BergerCondition( chi )
BergerCondition( G )
Called with an irreducible character chi of the group G of degree d,
BergerCondition returns true if chi satisfies
M^{prime} leq ker(chi) for every normal subgroup M of G with the
property that M leq ker(psi) for all psi in Irr(G) with
psi(1) < chi(1), and false otherwise.
Called with a group G, BergerCondition returns true if all irreducible
characters of G satisfy the inequality above, and false otherwise;
in the latter case InfoMonomial tells about the smallest degree for that the
inequality is violated.
For groups of odd order the answer is always true by a theorem of
T.~R.~Berger (see~Ber76, Thm.~2.2).
gap> BergerCondition( S4 );
true
gap> BergerCondition( Sl23 );
false
gap> List( Irr( Sl23 ), BergerCondition );
[ true, true, true, false, false, false, true ]
gap> List( Irr( Sl23 ), Degree );
[ 1, 1, 1, 2, 2, 2, 3 ]
GAP 3.4.4