Keywords: tables, density, center density,
lattices, quadratic forms, packings
Part of the Catalogue of Lattices
which is a joint project of
Gabriele Nebe,
RWTH Aachen university
(nebe@math.rwth-aachen.de)
and
Neil J. A. Sloane,
(njasloane@gmail.com).
Last modified Feb. 2012.
Dim | Center density for lattice (nonlattice) | Lattice (resp. nonlattice) |
---|---|---|
1 | 1/2 = 0.50000 | LAMBDA1 = A1 = Z |
2 | 1/2 sqrt 3 = 0.28868 | LAMBDA2 = A2 |
3 | 1/4 sqrt 2 = 0.17678 | LAMBDA3 = A3 = D3 |
4 | 1/8 = 0.12500 | LAMBDA4 = D4 |
5 | 1/8 sqrt 2 = 0.08839 | LAMBDA5 = D5 |
6 | 1/8 sqrt 3 = 0.07217 | LAMBDA6 = E6 |
7 | 1/16 = 0.06250 | LAMBDA7 = E7 |
8 | 1/16 = 0.06250 | LAMBDA8 = E8 |
9 | 1/16 sqrt 2 = 0.04419 | LAMBDA9 |
10 | 1/16 sqrt 3 = 0.03608 (5/128 = 0.03906)* | LAMBDA10 ( P10c )* |
11 | 1/18 sqrt 3 = 0.03208 (9/256 = 0.03516)* | KAPPA11 ( P11a )* |
12 | 1/27 = 0.03704 | KAPPA12 = K12 (the Coxeter-Todd lattice) |
13 | 1/18 sqrt 3 = 0.03208 (9/256 = 0.03516)* | KAPPA13 ( P13a )* |
14 | 1/16 sqrt 3 = 0.03608 | LAMBDA14 |
15 | 1/16 sqrt 2 = 0.04419 | LAMBDA15 |
16 | 1/16 = 0.06250 | LAMBDA16 |
17 | 1/16 = 0.06250 | LAMBDA17 |
18 | 1/8 sqrt 3 = 0.07217 (39 / 49 = 0.07508)* | LAMBDA18 (B18 [BierEdel96])* |
19 | 1/8 sqrt 2 = 0.08839 | LAMBDA19 |
20 | 1/8 = 0.12500 (710 / 231 = 0.13154)* | LAMBDA20 (B20 [Vard96])* |
21 | 1/4 sqrt 2 = 0.17678 | LAMBDA21 |
22 | 1/2 sqrt 3 = 0.28868 (0.33254)* | LAMBDA22 (R22 [CoSl96])* |
23 | 1/2 = 0.50000 | LAMBDA23 |
24 | 1 | Leech lattice LAMBDA24 |
25 | 1/ sqrt 2 = 0.70711 | LAMBDA25 |
26 | 1/ sqrt 3 = 0.57735 | LAMBDA26, T26 |
27 | 1/ sqrt 3 = 0.57735 (1/ sqrt 2 = 0.70711)* | B27 [Bace96] (B*27 [Vard96a])* |
28 | 2/3 = 0.66667 (1)* | B28 [Bace96] (B*28 [Vard96a])* |
29 | 1/ sqrt 3 = 0.57735 (1/ sqrt 2 = 0.70711)* | B29 [Bace96] (B*29 [Vard96a])* |
30 | 313.5 / 222 = 0.65838 (1)* | Q30 (T30 [Vard96a])* |
31 | 315 / 223.5 = 1.20952 | Q31 |
32 | 316 / 224 = 2.56578 | Q32 and others |
33 | 316.5 / 225 = 2.22203 | Q33 [Elki95], [Elki96a] |
34 | 316.5 / 225 = 2.22203 | Q34 [Elki95], [Elki96a] |
35 | 2 sqrt 2 = 2.82843 | B35 |
36 | 218 / 310 = 4.43943 | KP36 [KsP92] |
37 | 4 sqrt 2 = 5.65685 | D37 |
38 | 8 | D38 |
39 | 316 /220 sqrt 14 = 10.9718 | From P48p |
40 | 317 / 222.5 = 21.7714 | From P48p |
41 | 317 / 221.5 = 43.5428 | From P48p |
42 | 318 / 222 = 92.3682 | From P48p |
43 | 319 /222.5 = 195.943 | From P48p |
44 | 320 / 223 = 415.657 (1722 / 243 324 = 472.799)* | From P48p (T44 [CoSl96])* |
45 | 321 / 223.5 = 881.742 (1722.5 / 244 324 = 974.700)* | From P48p (T45 [CoSl96])* |
46 | 321.5 / 223 = 2159.82 (1323 / 346.5 = 2719.94)* | From P48p (T46 [CoSl96])* |
47 | 323 / 224 = 5611.37 (3523.5 / 270 324 = 5788.81)* | From P48p (T47 [CoSl96])* |
48 | 324 / 224 = 16834.1 | P48n, P48p, P48q |
54 | 215.88 | Elkies [SPLAG, p. xvi] |
56 | 217.58 | M.Schütt [MW 19, p. 400] |
64 | 316 = 225.36 | Ne64 [Nebe98], [Nebe98a] |
72 | 236 | Gamma72 [Nebe11], [Nebe11] |
80 | 240.14 | MW80 |
128 | 297.40 | MW128 |
__________
* A nonlattice packing.