1.11) that describes a Singer
algebra A = A[q,z], and let B = B(A). SingerAlg.BasesOfSocleSeries returns the list [I1, I2, . . . , Il]
of subsets of {1,2, . . . ,z+1} such that (Bi; i ∈ I j) is a basis of S j, where S1 is the socle of A, S j+1/S j

is the socle of A/S j, and A/Sl is nonzero and its own socle.
Example

gap> socser:= SingerAlg.BasesOfSocleSeries( data );
[ [ 8 ], [ 4, 6, 7, 8 ], [ 2 .. 8 ] ]

3.3.9 SingerAlg.BasisOfPowers

. SingerAlg.BasisOfPowers(data, I, p, m) (function)

Let p be a prime integer, let data be the record returned by LoewyStructureInfoGAP (3.1.11)
that describes a Singer algebra A = A[q,z], let B = B(Ap), let I be a subset of {1,2, . . . ,z +
1}, describing a subspace U of Ap with basis (Bi; i ∈ I), and let m be a positive integer.
SingerAlg.BasisOfPowers returns the subset J of {1,2, . . . ,z+ 1} such that (Bi; i ∈ J) is a basis
of the subspace {xpm

;x ∈U} of Ap.
Example

gap> data:= LoewyStructureInfoGAP( 3, 8 );;
gap> SingerAlg.BasisOfPowers( data, [ 1 .. 9 ], 2, 1 );
[ 1, 3, 7, 9 ]
gap> SingerAlg.BasisOfPowers( data, [ 1 .. 9 ], 2, 2 );
[ 1 ]
gap> SingerAlg.BasisOfPowers( data, [ 1 .. 9 ], 3, 1 );
[ 1 ]

3.3.10 SingerAlg.BasisOfPMRoots

. SingerAlg.BasisOfPMRoots(data, I, p, m) (function)

Let p be a prime integer, let data be the record returned by LoewyStructureInfoGAP (3.1.11)
that describes a Singer algebra A = A[q,z], let B = B(Ap), let I be a subset of {1,2, . . . ,z+ 1}, de-
scribing a subspace U of Ap with basis (Bi; i ∈ I), and let m be a positive integer. (See Section 1.2 for
the definition of Ap.)
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SingerAlg.BasisOfPMRoots returns the subset J of {1,2, . . . ,z+ 1} such that (Bi; i ∈ J) is a
basis of the subspace {x ∈ Ap;xpm ∈U} of Ap.

Example
gap> data:= LoewyStructureInfoGAP( 3, 8 );;
gap> SingerAlg.BasisOfPMRoots( data, [], 2, 1 );
[ 3, 6, 7, 8, 9 ]
gap> SingerAlg.BasisOfPMRoots( data, [], 2, 2 );
[ 2, 3, 4, 5, 6, 7, 8, 9 ]
gap> SingerAlg.BasisOfPMRoots( data, [ 3 ], 2, 1 );
[ 2, 3, 6, 7, 8, 9 ]

3.3.11 SingerAlg.BasisOfPC

. SingerAlg.BasisOfPC(data, I, J) (function)

Let data be the record returned by LoewyStructureInfoGAP (3.1.11) that describes a Singer
algebra A = A[q,z], let B = B(A), let I and J be subsets of {1,2, . . . ,z+ 1}, describing subspaces U
and V of A with bases (Bi; i ∈ I) and (Bi; i ∈ J), respectively. SingerAlg.BasisOfPC returns the
subset K of {2,3, . . . ,z+ 1} such that (Bi; i ∈ K) is a basis of the subspace {x ∈ J(A);x ·U ⊆ V} of
J(A).

(The perhaps strange name “BasisOfPC” was chosen because the result contains the indices of
those basis vectors such that the Product with the space U is Contained in the space V .)

Example
gap> data:= LoewyStructureInfoGAP( 23, 585 );;
gap> soc:= SingerAlg.BasesOfSocleSeries( data );;
gap> rad:= SingerAlg.BasesOfRadicalSeries( data );;
gap> I1:= SingerAlg.BasisOfPC( data, soc[3], rad[3] );;
gap> Length( I1 );
581
gap> data:= LoewyStructureInfoGAP( 212, 585 );;
gap> soc:= SingerAlg.BasesOfSocleSeries( data );;
gap> rad:= SingerAlg.BasesOfRadicalSeries( data );;
gap> I2:= SingerAlg.BasisOfPC( data, soc[3], rad[3] );;
gap> Length( I2 );
545

3.4 Permutation Isomorphism of Singer Algebras

Proving that two given Singer algebras are isomorphic is in general hard. An easier question is whether
an algebra isomorphism exists that maps the canonical basis of the first to the canonical basis of the
second. (And fortunately this situation occurs in quite a few cases, see 4.3.4.)

The following functions can be used to check for such permutation isomorphisms.

3.4.1 SingerAlg.IsInducedAlgebraIsomorphism

. SingerAlg.IsInducedAlgebraIsomorphism(t1, t2, perm) (function)

Returns: true or false.
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Let t1 and t2 be the multiplication tables of two Singer algebras A1, A2, respectively, of the same
dimension z+1, say, as returned by SingerAlg.MultTable (3.3.2). Let perm be a permutation with
largest moved point at most z.

This function returns true if mapping the i-th vector of the canonical basis of A1 to the i^perm -th
vector of the canonical basis of A2 defines an algebra isomorphism, and false otherwise.

Example
gap> # Loewy length 3, naturally isomorphic
gap> t1:= SingerAlg.MultTable( LoewyStructureInfo( 3, 7 ) );;
gap> t2:= SingerAlg.MultTable( LoewyStructureInfo( 6, 7 ) );;
gap> SingerAlg.IsInducedAlgebraIsomorphism( t1, t2, () );
true
gap> # q1 and q2 generate the same group of residues modulo z,
gap> # naturally isomorphic
gap> t1:= SingerAlg.MultTable( LoewyStructureInfo( 2, 7 ) );;
gap> t2:= SingerAlg.MultTable( LoewyStructureInfo( 4, 7 ) );;
gap> SingerAlg.IsInducedAlgebraIsomorphism( t1, t2, () );
true
gap> # one of the explicitly computed natural isomorphisms
gap> t1:= SingerAlg.MultTable( LoewyStructureInfo( 3, 65 ) );;
gap> t2:= SingerAlg.MultTable( LoewyStructureInfo( 9, 65 ) );;
gap> SingerAlg.IsInducedAlgebraIsomorphism( t1, t2, () );
true
gap> # one of the explicitly computed permutation isomorphisms
gap> # that are not natural isomorphisms
gap> t1:= SingerAlg.MultTable( LoewyStructureInfo( 41, 275 ) );;
gap> t2:= SingerAlg.MultTable( LoewyStructureInfo( 116, 275 ) );;
gap> SingerAlg.IsInducedAlgebraIsomorphism( t1, t2, () );
false
gap> pi:= (2,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3)
> (28,29,30,31,32)(38,39,40,41,42)(43,44,45,46,47,48,49,50)
> (54,55,57,79,77,94,91,89,87,83,82,81,80,78,76,75,74,73,72,64,65,63,62,
> 61,60)
> (85,99,97,93,90,88,86)(92,108,107,106,105,98,96,95)
> (109,110,112,113,115)
> (114,116,117,120,118,121,124,127,119,122,125,129,132,149,146,144,143,
> 142,141,140,154,151,147,163,161,160,157,159,156,153,150,158,155,152,
> 148,145,128,131,133,134,135,136,137,123,126,130)(162,168,167,165,164)
> (169,170,171,172,179,181,182,185)(178,180,184,187,189,191,192)
> (183,186,188,190,194,195,196,197,199,201,202,203,204,205,213,212,214,
> 215,216,217,223,222,220,198,200)(227,234,233,232,231,230,229,228)
> (235,239,238,237,236)(245,249,248,247,246)
> (253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,
> 270,271,272,273,274,275);;
gap> SingerAlg.IsInducedAlgebraIsomorphism( t1, t2, pi );
true
gap> SingerAlg.IsInducedAlgebraIsomorphism( t1, t2, pi^-1 );
false
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3.4.2 SingerAlg.ProposedPermutationIsomorphism

. SingerAlg.ProposedPermutationIsomorphism(data1, data2[, "reduced"]) (function)

Returns: a string, a permutation, fail, or a record.
Let data1 and data2 be the LoewyStructureInfo (3.1.11) values of two Singer algebras A1,

A2, respectively, of the same dimension z+1, say.
If only two arguments are given then this function returns either a string that describes why there is

no algebra isomorphism induced by mapping the canonical basis of A1 to the permuted canonical basis
of A2, or fail (indicating that the relevant functionality of the GraPe package is not available), or a
permutation π such that at least the following necessary conditions for such a mapping are satisfied.

• π maps pairs (i, j) where bi ·b j is zero to pairs (k, l) where Bk ·Bl is zero.

• The basis vectors bi and Bπ(i) lie in the same Loewy layer and in the same socle layer.

• The basis vector bi is a pm-th power if and only if Bπ(i) is a pm-th power.

The first condition is forced via a call to the function GraphIsomorphism (GRAPE: GraphIso-
morphism) (which is based on [McK90]) from the GAP package GraPe [Soi19] with two graphs
whose incidence relation is defined by this property, and the other conditions are translated into color-
ings of these graphs.

When a permutation is returned, one can check with
SingerAlg.IsInducedAlgebraIsomorphism (3.4.1) whether it does in fact induce an alge-
bra isomorphism. (For Singer algebras A[q,z] with z ≤ 10000, this is always the case, see Section
4.3.4.)

If the string "reduced" is given as the third argument then a record is returned instead of a
permutation, with the following components.

preims:
a subset of [2..z] denoting indices of the canonical basis of A1,

imgs:
a subset of [2..z] denoting indices of the canonical basis of A2,

iso: a permutation.

The proposed permutation isomorphism maps the preims[i]-th basis vector of A1 to the
imgs[i^iso]-th basis vector of A2, and maps the other basis vectors of A1 such that pairs (bi,bz−i) go
to such pairs in A2.

Example
gap> # a canonical isomorphism
gap> data1:= LoewyStructureInfo( 3, 7 );;
gap> data2:= LoewyStructureInfo( 6, 7 );;
gap> SingerAlg.ProposedPermutationIsomorphism( data1, data2 );
()
gap> # a proper permutation isomorphism
gap> data1:= LoewyStructureInfo( 41, 275 );;
gap> data2:= LoewyStructureInfo( 116, 275 );;
gap> pi:= SingerAlg.ProposedPermutationIsomorphism( data1, data2 );;
gap> t1:= SingerAlg.MultTable( data1 );;



SingerAlg — A GAP 4 Package 28

gap> t2:= SingerAlg.MultTable( data2 );;
gap> SingerAlg.IsInducedAlgebraIsomorphism( t1, t2, pi );
true
gap> # the reduced variant
gap> pi:= SingerAlg.ProposedPermutationIsomorphism( data1, data2,
> "reduced" );;
gap> pi.iso; # achieved by a suitable sorting of the bases
()
gap> # no permutation isomorphism
gap> data1:= LoewyStructureInfo( 11, 171 );;
gap> data2:= LoewyStructureInfo( 68, 171 );;
gap> SingerAlg.ProposedPermutationIsomorphism( data1, data2 );
"different distributions of products"

3.5 Invariants of Singer Algebras

The following functions can be used to prove the nonisomorphism of given Singer algebras via invari-
ants.

3.5.1 ConsiderInvariantsByParameters

. ConsiderInvariantsByParameters(z, qs[, bounds]) (function)

Returns: a record.
Let z ∈ {1,2, . . . ,10000}, and qs be a list of prime residues modulo z .

ConsiderInvariantsByParameters tries to find an invariant (under algebra isomorphisms)
that is not equal for all Singer algebras A[q,z ], for q ∈qs . The invariants used here are the dimensions
of suitable subspaces or the numbers of solutions of suitable equations.

The function returns a record with at least the components success (with value true if an invari-
ant was found that distinguishes at least two algebras corresponding to qs , and false otherwise) and
comment (a string). If the search was successful then the result contains also the components label (a
string that decribes the distinguishing invariant) and lists (a partition of qs according to the values
of this invariant).

If a record bounds is given then it controls how many checks are performed, as follows.

• If the component maxnumber is bound then the function returns a record with success value
false as soon as at least maxnumber invariants have been checked without success; the default
value of maxnumber is 100.

• If the components RCdim and RCnum are bound then the function
SingerAlg.NumberOfProductsInSubspace (3.5.3) gets called after the combinatorial
invariants have been computed, with the first two arguments taken from the first RCnum
of these invariants and with third argument equal to the value of RCdim; by default,
SingerAlg.NumberOfProductsInSubspace (3.5.3) is not called at all.

If such a call is successful for two subspaces U and V then the label component of the result
has the form "RC(U,V)".

• If the component LL4QuoDerMax is bound then its value is taken as the maxdim argument of
SingerAlg.LL4QuoDerDim (3.5.4), the default is 50.
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• If the component SubquoDerMax is bound then its value is taken as the maxdim argument of
SingerAlg.SubquoDerDim (3.5.5), the default is 50.

The following invariant subspaces of a Singer algebra A or its reduction Ap modulo some prime p,
respectively, are considered.

• The members J(A)i of the radical series of A (denoted by "J^1", "J^2", . . . in the label
component; see SingerAlg.BasesOfRadicalSeries (3.3.7)),

• the members S(A)i of the socle series of A (denoted by "S_1", "S_2", . . .; see
SingerAlg.BasesOfSocleSeries (3.3.8)),

• the space of elements in Ap whose pm-th powers are zero, for primes p and positive integers m
(denoted by "Roots(0,p,m)"; see SingerAlg.BasisOfPMRoots (3.3.10)),

• the ideal in A or Ap that is spanned by an invariant subspace U described in this list (denoted by
"Ideal(U)"; see SingerAlg.BasisOfIdeal (3.3.5)),

• the annihilator in A or Ap of an invariant subspace U described in this list (denoted by
"Annihilator(U)"; see SingerAlg.BasisOfAnnihilator (3.3.6)),

• the space of pm-th powers of elements in U , for primes p and positive integers m, where U
is an invariant subspace of A or Ap described in this list (denoted by "Power(U,p,m)"; see
SingerAlg.BasisOfPowers (3.3.9)),

• the space of elements in Ap whose pm-th powers are in U , for primes p and positive in-
tegers m, where U is an invariant subspace of A or Ap described in this list (denoted by
"Roots(U,p,m)"; see SingerAlg.BasisOfPMRoots (3.3.10)),

• the product space of two subspaces U , V in the same characteristic (denoted by "Prod(U,V)";
see SingerAlg.BasisOfProductSpace (3.3.4)),

• the sum of two subspaces U , V in the same characteristic (denoted by "Sum(U,V)"; see
SingerAlg.BasisOfSum (3.3.3)),

• the intersection of two subspaces U , V in the same characteristic (denoted by
"Intersection(U,V)"; see SingerAlg.BasisOfIntersection (3.3.3)),

• the space of elements {x ∈ J(A);x ·U ⊆ V}, for two subspaces U , V in the same characteristic
(denoted by "PC(U,V)"; see SingerAlg.BasisOfPC (3.3.11)),

A basis for the invariant subspace can be recovered from the label string of the result, using the
function SingerAlg.InfoFromInvariantString (3.5.2).

A different kind of invariant is given by the number of solutions of some equation, as com-
puted with SingerAlg.NumberOfProductsInSubspace (3.5.3), the corresponding label has the
form "RC(U,V)", and the function SingerAlg.InfoFromInvariantString (3.5.2) can be used
to compute the number of solutions.

Example
gap> inv:= ConsiderInvariantsByParameters( 117, [ 29, 35 ] );
rec( comment := "total 12 invariants checked",

label := "Prod(Annihilator(Power(J^1,2,1)),Roots(0,2,1))",
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lists := [ [ 29 ], [ 35 ] ], success := true )
gap> ConsiderInvariantsByParameters( 247, [ 37, 46 ] );
rec( comment := "total 4 invariants plus LL4QuoDerDim checked",

label := "LL4QuoDerDim", lists := [ [ 46 ], [ 37 ] ],
success := true )

gap> ConsiderInvariantsByParameters( 171, [ 11, 68 ] );
rec( comment := "no decision, checked 11 invariants",

labels := [ "J^3", "Power(J^1,2,1)", "Annihilator(Roots(0,2,1))",
"Sum(Power(J^1,2,1),J^3)",
"Sum(Power(J^1,2,1),Annihilator(Roots(0,2,1)))", "J^2", "S_2",
"Annihilator(Sum(Power(J^1,2,1),Annihilator(Roots(0,2,1))))",
"Roots(0,2,1)", "Annihilator(Power(J^1,2,1))", "J^1" ],

success := false )
gap> res:= ConsiderInvariantsByParameters( 171, [ 11, 68 ],
> rec( SubquoDerMax:= 158 ) );;
gap> res.success;
true

3.5.2 SingerAlg.InfoFromInvariantString

. SingerAlg.InfoFromInvariantString(data, str) (function)

Returns: a record.
Let data be a GAP record as returned by LoewyStructureInfoGAP (3.1.11) or a Ju-

lia dictionary as returned by LoewyStructureInfoJulia (3.1.11), which describes a Singer al-
gebra A, say, and let str be a string as in the label component of a record returned by
ConsiderInvariantsByParameters (3.5.1).

SingerAlg.InfoFromInvariantString returns a record with one of the following components.

basisIndices:
the list I of indices such that {B(A)i; i ∈ I} is a basis of the subspace defined by str ,

derivationsDim:
the dimension of the algebra of derivations (see Derivations (Reference: Derivations)) of
the algebra,

LL4QuoDerDim:
the dimension of the algebra of derivations of the algebra considered by the function
SingerAlg.LL4QuoDerDim (3.5.4) or its Julia variant,

SubquoDerDim:
the dimension of the algebra of derivations of the subquotient described by str that is consid-
ered by the function SingerAlg.SubquoDerDim (3.5.5) or its Julia variant,

solutionCount:
the pair [e,o] such that the number of solutions is 2e ·o, where o is an odd number.

If data is a GAP record then the invariants in question are computed with GAP functions, other-
wise the Julia implementations are used.
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Example
gap> SingerAlg.InfoFromInvariantString(
> LoewyStructureInfoGAP( 29, 6, 117 ),
> "Prod(Annihilator(Power(J^1,2,1)),Roots(0,2,1))" );
rec( basisIndices := [ 36, 64, 69, 73, 80, 93, 95, 100, 101, 118 ] )
gap> SingerAlg.InfoFromInvariantString(
> LoewyStructureInfoGAP( 35, 6, 117 ),
> "Prod(Annihilator(Power(J^1,2,1)),Roots(0,2,1))" );
rec( basisIndices := [ 37, 51, 60, 64, 73, 77, 86, 87, 91, 100, 109,

113, 118 ] )
gap> SingerAlg.InfoFromInvariantString(
> LoewyStructureInfoGAP( 2, 3, 7 ),
> "Derivations" );
rec( derivationsDim := 24 )
gap> SingerAlg.InfoFromInvariantString(
> LoewyStructureInfoGAP( 37, 12, 247 ),
> "LL4QuoDerDim" );
rec( LL4QuoDerDim := 656 )
gap> SingerAlg.InfoFromInvariantString(
> LoewyStructureInfoGAP( 68, 6, 171 ),
> "SubquoDerDim(J^2,J^3)" );
rec( SubquoDerDim := 2025 )
gap> SingerAlg.InfoFromInvariantString(
> LoewyStructureInfoGAP( 23, 12, 259 ),
> "RC(J^3,J^1)" );
rec( solutionCount := [ 492, 51055 ] )

3.5.3 SingerAlg.NumberOfProductsInSubspace

. SingerAlg.NumberOfProductsInSubspace(data, J, I[, bound]) (function)

Returns: a pair of nonnegative integers, or fail.
Let data be a record as returned by LoewyStructureInfoGAP (3.1.11) that describes a Singer

algebra A = A[q,z], let B = B(A), and let J , I be subsets of {1,2, . . . ,z+1}, describing subspaces V
and U of A with bases (Bi; i ∈ J) and (Bi; i ∈ I), respectively.

SingerAlg.NumberOfProductsInSubspace tries to compute the cardinality of the set

X = {(x,y) ∈U×U ;x · y ∈V}.

For that, we set

K = {i ∈ I;Bi ·B j 6∈V for some j ∈ I},
S = {k;0 6= Bi ·B j = Bk for some i, j ∈ I},
D = {k ∈ S;Bk 6∈V}.

If |K| is larger than bound then fail is returned, otherwise the list [e,o] such that |X | = 2e · o
holds. The default value for bound is 15, the maximal possible value for bound is 59 (which is much
too large for practical purposes).

Example
gap> data:= LoewyStructureInfoGAP( 23, 12, 259 );;
gap> radser:= SingerAlg.BasesOfRadicalSeries( data );;
gap> SingerAlg.NumberOfProductsInSubspace( data, radser[3], radser[1] );
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[ 492, 51055 ]
gap> data:= LoewyStructureInfoGAP( 60, 12, 259 );;
gap> radser:= SingerAlg.BasesOfRadicalSeries( data );;
gap> SingerAlg.NumberOfProductsInSubspace( data, radser[3], radser[1] );
[ 493, 161051 ]

Note that for x = ∑i∈I xiBi and y = ∑ j∈I y jB j, we have

x · y = ∑
i, j∈I

xiy j(Bi ·B j) = v+ ∑
i, j∈K

xiy j(Bi ·B j) = v′+ ∑
k∈D

( ∑
i, j∈K,Bi·B j=Bk

xiy j)Bk,

for some v,v′ ∈ V , thus x · y ∈ V if and only if x′Mky′ = 0 holds for all k ∈ D, where [Mk]i, j is 1 if
Bi ·B j = Bk holds, and 0 otherwise, for i, j ∈ K, and where x′, y′ are the restrictions of x,y to K. Let
M(x′) be the matrix with rows x′Mk, k ∈ D. Then

|X |= 4|I|−|K| · ∑
x′∈F |K|2

2|K|−rank(M(x′)).

3.5.4 SingerAlg.LL4QuoDerDim

. SingerAlg.LL4QuoDerDim(data[, maxdim]) (function)

Returns: a positive integer, or fail.
Let data be a record as returned by LoewyStructureInfoGAP (3.1.11) that describes a Singer

algebra A = A[q,z] of Loewy length 4. We consider A as an algebra over the field F with two elements.
Let J denote the Jacobson radical of A, S2(A) denote the annihilator of J2, and let V (A) be the F-vector
space generated by those elements of the canonical basis of A that lie in J(A)\S2(A).

SingerAlg.LL4QuoDerDim tries to compute the dimension of the algebra of derivations of the
algebra (J(A)2⊕V (A))/S1(A), using SingerAlg.RightDerivationsDimension (3.6.5). If the re-
turn value is a positive integer then it is this dimension. The return value fail means that either A
has Loewy length different from 4 or that the dimension of V (A) is larger than the optional argument
maxdim (the default is 50).

(Note that we have dim(J(A)2⊕V (A)) = 2dim(J(A)2)−1.)
Example

gap> data:= LoewyStructureInfoGAP( 37, 247 );;
gap> SingerAlg.LL4QuoDerDim( data );
656
gap> data:= LoewyStructureInfoGAP( 46, 247 );;
gap> SingerAlg.LL4QuoDerDim( data );
585

3.5.5 SingerAlg.SubquoDerDim

. SingerAlg.SubquoDerDim(datalist, labels, subspaces[, maxdim]) (function)

Returns: a record or fail.
Let datalist be a list of length n, say, of records as returned by LoewyStructureInfoGAP

(3.1.11), which belong to Singer algebras A1,A2, . . . ,An of the same dimension. We consider the Ai as
algebras over the field F with two elements.
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Let labels be a list of length m, say, that consists of strings.
Let subspaces be a list of length m, where each entry is a list of length n such that

subspaces [i][ j] is a list of positive integers that describes the basis of the subspace of A j that corre-
sponds to the label labels [i].

Let maxdim be a positive integer; the default is 50.
SingerAlg.SubquoDerDim runs over the pairs (i, j) such that, for 1 ≤ k ≤ n, both

subspaces [i][k] and subspaces [ j][k] describe bases of ideals Ii,k and I j,k, respectively, in Ak, such
that I j,k ⊂ Ii,k holds and Ii,k/I j,k has dimension at most maxdim . Then it computes the dimensions of
the algebras of derivations of the quotients Ii,k/I j,k.

If not all of these dimensions are equal for some pair (i, j) then a record with the components
labels (the list [ i, j ]) and derdim (the list of computed dimensions) is returned. Otherwise
fail is returned.

Example
gap> z:= 171;; qs:= [ 11, 68 ];;
gap> datalist:= List( qs, q -> LoewyStructureInfoGAP( q, z ) );;
gap> ids:= [ Difference( [ 2 .. z+1 ], [ 10, 37, 55, 64, 82, 100 ] ),
> [ 73, 91, 109, 118, 136, 163, 172 ] ];;
gap> ideals:= [ [ ids[1], ids[1] ], [ ids[2], ids[2] ] ];;
gap> labels:= [ "I", "J" ];;
gap> SingerAlg.SubquoDerDim( datalist, labels, ideals, 150 );
fail
gap> SingerAlg.SubquoDerDim( datalist, labels, ideals, 158 );
rec( derdim := [ 14179, 14201 ], labels := [ "I", "J" ] )

3.6 Miscellaneous variables related to Singer Algebras

3.6.1 SingerAlg

. SingerAlg (global variable)

This global record is used to store information about the SingerAlg package. Some of its compo-
nents are documented individually, see the manual index.

3.6.2 OrderModExt

. OrderModExt(n, m[, bound]) (function)

Returns: a nonnegative integer.
When called with two arguments n and m , OrderModExt returns the same as the GAP library

function OrderMod (Reference: OrderMod), that is, the multiplicative order of the integer n modulo
the positive integer m . If n and m are not coprime the order of n is not defined and OrderModExt will
return 0.

If n and m are relatively prime the multiplicative order of n modulo m is the smallest positive
integer i such that n i ≡ 1 (mod m).

If no a priori known multiple bound of the desired order is given, OrderModExt usually spends
most of its time factoring m for computing a default for bound , and then factoring bound . Thus it is
advisable to enter bound whenever one knows a reasonable bound.

If an incorrect bound is given then the result will be wrong.
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Example
gap> OrderModExt( 2, 7 );
3
gap> OrderModExt( 3, 7 ); # 3 is a primitive root modulo 7
6
gap> m:= (5^166-1) / 167;; # about 10^113
gap> OrderModExt( 5, m, 166 ); # needs minutes without third argument
166

3.6.3 SingerAlg.ContentsOfDataFile

. SingerAlg.ContentsOfDataFile(filename) (attribute)

Returns: the GAP object stored in the given file.
Let filename be a string that denotes the name of a file in the data subdirectory of the SingerAlg

package directory. SingerAlg.ContentsOfDataFile evaluates the contents of this file (assuming
that it is GAP readable) and returns the result.

Example
gap> val:= SingerAlg.ContentsOfDataFile( "mqe.json" );;
gap> val[1][2];
"This file contains the sorted list of values ’[ e, q, m(q,e) ]’, "

3.6.4 GrayCodeSwitchIndexIterator

. GrayCodeSwitchIndexIterator(n) (function)

Returns: an iterator (see (Reference: Iterators)).
For a nonnegative integer n , this function returns an iterator for the sequence of the positions of

those bits in an n -bit Gray code where the next flip takes place.
For n tending to infinity, this is series A001511 of the OEIS [Slo].

Example
gap> l:= [];;
gap> for i in GrayCodeSwitchIndexIterator( 4 ) do
> Add( l, i );
> od;
gap> l;
[ 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1 ]

The idea of a Gray code is to run over the vectors of a GF(2)-vector space in such a way that
subsequent vectors differ in exactly one position.

Example
gap> F:= GF(2);; one:= One( F );; V:= F^4;;
gap> v:= ShallowCopy( Zero( V ) );; l:= [ ShallowCopy( v ) ];;
gap> for i in GrayCodeSwitchIndexIterator( 4 ) do
> v[i]:= v[i] + one;
> Add( l, ShallowCopy( v ) );
> od;
gap> Set( l ) = Elements( V );
true

https://oeis.org/A001511
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3.6.5 SingerAlg.RightDerivationsDimension

. SingerAlg.RightDerivationsDimension(T) (function)

Returns: a positive integer.
Let T be a symmetric square matrix with n rows and columns, whose entries are integers in [0..n].

We interpret T as the multiplication table of a commutative algebra A over the field with two elements,
as follows. Let B = [b1,b2, . . . ,bn] be a basis of A. If T [i, j] = k holds then the product bib j is zero if
k = 0, and bib j = bk otherwise.

SingerAlg.RightDerivationsDimension returns the dimension of (right) derivations of A.
Let the structure constants of A w.r.t. the basis B be ci, j,k, that is, we have bib j = ∑

n
k=1 ci, j,kbk.

For each pair (i, j), we have thus ci, j,k = 1 if T [i, j] = k(6= 0) holds, and ci, j,k = 0 otherwise. A linear
map D:bi 7→ ∑

n
j=1 di, jb j is a right derivation if and only if the equation ∑

n
k=1(ci, j,kdk,m− ck, j,mdi,k−

ci,k,md j,k) = 0 is satisfied for all 1≤ i, j,m≤ n. Thus the right derivations of A are given by the solution
space of this linear equation system, in terms of the n2 indeterminates di, j,1 ≤ i, j ≤ n, and we can
compute the dimension of this space by computing the rank of the matrix of the equation system.

Since the algebra A is commutative, we have ci, j,k = c j,i,k, thus we need only the equations with
i≤ j.

Example
gap> q:= 3;; z:= 40;; a:= SingerAlgebra( q, z, GF(2) );;
gap> T:= SingerAlg.MultTable( LoewyStructureInfo( 3, 40 ) );;
gap> SingerAlg.RightDerivationsDimension( T );
118
gap> Dimension( Derivations( CanonicalBasis( a ) ) );
118



Chapter 4

The Database of Low Dimensional Singer
Algebras

4.1 Overview

Fix a positive integer z. In order to describe all Singer algebras A[q,z], it is sufficient to consider
one representative q for each cyclic subgroup of the group of prime residues modulo z, see Section
1.2. The database of Singer algebras with 1 ≤ z ≤ 10000 is built according to this observation. That
is, there is one entry for each such parameter pair (q,z), where we choose the smallest q from the
generators of the subgroup it generates, except that q = z+1 is chosen instead of q = 1.

This implies that the number of data records for given z is exactly ∑q 1/Phi( ordz(q) ).
Example

gap> ForAll( [ 1 .. 10000 ],
> z -> Length( AllSingerAlgebraInfos( "z", z ) ) =
> Sum( PrimeResidues( z ),
> q -> 1 / Phi( OrderMod( q, z ) ) ) );
true

Note that two algebras A[q,z], A[q′,z] for different such representatives q, q′ can be isomorphic, and
in fact this happens in many cases in a “natural” way (see Section 4.3.3). As soon as new theoretical
criteria become known that admit a reduction of the set of parameters to describe all Singer algebras
of a given dimension, the setup of the database may be changed.

The database stores the following information for the algebra A[q,z].

• n = ordz(q), the multiplicative order of q modulo z (OrderMod( q, z ), see OrderModExt
(3.6.2)),

• m = m(q,e), the minimal number of powers of q whose sum is divisible by e = (qn−1)/z,

• l, the Loewy length of A[q,z],

• the Loewy vector (v1,v2, . . . ,vl) of A[q,z], where vi = dim(Ji−1/Ji), and J = J(A[q,z])
is the Jacobson radical of A[q,z]; we encode v by an abbreviated vector v′ (see
LoewyVectorAbbreviated (3.1.5)) where subsequent equal entries i with multiplicity j ≥ 1
are abbreviated as [i, j]; thus v′ = [[1, j]] stands for v = [1,1, . . . ,1] of length j;

36
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• “decomposition information” d, if available, as follows: Set q′ = q mod m; a decomposition
(x1 · · ·xn)

q′−1 = ∏
N
i=1(x

ai,1
1 xai,2

2 · · ·x
ai,n
n ) of length N = l − 1− n(q− q′)/m is encoded by d =

[k1,k2, . . . ,kN ], where eki = ∑
n
j=1 ai, jq j−1 holds; if no such decomposition is known then d = 0

is stored,

• the flag dec is 0 if (x1 · · ·xn)
q′−1 can be written as a product of monomials as above, each of

degree m except at most one monomial of larger degree, and 1 otherwise,

• delta = bn(q−1)/mc+1− l is the difference between the upper bound from [BHHK20, The-
orem 7.1] and the Loewy length l,

• the IdSingerAlgebra (4.2.4) value of A[q,z].

4.2 Access to the Database of Singer Algebras

4.2.1 OneSingerAlgebraInfo and AllSingerAlgebraInfos

. OneSingerAlgebraInfo(cond1, val1, cond2, val2, ...) (function)

. AllSingerAlgebraInfos(cond1, val1, cond2, val2, ...) (function)

Let cond1 , cond2 , . . . be strings that describe precomputed properties of Singer algebras from the
database, that is, they occur in the set { "z", "q", "n", "m", "e", "vprime", "diff" } (see above).
The two functions compute those database entries such that the value for cond1 matches val1 , the
value for cond2 matches val2 , etc., where “matches” means one of the following.

• val is equal to the cond component of the entry,

• val is a list in which the cond component of the entry occurs, or

• val is a unary function that returns true for the cond component of the entry.

It is also possible to enter GAP functions as some of the cond arguments. Each such function
must take a record as is returned by OneSingerAlgebraInfo, and the value returned by the function
gets compared with the corresponding val argument in the same way as described above.

OneSingerAlgebraInfo returns the first matching entry if there is one, and fail otherwise.
AllSingerAlgebraInfos returns the set of all matching entries.

Example
gap> OneSingerAlgebraInfo( "z", 8 );
rec( LL := 5, d := [ ], dec := 0, diff := 0, e := 1,

isom := [ 8, 3 ], m := 1, n := 2, q := 3,
vprime := [ 1, 2, 3, 2, 1 ], z := 8 )

gap> AllSingerAlgebraInfos( "diff", 1, "e", IsPrimeInt );
[ rec( LL := 3, d := fail, dec := 1, diff := 1,

e := 380808546861411923, isom := [ 862, 3 ], m := 26, n := 43,
q := 3, vprime := [ 1, 861, 1 ], z := 862 ) ]

gap> OneSingerAlgebraInfo( "z", 8, r -> r.m, 2 );
rec( LL := 5, d := [ ], dec := 0, diff := 0, e := 3,

isom := [ 8, 5 ], m := 2, n := 2, q := 5,
vprime := [ 1, [ 3, 2 ], [ 1, 2 ] ], z := 8 )
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4.2.2 DisplaySingerAlgebras

. DisplaySingerAlgebras(cond1, val1, cond2, val2, ...) (function)

Returns: nothing.
This function shows the precomputed data about the Singer algebras of dimension up to 10000 in

a table on the screen.
The rows of the table are determined by the arguments, which have the same meaning as in the

function AllSingerAlgebraInfos (4.2.1). (It is advisable to restrict the contents of the database to
a small number of rows.)

The columns of the table correspond to the parameters z, q, n, LL (the Loewy length), m(q,e),
diff (the difference bn(q−1)/m(q,e)c+1−LL), and the information whether the isomorphism type
of the algebra with the given parameters is classified or not (an empty string or the flag -, respectively).

This function is available only if the Browse package is available.
Example

gap> DisplaySingerAlgebras( "z", 7 );
z | q | n | LL | m(q,e) | diff | isom

------+-------+------+-------+--------+------+------
7 | 2 | 3 | 4 | 1 | 0 | 2
7 | 3 | 6 | 3 | 6 | 0 | 3
7 | 6 | 2 | 3 | 5 | 0 | 3
7 | 8 | 1 | 8 | 1 | 0 | 8

gap> DisplaySingerAlgebras( "z", [ 1 .. 200 ], "diff", IsPosInt );
z | q | n | LL | m(q,e) | diff | isom

------+-------+------+-------+--------+------+------
70 | 3 | 12 | 3 | 8 | 1 | 3
91 | 5 | 12 | 3 | 16 | 1 | 5
95 | 8 | 12 | 3 | 28 | 1 | 2

104 | 7 | 12 | 3 | 24 | 1 | 7
123 | 2 | 20 | 3 | 6 | 1 | 2
143 | 32 | 12 | 3 | 124 | 1 | 2
148 | 23 | 12 | 3 | 88 | 1 | 3
155 | 37 | 12 | 3 | 144 | 1 | 3
182 | 5 | 12 | 3 | 16 | 1 | 5
182 | 41 | 12 | 3 | 160 | 1 | 5
182 | 45 | 12 | 3 | 176 | 1 | 5
185 | 14 | 12 | 3 | 52 | 1 | 2
185 | 27 | 12 | 3 | 104 | 1 | 2
190 | 27 | 12 | 3 | 104 | 1 | 3
195 | 7 | 12 | 4 | 18 | 1 | 7

4.2.3 BrowseSingerAlgebras

. BrowseSingerAlgebras(cond1, val1, cond2, val2, ...) (function)

Returns: the list of data selected in visual mode.
This function shows the precomputed data about the Singer algebras of dimension up to 10000

in a Browse table. The columns of the table correspond to the parameters z, q, n, LL (the Loewy
length), m(q,e), diff (the difference bn(q−1)/m(q,e)c+1−LL), and the information whether the
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isomorphism type of the algebra with the given parameters is classified or not (an empty string or the
flag -, respectively).

This function is available only if the Browse package is available.
Example

gap> if IsBound( BrowseSingerAlgebras ) then
> bsp:= [ NCurses.keys.BACKSPACE ];; # hit the BACKSPACE key
> d:= [ NCurses.keys.DOWN ];; # hit the down arrow
> l:= [ NCurses.keys.LEFT ];; # hit the left arrow
> BrowseData.SetReplay( Concatenation(
> # select the ’isom?’ column
> "scrrrrrr",
> # restrict the table to rows with unknown isom. type
> "f-", [ NCurses.keys.ENTER ],
> # clear the restriction
> "!",
> # select the ’diff’ column
> "scrrrrr",
> # restrict the table to rows with nonzero ’diff’
> "f", bsp, "0", d, d, d, d, l, [ NCurses.keys.ENTER ],
> # clear the restriction
> "!",
> # select the first entry with ’z = 100’
> "sc/100", [ NCurses.keys.ENTER ],
> # add this entry to the result
> [ NCurses.keys.ENTER ],
> # and quit the applications
> "Q" ) );
> BrowseSingerAlgebras();;
> BrowseData.SetReplay( false );
> fi;

4.2.4 IdSingerAlgebra

. IdSingerAlgebra(q, z) (operation)

. IdSingerAlgebra(A) (attribute)

Returns: a pair of positive integers, or fail.
For positive integers q and z , IdSingerAlgebra returns either fail (if the pair [q ,z ] belongs to

the set of those parameters for which the distribution to isomorphism types is not yet known) or the
list [z ,q′] such that q′ is minimal with the property that the Singer algebra A[q′,z ] is isomorphic with
A[q ,z ].

For a Singer algebra A = A[q,z] of dimension z + 1 ≤ 10001 and with known
ParametersOfSingerAlgebra (3.1.3) value, IdSingerAlgebra returns the value for the arguments
q and z.

Example
gap> List( [ 2 .. 8 ], q -> IdSingerAlgebra( q, 7 ) );
[ [ 7, 2 ], [ 7, 3 ], [ 7, 2 ], [ 7, 3 ], [ 7, 3 ], fail, [ 7, 8 ] ]
gap> IdSingerAlgebra( 100, 259 );
fail
gap> IdSingerAlgebra( SingerAlgebra( 10, 11 ) );
[ 11, 2 ]
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4.3 On the Classification of Singer Algebras by Isomorphism Type

Up to now, the algebras A[q,z], for z ≤ 10000, have not yet been fully classified up to isomorphism
type. The following sections show how the current status of this classification can be obtained.

4.3.1 The Datastructure that Describes our Knowledge about the Distribution to Iso-
morphism Types

We introduce a global variable KnownDistribution, a list that stores at position z (1 ≤ z ≤ 10000)
the currently known distribution of the relevant prime residues q modulo z (that is, the smallest rep-
resentatives from cyclic groups of prime residues) into equivalence classes. Each equivalence class
describes the smallest union of isomorphism classes of the algebras A[q,z] that is currently known.

We encode each equivalence class by a list [I1, I2, . . . , In] where each Ii is a list of values q such
that the A[q,z] are known to be isomorphic; the algebras given by values in different sets I j can be
isomorphic or not. If n = 1 then the equivalence class is known to describe exactly one isomorphism
class.

In the following sections, we will successively refine the underlying equivalence relation. Ini-
tially, we define it by equality of the Loewy vector of A[q,z] –isomorphic algebras have the same
Loewy vector– such that the class for the Loewy vector v, say, has the form [[q1], [q2], . . . , [qn]], where
A[q1,z],A[q2,z], . . . ,A[qn,z] are exactly the representatives of Singer algebras with Loewy vector v.

Example
gap> maxz:= 10000;;
gap> KnownDistribution:= [];;
gap> vectors:= "dummy";;
gap> for z in [ 1 .. maxz ] do
> allforz:= AllSingerAlgebraInfos( "z", z );
> vectors:= Set( allforz, r -> MakeImmutable( r.vprime ) );
> positions:= List( allforz, r -> Position( vectors, r.vprime ) );
> KnownDistribution[z]:= List( vectors, x -> [] );
> for i in [ 1 .. Length( positions ) ] do
> Add( KnownDistribution[z][ positions[i] ],
> [ allforz[i].q ] );
> od;
> od;

We provide a small function that prints information about our current knowledge, and call it.
Example

gap> ShowDistributionStatus:= function()
> Print( "#I min. no. of isom. types: ",
> Sum( KnownDistribution, Length ), "\n",
> "#I max. no. of isom. types: ",
> Sum( List( KnownDistribution,
> l -> Sum( l, Length ) ) ), "\n",
> "#I no. of nontriv. classes: ",
> Sum( KnownDistribution,
> l -> Number( l, x -> Length( x ) > 1 ) ), "\n",
> "#I no. of entries in these classes: ",
> Length( Flat( Filtered( Concatenation( KnownDistribution ),
> x -> Length( x ) > 1 ) ) ), "\n",
> "#I no. of dimensions with open questions: ",
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> Number( KnownDistribution,
> l -> Maximum( List( l, Length ) ) > 1 ), "\n" );
> end;;
gap> ShowDistributionStatus();
#I min. no. of isom. types: 475581
#I max. no. of isom. types: 768512
#I no. of nontriv. classes: 47834
#I no. of entries in these classes: 340765
#I no. of dimensions with open questions: 9963

4.3.2 Isomorphism of Algebras with Loewy Vector (1,k,1, . . . ,1)

By [BHHK20, Prop. 5.2], we know that two Singer algebras with the same Loewy vector of the form
(1,k,1, . . . ,1) are isomorphic; in particular, two Singer algebras of the same dimension and Loewy
length 3 are isomorphic.

In the data records, a Loewy vector of the form (1,k,1, . . . ,1) appears if and only if the vprime
component has one of the forms [ [ 1, z+1 ] ] or [ 1, z-1, 1 ] or [ 1, k, [ 1, z-k ] ].

Example
gap> for z in [ 1 .. maxz ] do
> for i in [ 1 .. Length( KnownDistribution[z] ) ] do
> C:= KnownDistribution[z][i];
> vector:= OneSingerAlgebraInfo( "z", z, "q", C[1][1] ).vprime;
> if Length( vector ) = 1 or
> ( Length( vector ) = 3 and IsInt( vector[2] ) ) then
> KnownDistribution[z][i]:= [ Concatenation( C ) ];
> fi;
> od;
> od;
gap> ShowDistributionStatus();
#I min. no. of isom. types: 475581
#I max. no. of isom. types: 557645
#I no. of nontriv. classes: 31852
#I no. of entries in these classes: 113916
#I no. of dimensions with open questions: 5714

4.3.3 Canonical Isomorphisms of Singer Algebras

We call A[q,z] and A[q′,z] canonically isomorphic if the map B(A[q,z])i 7→ B(A[q′,z])i, for 1≤ i≤ z+
1, induces an algebra isomorphism A[q,z]→ A[q′,z]. By [BHHK21, Lemma 7.5], this holds whenever
q and q′ generate the same group of prime residues modulo z, and the database contains only one
representative of each of the equivalence classes defined by this relation. However, it turns out that
there are many more canonical isomorphisms.

The algebras A[q,z] and A[q′,z] are canonically isomorphic if and only if their multiplication ta-
bles w.r.t. the canonical bases (see SingerAlg.MultTable (3.3.2)) are equal; equivalently, they are
canonically isomorphic if their multiplication tables w.r.t. the canonical bases contain zero in the same
places.

The parameters for which canonical isomorphisms occur have been computed and stored in the
file data/joinsCan.json of the package; the file is in JSON format, and its contents can also be
entered into GAP by applying EvalString (Reference: EvalString) to its contents. We use these
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data for refining our equivalence relation. The file encodes a list of pairs; the first entry of each pair
is the relevant value of z, and the second is the list of those subsets {q1,q2, . . .} such that there are
canonical isomorphisms between A[q1,z], A[q2,z], . . ..

Example
gap> joins:= SingerAlg.ContentsOfDataFile( "joinsCan.json" )[2];;
gap> L:= "dummy";;
gap> for ll in joins do
> # a pair of the form [ z, [ [ q1, q2, ... ], [ ... ], ... ] ]
> z:= ll[1];
> for i in [ 1 .. Length( KnownDistribution[z] ) ] do
> L:= KnownDistribution[z][i];
> for j in [ 1 .. Length( L ) ] do
> for k in [ 1 .. j-1 ] do
> if IsBound( L[k] ) and IsBound( L[j] ) and
> ForAny( ll[2],
> l -> IsSubset( l, Set( [ L[j][1], L[k][1] ] ) ) ) then
> # join the two classes
> Append( L[k], L[j] );
> Unbind( L[j] );
> fi;
> od;
> od;
> KnownDistribution[z][i]:= SortedList( Compacted( L ) );
> od;
> od;
gap> ShowDistributionStatus();
#I min. no. of isom. types: 475581
#I max. no. of isom. types: 484234
#I no. of nontriv. classes: 7042
#I no. of entries in these classes: 19924
#I no. of dimensions with open questions: 2195

Many of the canonical isomorphisms concern algebras A[q,kn,z] and A[qk,n,z]. In fact, two such
algebras are isomorphic whenever they have the same Loewy vector and z≤ 10000 holds, see Section
4.3.7 for details.

4.3.4 Permutation Isomorphisms of Singer Algebras

We call A[q,z] and A[q′,z] permutation isomorphic if there is a permutation π of the set {1,2, . . . ,z+1}
such that the map B(A[q,z])i 7→ B(A[q′,z])π(i), for 1 ≤ i ≤ z+ 1, induces an algebra isomorphism
A[q,z]→ A[q′,z]. In the following, we consider only those permutation isomorphisms that are not
canonical, i. e., where π is not the identity.

A necessary condition on π to induce a permutation isomorphism is that the product B(A[q′,z])π(i) ·
B(A[q′,z])π( j) is zero if and only if the product B(A[q,z])i ·B(A[q,z]) j is zero, for all i, j ∈ {1,2, . . . ,z+
1}. This means that π induces a graph isomorphism between the two simple undirected graphs
Γ(B(A[q,z])) and Γ(B(A[q′,z])), where Γ(B(A[q,z])) has the vertex set B(A[q,z]) and there is an edge
between B(A[q,z])i and B(A[q,z]) j if and only if B(A[q,z])i ·B(A[q,z]) j is nonzero. We use the interface
to [McK90] provided by GAP’s GraPe package [Soi19] for computing such a graph isomorphism if
it exists, and then check whether it induces a permutation isomorphism of Singer algebras. In order
to speed up the computations, we prescribe a partition of the vertices that must be respected by the
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desired graph isomorphism π; such a partition is given by the property that the numbers of zero entries
in the i-th and π(i)-th row of the multiplication tables w.r.t. B(A[q,z]) and B(A[q′,z]) must be equal.

The parameters for which permutation isomorphisms occur, which are not canonical isomor-
phisms, have been computed and stored in the file data/joinsPerm.json of the package; the file is
in JSON format, and its contents can also be entered into GAP by applying EvalString (Reference:
EvalString) to its contents. We use these data for refining our equivalence relation. If we are inter-
ested also in explicit permutation isomorphisms then we can use the file joinsPermExt.json instead.
(Note that this file does not contain the permutations but abbreviated variants because the permutations
would need about 75 MB of space. An earlier version of the package had contained a file of this size.)

Example
gap> joins:= SingerAlg.ContentsOfDataFile( "joinsPerm.json" )[2];;
gap> applyjoin:= function( z, q1, q2 )
> local i, L, j, k;
> for i in [ 1 .. Length( KnownDistribution[z] ) ] do
> L:= KnownDistribution[z][i];
> for j in [ 1 .. Length( L ) ] do
> for k in [ 1 .. j-1 ] do
> if IsSubset( Set( [ q1, q2 ] ),
> Set( [ L[j][1], L[k][1] ] ) ) then
> # join the two equivalence classes
> Append( L[k], L[j] );
> Unbind( L[j] );
> KnownDistribution[z][i]:= SortedList( Compacted( L ) );
> return;
> fi;
> od;
> od;
> od;
> # This triple was not used at all.
> Print( "#E unnecessary join: ", [ z, q1, q2 ], "\n" );
> end;;
gap> for l in joins do
> # ’l’ is a triple of the form [ z, q1, q2 ]
> CallFuncList( applyjoin, l );
> od;
gap> ShowDistributionStatus();
#I min. no. of isom. types: 475581
#I max. no. of isom. types: 481744
#I no. of nontriv. classes: 5174
#I no. of entries in these classes: 15608
#I no. of dimensions with open questions: 1754

Only 94 candidate pairs that satisfy the abovementioned necessary criterion for permutation isomor-
phism do not admit a graph automorphism of the graphs Γ, thus the criterion is quite good.

In all cases where a graph isomorphism is returned, the proposed permutation really induces an
algebra isomorphism. This implies: Any two Singer algebras in our list for which we do not know yet
whether they are isomorphic are definitely not permutation isomorphic.
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4.3.5 Combinatorial Invariants Distinguishing Singer Algebras

We know several subspaces of Singer algebras that are invariant under algebra isomorphisms. Exam-
ples are the members of the radical and socle series, and sums and products of invariant subspaces,
see Section 3.3. If we know an invariant subspace such that the dimension is different for two Singer
algebras then these algebras are not isomorphic.

In the following, we consider the combinatorial invariants that are used in the function
ConsiderInvariantsByParameters (3.5.1). The idea is to run over the nontrivial equivalence
classes in KnownDistribution, and to split these classes whenever we find a distinguishing invariant.
(There are cases where more than 500 combinatorial invariants exist. We had stopped the computa-
tions after at most 100 of them.)

The parameters for which such splits occur have been computed and stored in the file
data/splitsComb.json of the package; the file is in JSON format, and its contents can also be
entered into GAP by applying EvalString (Reference: EvalString) to its contents. We use these
data for refining our equivalence relation.

Example
gap> splits:= SingerAlg.ContentsOfDataFile( "splitsComb.json" )[2];;
gap> applysplit:= function( z, entry, entries, why )
> local pos, len, elen, i;
> pos:= Position( KnownDistribution[z], entry );
> if pos = fail then
> Print( "#E did not find <entry> = ", entry,
> " in KnownDistribution[", z, "]\n" );
> elif Set( entry ) <> Union( entries ) then
> Print( "#E <entry> = ", entry,
> " does not correspond to <entries> = ", entries, "\n" );
> else
> len:= Length( KnownDistribution[z] );
> elen:= Length( entries ) - 1;
> for i in [ len, len-1 .. pos+1 ] do
> KnownDistribution[z][ i+elen ]:= KnownDistribution[z][i];
> od;
> KnownDistribution[z]{ [ pos .. pos + elen ] }:= entries;
> fi;
> end;;
gap> for l in splits do
> CallFuncList( applysplit, l );
> od;
gap> ShowDistributionStatus();
#I min. no. of isom. types: 479512
#I max. no. of isom. types: 481744
#I no. of nontriv. classes: 1934
#I no. of entries in these classes: 5422
#I no. of dimensions with open questions: 791

4.3.6 Other Invariants Distinguishing Singer Algebras

As soon as invariants are involved that are not combinatorial, in the sense of Section 3.3, computations
are expected to get harder.



SingerAlg — A GAP 4 Package 45

An example of such a non-combinatorial invariant is the dimension of the matrix Lie algebra of
derivations (see Derivations (Reference: Derivations)). This works for low dimensional examples,
for example the smallest one from the list in data/splitsComb.json, which states that A[3,40] and
A[19,40] are not isomorphic.

Example
gap> splits[1];
[ 40, [ [ 3 ], [ 19 ] ], [ [ [ 3 ] ], [ [ 19 ] ] ], "Roots(0,2,1)" ]
gap> b:= CanonicalBasis( SingerAlgebra( 3, 40, GF(2) ) );;
gap> Dimension( Derivations( b ) );
118
gap> b:= CanonicalBasis( SingerAlgebra( 19, 40, GF(2) ) );;
gap> Dimension( Derivations( b ) );
112

This argument distiguishes also A[23,182] and A[25,182], where the dimensions of derivations
are 9514 and 9502, respectively. For both A[11,171] and A[68,171], the algebra of derivations has
dimension 8048. However, these computations run out of space for larger examples.

Another type of invariant concerns the number of solutions of an equation. A few open questions
can be decided by computing the cardinality of the set

{(x,y) ∈V ×V ;x · y ∈U},

where U and V are combinatorial subspaces of the algebra in question, see
SingerAlg.NumberOfProductsInSubspace (3.5.3).

These cases are collected in the file data/splitsOther.json. Computations
of this kind are feasible only if the number of indeterminates is small, we call
SingerAlg.NumberOfProductsInSubspace (3.5.3) with third argument 15 (which is the de-
fault value).

Example
gap> splits:= SingerAlg.ContentsOfDataFile( "splitsOther.json" )[2];;
gap> for l in splits do
> CallFuncList( applysplit, l );
> od;
gap> ShowDistributionStatus();
#I min. no. of isom. types: 481069
#I max. no. of isom. types: 481744
#I no. of nontriv. classes: 649
#I no. of entries in these classes: 1495
#I no. of dimensions with open questions: 350

Finally, we check whether the currently stored information about the open cases (in the file
data/opencases.json of the package) and about the distribution to isomorphism types (in the file
data/id.json) coincides with the above data.

Example
gap> str:= Concatenation( "[",
> SingerAlg.ComputedOpenCases(), "]" );;
gap> if EvalString( str ) <>
> SingerAlg.ContentsOfDataFile( "opencases.json" )[2] then
> Print( "#E ’data/opencases.json’ is not up to date." );
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> fi;
gap> str:= Concatenation( "[",
> SingerAlg.ComputedIdInfoForSingerAlgebras(), "]" );;
gap> if EvalString( str ) <> SingerAlg.IdData[2] then
> Print( "#E The stored isomorphism type data are not up to date." );
> fi;

4.3.7 Inspect some of the Canonical Isomorphisms

By [BHHK21, proof of Prop. 3.6], the canonical bases b0,b1, . . . ,bz and B0,B1, . . . ,Bz of the algebras
A[q,kn,z] and A[qk,n,z], respectively, have the property that BiB j is nonzero whenever bib j is nonzero;
the converse is in general not true; for example, consider the case n = 1.

However, it turns out that at least under the condition z ≤ 10000, the converse holds as soon
as A[q,kn,z] and A[qk,n,z] have the same Loewy vector. Note that this implies that A[q,kn,z] and
A[qk,n,z] are then canonically isomorphic.

We can verify this observation as follows. First we collect, for all z, the relevant parameters q, qk.
Example

gap> candidates:= [];;
gap> for z in [ 1 .. 10000 ] do
> # Fetch the data for this z and sort them by decreasing n.
> cand:= AllSingerAlgebraInfos( "z", z );
> SortParallel( List( cand, x -> - x.n ), cand );
> qs:= List( cand, x -> x.q );
> # Run over those candidates for which we know
> # that the Loewy vector determines the isomorphism type.
> for r in Filtered( cand, r -> Length( r.vprime ) <> 3 ) do
> q:= r.q;
> n:= r.n;
> result:= [ q ];
> # Find parameters [ Q, m, z ] such that m divides n
> # and Q is the minimal representative of the subgroup of prime
> # residues modulo z that is generated by q^(n/m),
> # and such that the Loewy vector is the same as for r.
> for d in Difference( DivisorsInt( r.n ), [ 1 ] ) do
> m:= n/d;
> Q:= PowerModInt( q, d, z );
> Q:= Minimum( List( PrimeResidues( m ),
> e -> PowerModInt( Q, e, z ) ) );
> if Q = 1 then
> Q:= z+1;
> fi;
> R:= cand[ Position( qs, Q ) ];
> if r.vprime = R.vprime then
> # The Loewy vectors for q and Q are equal.
> AddSet( result, Q );
> fi;
> od;
> if Length( result ) > 1 then
> Add( candidates, [ z, result ] );
> fi;
> od;
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> od;
gap> Length( candidates );
22518

Then we test whether all these candidates occur in the file that lists the precomputed canonical iso-
morphisms.

Example
gap> joins:= SingerAlg.ContentsOfDataFile( "joinsCan.json" )[2];;
gap> for entry in candidates do
> z:= entry[1];
> joinsz:= First( joins, l -> l[1] = z );
> if not ForAny( joinsz[2], l -> IsSubset( l, entry[2] ) ) then
> Error( "did not find ", entry, " among the known canon. isom." );
> fi;
> od;

4.4 Files of the Database of Singer Algebras

The data files are stored in the data subdirectory of the package directory. Currently they are all valid
JSON (JavaScript Object Notation) texts (see [JSO14]), and they are also valid GAP code. Thus they
can be evaluated with SingerAlg.ContentsOfDataFile (3.6.3).

Each file contains a GAP list. Its first entry is a list of strings that describes the contents and the
format of the remaining entries.
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