
Do It Yourself: Buchberger and Janet Bases
over effective rings

M.Ceria and T. Mora

Part 1

The classical Buchberger Theory and Algorithm in the framework of polynomial
rings over a field [1, 2, 3] has been generalized to a framework that is even non-
necessarily commutative, namely that of (non necessarily commutative) monoid
rings over a (non necessarily free) monoid and a principal ideal ring. This
has been done through a series of milestone papers: Zacharias’ [29] approach
to canonical forms, Spear’s [26] theorem which extends Buchberger Theory to
each effectively given ring, Möller’s [15] reformulation of Buchberger Algorithm
in terms of lifting.

Consider a field F and the (commutative) polynomial rings F[X1, . . . , Xn] [1,
2, 3, 4] over it. In order to compute Gröbner bases, Buchberger test/completion
is applied. It states that a basis F is Gröbner if and only if each element in the
set of all S-polynomials{

S(fα′ , fα) :=
lcm(M(fα),M(fα′))

M(fα)
fα −

lcm(M(fα),M(fα′))

M(fα′)
fα′ : fα, fα′ ∈ F

}
between two polynomials in F , reduces to 0.

The idea remains the same also in the more general setting of free monoid
rings F〈X1, . . . , Xn〉 over a field. Of course, the analogous of S-polynomials,
i.e. matches are more complex, besides being potentially infinitely many; for
instance,

M(fα)wfα′ − fαwM(fα′), w ∈ 〈X1, . . . , Xn〉.

These S-polynomials are not to be considered due to Buchberger’s first Criterion,
which states (in Möller’s language) that such S-polynomial lifts to the trivial
syzygy fαwfα′ − fαwfα′ .

As it is well known, both in the commutative and in the non-commutative
setting, the test/completion based on the lifting theorem [15] is definitely more
efficient than Buchberger test/completion, which is then discarded by the good
implementations. Moeller lifting theorem says that a generating set F is a
Gröbner basis if and only if each element in a minimal basis of the syzygies
among the leading monomials {M(fα) : fα ∈ F} lifts, via Buchberger reduction,
to a syzygy among the elements of F .

It is also worth to remark that the lifting theorem allowed [8] to give their
(more efficient) criteria.

Gebauer-Moeller criteria detect at least as many “useless” pairs as Buch-
berger’s two criteria [4], but they do not need to verify whether a pair satisfies
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the conditions required by the Second Criterion and thus they avoid the conse-
quent bottleneck needed for listing and ordering the S-pairs (in the commutative
case they are (#F )2, while a careful informal analysis in that setting suggests
that the S-pairs needed by Gebauer–Möller Criterion are n#F ).

Part 2

The reformulation in the language of filtration-valuation terms [27, 16, 19] of
Möller’s Lifting Theorem and of Spear’s [26] intuition that a Buchberger Theory
defined in a ring can be exported to its quotients, allowed [16] to provide a
framework in which Buchberger Theory may be generalized to a setting that
specializes to useful cases such as monoid rings [13, 14], solvable polynomial
rings [12] and Ore extensions [22, 5, 6, 20].

However, there was a weak point in [16]: the proposal of this paper could be
applied only to rings/modules that were presented as vector spaces over a field.
Differently, the universal property grants to a ring a representation accordingly
to Spear’s Theorem, i.e. as quotient of a monoid ring over the integers.

Anyway Buchberger Theory of monoid rings over the integers is strongly
established [15] and Zacharias’ Thesis [29] provided the natural setting for de-
scribing canonical forms of the elements of each ring which can be presented
as quotient A = Q/I of a free monoid ring Q := Z〈Z〉 over Z and the monoid
〈Z〉 of all words over the alphabet Z modulo a bilateral ideal I ⊂ Q of which a
Gröbner basis is available.

Thus, since the universal property of the free monoid ring Q := Z〈Z〉 over Z
and the monoid 〈Z〉 of all words over the alphabet Z grants that each ring with
identity A can be presented as a quotient A = Q/I of a free monoid ring Qmod-
ulo a bilateral ideal I ⊂ Q, in order to impose a Buchberger Theory/Algorithm,
based on Möller’s Lifting Theorem over any effective associative ring it is enough
to present effectively A and its elements via Zacharias canonical forms and use
Spear’s theorem in order to impose on A the natural filtration of Q.

In the case of solvable polynomial rings and Ore extensions, the filtra-
tion/graduation approach grants that, in the left/right case the arithmetics
required by Möller’s Lifting Theorem [6, 20] boils down to the arithmetics of
polynomial commutative ring. The computation of bilateral Gröbner bases can
be performed via Kandri-Rody—Weispfenning completion1. A more efficient
solution is obtained by means of restricted Gröbner bases [28] and the related
Weispfenning multiplication [7].

Part 3

In 1920 Janet [11] introduced both the notion of Gröbner bases and a com-
putational algorithm [9, 10] which essentially anticipated Buchberger’s [1, 2]

1Extend the left Gröbner basis G = {g1, . . . , gn} with F := {gi ?Xj} and compute the left
Gröbner basis H of G ∪ F until G = H which then is the bilateral basis of I2(G).
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Algorithm2. Janet’s idea is quite similar to the strongest formulation given by
Moller’s Lifting Theorem [15]. This has been explicitly remarked by Schwartz
[24].
Our extension of Buchberger Theory and Algorithm on eachR-module A [17, 7],
where both R and A are assumed to be effectively given through their Zacharias
representation [18] suggested us to investigate whether and under which condi-
tions Janet’s approach can be extended to more general settings.

Janet completion has a strong combinatorial component. Therefore we need
that, with the terminology of [17, 7], the associated graded ring G of A is an
Ore-like extension [22, 6]; an interesting class of such rings, much wider than
solvable polynomial rings [12] on which Seiler [25] applied Janet approach, has
been recently proposed [20]:
A = R〈X1, . . . , Xn, Y1, . . . , Ym〉/I, I = I(G) with

G = {XjXi − aijXiXj − dij :1 ≤ i<j≤n}
∪ {YlXj − bjlυjlXjYl − ejl : 1 ≤ j ≤ n, 1 ≤ l ≤ m}
∪ {YkYl − clkYlYk − flk : 1 ≤ l < k ≤ m}

a Gröbner basis of I with respect to the lexicographical ordering < on
Γ:={Xd1

1 · · ·Xdn
n Y e11 · · ·Y emm |(d1, . . . , dn, e1, . . . , em) ∈ Nn+m} induced by X1 <

. . . < Xn < Y1 < . . . < Ym where aij , bjl, clk are invertible elements in R, υjl ∈
{Xd1

1 · · ·X
dj
j | (d1, . . . , dj) ∈ Nj}, dij , ejl, flk ∈ A with T(dij) < XiXj , T(ejl) <

XjYl, T(flk) < YkYl. The associated graded ring G can be obtained setting
dij = ejl = flk = 0. Unless we restrict to the case in which each υjl = 1A,
noetherianity is not sufficient to grant temination and finiteness.

The main problem arises when the coefficient ring D, on which R = D〈v〉/I
is a module, is not a field but just a PID3; as it was remarked by Seiler [25] one
needs at least to follow the standard approach in Buchberger Theory and speak
about weak and strong bases.

In the strong cases, basing on [23, 15, 21], we guess that the test/completion
for involutiveness of a continuous involutive division, which in the field case ([10,
Th.6.5]) is local involutivity, should be reformulated as

Claim 1. Let L be a continuous involutive division. A polynomial set F is
strong L-involutive if

• for each f ∈ F and each non-multiplicative variable x ∈ NML(lc(f), lc(F )),
the related J-prolongation f · xi,

• for each f, g ∈ F the related P -prolongation s lcm(T(f),T(g))
T(f) f+t lcm(T(g)g,T(g))

T(f) ,

where t, s are the Bézout values such that slc(f)+tlc(g) = gcd(lc(f), lc(g)),

2Up to Second Buchberger Criterion [4] but probably including the other criteria proposed
by Gebauer and Möller [8].

3the PIR case is not so complicated; indeed it simply requires to deal with proper annihi-
lators.
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• for each f ∈ F the related A-prolongation af , a being the annihilator of
lc(f)

reduce all of them to zero modulo F .
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group rings, Proc.ISSAC ’93, ACM (1993), 254–263
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