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1 Part 1: Moeller Lifting Theorem vs
Buchberger Criteria

Buchberger Theory, classically formulated on the polynomial ring over a field
[1, 2, 3], is possible, with suitable variations, in a more general framework. In
particular, it has been generalized to non-necessarily commutative monoid rings,
defined over a non-necessarily free monoid and over a principal ideal ring.
Such a generalization, passed through three important stages: Zacharias’ rep-
resentation of the canonical forms [29], Spears’ theorem to give an extension
to effectively given rings [26] and Moeller lifting theorem, which reformulates
Buchberger’s algorithm [15].

Consider first the classical case [1, 2, 3, 4] of the commutative polynomial
ring F[X1, . . . , Xn] over a field F. In this case, the computation of a Groebner
basis for an ideal I := (F ) of F[X1, . . . , Xn] is done by means of the so called
Buchberger’s test/completion: F is a Groebner basis of I if and only if, each
S-polynomial between two elements of F , namely each element of the set{

S(fα′ , fα) :=
lcm(M(fα),M(fα′))

M(fα)
fα −

lcm(M(fα),M(fα′))

M(fα′)
fα′ : fα, fα′ ∈ F

}
reduces to 0 with respect to F .

In the more general case of a free monoid ring F〈X1, . . . , Xn〉, defined over
the field F, we have to do more or less the same thing, but S-polynomial are
definitely more involved. The analogous of S-polynomials, in this framework,
are matches and they can be potentially infinite.
For example, in general, we have the infinite matches

M(fα)wfα′ − fαwM(fα′), w ∈ 〈X1, . . . , Xn〉.

Anyway, we must remark that all the matches of the form described above
can be avoided, thanks of Buchberger’s First Criterion. In the language of
liftings, introduced by Moeller, we say that these matches lift to the trivial
syzygy

fαwfα′ − fαwfα′ .

The test/completion based on Moeller Lifting Theorem is well known to be
definitely more efficient than Buchberger’s test/completion. This is the reason
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which moved good software implementations to demote the former test/completion
algorithm.
We summarize now in a few words what Moeller Lifting Theorem says. Consider
an ideal I := (F ) and let M{F} := {M(fα) : fα ∈ F} be the set of the leading
monomials of the elements in F . Call GM a minimal basis for the syzygies of
the leading monomials in M{F}.
Moeller Lifting Theorem says that F is a Groebner basis for I if and only if each
element in GM lifts, by means of Buchberger’s reduction, to a syzygy among el-
ements in F .

Thanks to this theorem, Gebauer and Moeller [8] could give their criteria
to detect useless S-polynomials, namely those whose reduction has not to be
computed, since - for some theoretical reason - they necessarily reduce to zero.
The number of such useless S-polynomials, found by means of Gebauer-Moeller’s
criteria is the same as that found by means of Buchberger’s criteria [4]. The
difference is in the efficiency on finding them: Gebauer and Moeller do not need
to verify the condition imposed by Buchberger’s Second Criterion. This means
avoiding the bottleneck represented by listing and reordering the S-polynomials
(in the commutative case, they are |F |2 with Buchberger’s approach, while we
have n|F |, according to an informal analysis on Gebauer-Moeller’s approach).

2 Part 2: Buchberger Algorithm via Spear’s
Theorem, Zacharias’ Representation,
Weisspfenning Multiplication

Moeller Lifting Theorem, as well as Spear’s Theorem [26], which essentially says
that Buchberger Theory defined over a ring can be exported to the quotients,
have been generalized in terms of filtration/valuation [27, 16, 19]. Thanks to
that, [16] gives a framework such that Buchberger’s Theory can be generalized
to a setting which then specializes to three very important cases, such as monoid
rings [13, 14], solvable polynomial rings [12] and Ore extensions [22, 5, 6, 20].

Anyway, we can see a weakness in [16], namely that everything works only
for rings/modules admitting a representation as vector spaces over a field.

The universal property gives us something different: a ring can be repre-
sented as stated by Spear’s Theorem, namely as a quotient of a monoid ring
over the integers.

We should remark that in the setting of a monoid ring over the integers,
Buchberger’s Theory is well established [15].
Moreover, Zacharias’ thesis [29] gives the natural setting to describe the canon-
ical forms of the elements of any ring which could be presented as a quotient
A = Q/I of a free monoid ring Q := Z〈Z〉 over Z and the monoid 〈Z〉 of all
words over the alphabet Z modulo a bilateral ideal I ⊂ Q of which a Gröbner
basis is available.

The universal property of the free monoid ring Q := Z〈Z〉 over Z and the
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monoid 〈Z〉 of all words over the alphabet Z grants that it is possible to present
each ring with identity A as a quotient A = Q/I of a free monoid ring Q modulo
a bilateral ideal I ⊂ Q.

Therefore, if we want to impose a Buchberger Theory/Algorithm, based on
Möller’s Lifting Theorem over any effective associative ring what we have to do
is to present effectively A and its elements via Zacharias canonical forms and
use Spear’s Theorem in order to equip A with the natural filtration of Q.

In the case of solvable polynomial rings and Ore extensions, this filtra-
tion/graduation approach grants us that, in the left/right case, the arithmetics
we need to apply Moeller’s Lifting Theorem[6, 20] reduces to the arithmetics
of the commutative polynomial ring; bilateral Groebner bases can be computed
by means of Kandri-RodyWeispfenning completion1. This approach can be ex-
tended to the more general case of effective rings where also the bilateral case
is “commutivized” adapting Weispfenning’s notion of restricted Groebner bases
[28] and introducing the commutativizing Weispfenning multiplication, as ex-
plained in [7].

3 Part 3: What happens to involutive bases?

Janet, in his 1920’s paper [11] essentially introduced the notion of Groebner
basis and also a computational algorithm [9, 10] to get such bases, and which is
an anticipation of Buchberger’s results and algorithm2 [1, 2]. The idea stated by
Janet is similar to the strongest formulation, given by Moeller Lifting Theorem
[15] and this has been explicitly remarked by Schwartz in [24].

In Janet’s approach, a finite set U of terms (the leading terms of a generating
set for an ideal) is considered. To each term u ∈ U is associated a set M(u, U)
of variables, called multiplicative variables3 for u with respect to U .
A completion procedure grants that each term w in the semigroup ideal generated
by U can be written as w = ut, where u ∈ U and t is a product of powers of
multiplicative variables for u with respect to U . In this case we say that u is
the involutive divisor of w
In computing involutive bases namely Janet’s analogous of Groebner bases, each
term w should be reduced using the generating polynomial whose leading term
u ∈ U is the involutive divisor of w.

Since we have extended Buchberger’s Theory and algorithm to each R-
module A [17, 7], where both R and A are assumed to be effectively given

1It essentially consists in extending the left Gröbner basis G = {g1, . . . , gn} with F :=
{gi ? Xj} and computing the left Gröbner basis H of G ∪ F until G = H, which then is the
bilateral basis of I2(G).

2Up to Second Buchberger Criterion [4] but probably including the other criteria proposed
by Gebauer and Möller [8].

3The complementary set of non-multiplicative variables, is denoted by NM(u, U).
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through their Zacharias representation [18], natural questions can be: is it pos-
sible to have Janet’s approach in more general settings? What are the conditions
to be satisfied in order to do that?
We started then investigating on these questions.

Janet completion is strongly based on combinatorial arguments; therefore,
with the terminology of [17, 7], it is important that the associated graded ring
G of A is an Ore-like extension [22, 6]. An interesting class of such kind of rings,
much wider than solvable polynomial rings [12] (on which Seiler [25] applied
Janet approach), has been proposed in the paper [20]:

A = R〈X1, . . . , Xn, Y1, . . . , Ym〉/I, I = I(G) with

G = {XjXi − aijXiXj − dij :1 ≤ i<j≤n}
∪ {YlXj − bjlυjlXjYl − ejl : 1 ≤ j ≤ n, 1 ≤ l ≤ m}
∪ {YkYl − clkYlYk − flk : 1 ≤ l < k ≤ m}

a Gröbner basis of I with respect to the lexicographical ordering < on
Γ:={Xd1

1 · · ·Xdn
n Y e11 · · ·Y emm |(d1, . . . , dn, e1, . . . , em) ∈ Nn+m} induced by X1 <

. . . < Xn < Y1 < . . . < Ym where aij , bjl, clk are invertible elements in R,

υjl ∈ {Xd1
1 · · ·X

dj
j | (d1, . . . , dj) ∈ Nj}, dij , ejl, flk ∈ A with leading terms

T(dij) < XiXj , T(ejl) < XjYl, T(flk) < YkYl.
The associated graded ring G can be obtained setting dij = ejl = flk = 0. Unless
we restrict to the case in which each υjl = 1A, noetherianity is not sufficient to
grant temination and finiteness.

The main problem arises when the coefficient ring D, over whichR = D〈v〉/I
is a module, is not a field but just a principal ideal domain4; as it was remarked
by Seiler in the paper [25], at least we need to follow the standard approach
proper of Buchberger Theory and make a distinction between weak and strong
bases.

In the strong cases, basing on [23, 15, 21], we conjecture that the test/completion
for involutiveness of a continuous involutive division5, which in the field case
([10, Th.6.5]) is local involutiveness, should be reformulated as

Claim 1. Let L be a continuous involutive division. A polynomial set F is
strong L-involutive if

4the PIR case is not much more complicated. Indeed, simply, we have to deal with proper
annihilators.

5A division  L is called continuous if for any finite set U of terms, the inequality ui 6= uj , i 6=
j holds for any finite sequence u1, . . . uk of elements in U such that

∀i < k∃Xj ∈ NM(ui, U) such that ui+1| Lui ·Xj . (1)
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• for each f ∈ F and each non-multiplicative variable x ∈ NM(M(f),M(F )),
the related J-prolongation f · xi,

• for each f, g ∈ F the related P -prolongation s lcm(T(f),T(g))
T(f) f+t lcm(T(g)g,T(g))

T(f) ,

where t, s are the Bézout values such that for the leading coefficients we
have slc(f) + tlc(g) = gcd(lc(f), lc(g)),

• for each f ∈ F the related A-prolongation af , a being the annihilator of
lc(f)

all of them reduce to zero modulo F .
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[28] V. Weispfenning, Finite Gröbner bases in non-noetherian Skew Polynomial
Rings. In: Proc.ISSAC ’92. ACM, pp. 320–332 (1992).
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