Pq( F, ... )
Let F be a finitely presented group. Then Pq returns the desired
p-quotient of F as an ag group.
The following parameters or parameter pairs are supported.
true is returned.
Alternatively, you can pass Pq a record as a parameter, which contains
as entries some (or all) of the above mentioned. Those parameters which
do not occur in the record are set to their default values.
See also PqHomomorphism.
gap> RequirePackage("anupq");
gap> f2 := FreeGroup( 2, "f2" );
Group( f2.1, f2.2 )
gap> Pq( f2, rec( Prime := 2, ClassBound := 3 ) );
Group( G.1, G.2, G.3, G.4, G.5, G.6, G.7, G.8, G.9, G.10 )
gap> g := f2 / [ f2.1^4, f2.2^4 ];;
gap> Pq( g, rec( Prime := 2, ClassBound := 3 ) );
Group( G.1, G.2, G.3, G.4, G.5, G.6, G.7, G.8 )
gap> Pq( g, "Prime", 2, "ClassBound", 3, "Exponent", 4 );
Group( G.1, G.2, G.3, G.4, G.5, G.6, G.7 )
gap> g := f2 / [ f2.1^25, Comm(Comm(f2.2,f2.1),f2.1), f2.2^5 ];;
gap> Pq( g, "Prime", 5, "Metabelian", "ClassBound", 5 );
Group( G.1, G.2, G.3, G.4, G.5, G.6, G.7 )
This function requires the package "anupq" (see RequirePackage).
GAP 3.4.4