The following sections describe functions for (proper) vertex-colouring
or determining complete subgraphs of given graphs. The function
CompleteSubgraphsOfGivenSize can also be used to determine the
complete subgraphs with given vertex-weight sum in a vertex-weighted
graph indexvertex-weighted graph.
VertexColouring( gamma )
This function returns a proper vertex-colouring C for the graph gamma, which must be simple.
This proper vertex-colouring C is a list of positive integers, indexed by the vertices of gamma, with the property that C [i] ¹ C [j] whenever [i,j] is an edge of gamma. At present a greedy algorithm is used.
gap> VertexColouring( JohnsonGraph(4,2) ); [ 1, 3, 2, 2, 3, 1 ]
CompleteSubgraphs( gamma )
CompleteSubgraphs( gamma, k )
CompleteSubgraphs( gamma, k, alls )
Let gamma be a simple graph and k an integer. This function returns
a set K of complete subgraphs of gamma, where a complete subgraph is
represented by its vertex-set. If k is non-negative then the elements
of K each have size k, otherwise the elements of K represent maximal
complete subgraphs of gamma. The default for k is -1, i.e. maximal
complete subgraphs. See also CompleteSubgraphsOfGivenSize, which
can be used to compute the maximal complete subgraphs of given size,
and can also be used to determine the (maximal or otherwise) complete
subgraphs with given vertex-weight sum in a vertex-weighted graph.
The optional parameter alls controls how many complete subgraphs are
returned. The valid values for alls are 0, 1 (the default), and 2.
The value 2 provides a new feature in GRAPE from version 4.1, and
specifies that this function should compute a set of gamma.group-orbit
representatives of the required complete subgraphs.
If alls=0 (or false for backward compatibility) then K will contain
at most one element. In this case, if k is negative then K will
contain just one maximal complete subgraph, and if k is non-negative
then K will contain a complete subgraph of size k if and only if
such a subgraph is contained in gamma.
If alls=1 (or true for backward compatibility) then K will contain
(perhaps properly) a set of gamma.group orbit-representatives of
the maximal (if k is negative) or size k (if k is non-negative)
complete subgraphs of gamma.
If alls=2 then K will be a set of gamma.group
orbit-representatives of the maximal (if k is negative) or size k
(if k is non-negative) complete subgraphs of gamma. This option
can be more costly than when alls=1.
Before applying CompleteSubgraphs, one may want to associate the full
automorphism group of gamma with gamma, via gamma :=
NewGroupGraph( AutGroupGraph(gamma), gamma );.
An alternative name for this function is Cliques indexCliques.
See also CompleteSubgraphsOfGivenSize.
gap> gamma := JohnsonGraph(5,2);
rec( isGraph := true, order := 10,
group := Group([ ( 1, 5, 8,10, 4)( 2, 6, 9, 3, 7), ( 2, 5)( 3, 6)( 4, 7) ]),
schreierVector := [ -1, 2, 2, 1, 1, 1, 2, 1, 1, 1 ],
adjacencies := [ [ 2, 3, 4, 5, 6, 7 ] ], representatives := [ 1 ],
names := [ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 1, 5 ], [ 2, 3 ], [ 2, 4 ],
[ 2, 5 ], [ 3, 4 ], [ 3, 5 ], [ 4, 5 ] ], isSimple := true )
gap> CompleteSubgraphs(gamma);
[ [ 1, 2, 3, 4 ], [ 1, 2, 5 ] ]
gap> CompleteSubgraphs(gamma,3,2);
[ [ 1, 2, 3 ], [ 1, 2, 5 ] ]
gap> CompleteSubgraphs(gamma,-1,0);
[ [ 1, 2, 5 ] ]
CompleteSubgraphsOfGivenSize( gamma, k )
CompleteSubgraphsOfGivenSize( gamma, k, alls )
CompleteSubgraphsOfGivenSize( gamma, k, alls, maxi )
CompleteSubgraphsOfGivenSize( gamma, k, alls, maxi, col )
CompleteSubgraphsOfGivenSize( gamma, k, alls, maxi, col, wts )
Let gamma be a simple graph and k a non-negative integer. This
function returns a set K (possibly empty) of complete subgraphs of
size k of gamma. The exact nature of the set K depends on the
values of the parameters supplied to this function. A complete subgraph
is represented by its vertex-set. CompleteSubgraphsOfGivenSize can
handle the case where the vertices are assigned positive integer weights,
in which case, a complete subgraph of size k means a complete subgraph
whose vertex-weights sum to k.
We remark that the parameter maxi provides a backward compatible
extension to its use in versions of GRAPE previous to 4.1, and now when
maxi=true this function returns only maximal complete subgraphs
of size k. The parameter alls also provides a new feature starting
with version 4.1. Setting alls=2 specifies that this function should
compute a set of gamma.group-orbit representatives of the required
complete subgraphs.
The optional parameter alls controls how many complete subgraphs are returned. The valid values for alls are 0, 1 (the default), and 2.
If alls=0 (or false for backward compatibility) then K will
contain at most one element. If maxi=false then K will contain one
element if and only if gamma contains a complete subgraph of size k.
If maxi=true then K will contain one element if and only if gamma
contains a maximal complete subgraph of size k (in which case K
will contain (the vertex-set of) such a maximal complete subgraph).
If alls=1 (or true for backward compatibility) and maxi=false,
then K will contain (perhaps properly) a set of gamma.group
orbit-representatives of the size k complete subgraphs of gamma.
If alls=1 (the default) and maxi=true, then K will contain
(perhaps properly) a set of gamma.group orbit-representatives of
the size k maximal complete subgraphs of gamma.
If alls=2 and maxi=false, then K will be a set of gamma.group
orbit-representatives of the size k complete subgraphs of gamma.
If alls=2 and maxi=true then K will be a set of gamma.group
orbit-representatives of the size k maximal complete subgraphs
of gamma. This option can be more costly than when alls=1.
The optional parameter maxi controls whether only maximal complete
subgraphs of size k are returned. The default is false, which means
that non-maximal as well as maximal complete subgraphs of size k are
returned. If maxi=true then only maximal complete subgraphs of size
k are returned. (Previous to version 4.1 of GRAPE, maxi=true
meant that it was assumed (but not checked) that all complete subgraphs
of size k were maximal.)
The optional boolean parameter col is used to determine whether or
not partial proper vertex-colouring is used to cut down the search
tree. The default is true, which says to use this partial colouring
(and which seems to be a good idea). For backward compatibility, col
a rational number means the same as col=true.
If the optional parameter wts is given, then it is assumed to be a
gamma.group invariant list (where the action permutes the list
positions) of length gamma.order of positive integer weights
corresponding to the vertices, in which case, a complete subgraph of
size k means a complete subgraph whose vertex-weights sum to k.
An alternative name for this function is
CliquesOfGivenSize indexCliquesOfGivenSize.
See also CompleteSubgraphs.
gap> gamma:=JohnsonGraph(6,2);
rec( isGraph := true, order := 15,
group := Group([ ( 1, 6,10,13,15, 5)( 2, 7,11,14, 4, 9)( 3, 8,12),
( 2, 6)( 3, 7)( 4, 8)( 5, 9) ]),
schreierVector := [ -1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1 ],
adjacencies := [ [ 2, 3, 4, 5, 6, 7, 8, 9 ] ], representatives := [ 1 ],
names := [ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 1, 5 ], [ 1, 6 ], [ 2, 3 ],
[ 2, 4 ], [ 2, 5 ], [ 2, 6 ], [ 3, 4 ], [ 3, 5 ], [ 3, 6 ], [ 4, 5 ],
[ 4, 6 ], [ 5, 6 ] ], isSimple := true )
gap> CompleteSubgraphsOfGivenSize(gamma,4);
[ [ 1, 2, 3, 4 ] ]
gap> CompleteSubgraphsOfGivenSize(gamma,4,1,true);
[ ]
gap> CompleteSubgraphsOfGivenSize(gamma,5,2,true);
[ [ 1, 2, 3, 4, 5 ] ]
gap> delta:=NewGroupGraph(Group(()),gamma);;
gap> CompleteSubgraphsOfGivenSize(delta,5,2,true);
[ [ 1, 2, 3, 4, 5 ], [ 1, 6, 7, 8, 9 ], [ 2, 6, 10, 11, 12 ],
[ 3, 7, 10, 13, 14 ], [ 4, 8, 11, 13, 15 ], [ 5, 9, 12, 14, 15 ] ]
gap> CompleteSubgraphsOfGivenSize(delta,5,0);
[ [ 1, 2, 3, 4, 5 ] ]
gap> CompleteSubgraphsOfGivenSize(delta,5,1,false,true,
> > [1,2,3,4,5,6,7,8,7,6,5,4,3,2,1]);
[ [ 1, 4 ], [ 2, 3 ], [ 3, 14 ], [ 4, 15 ], [ 5 ], [ 11 ], [ 12, 15 ],
[ 13, 14 ] ]
[Up] [Previous] [Next] [Index]
GRAPE manual