TestHomogeneous( chi, N )
returns a record with information whether the restriction of the character chi of the group G to the normal subgroup N of G is homogeneous, i.e., is a multiple of an irreducible character of N.
N may be given also as list of conjugacy class positions w.r. to G.
The components of the result are
isHomogeneous
:true
or false
,
comment
:isHomogeneous
component,
character
:
multiplicity
:character
component in the
restriction of chi.
gap> chi:= Irr( Sl23 )[4]; Character( Sl(2,3), [ 2, -2, 0, -1, 1, -1, 1 ] ) gap> n:= NormalSubgroupClasses( Sl23, [ 1, 2, 3 ] ); Subgroup( Sl(2,3), [ b, c, d ] ) gap> TestHomogeneous( chi, [ 1, 2, 3 ] ); rec( isHomogeneous := true, comment := "restricts irreducibly" ) gap> chi:= Irr( Sl23 )[7]; Character( Sl(2,3), [ 3, 3, -1, 0, 0, 0, 0 ] ) gap> TestHomogeneous( chi, n ); #W Warning: Group has no name rec( isHomogeneous := false, comment := "restriction checked", character := Character( Subgroup( Sl(2,3), [ b, c, d ] ), [ 1, 1, -1, 1, -1 ] ), multiplicity := 1 )
GAP 3.4.4