PqHomomorphism( G, images )
Let G be a p-quotient of F computed using Pq. If images is a
list of images of F.generators under an automorphism of F,
PqHomomorphism will return the corresponding automorphism of G.
gap> F := FreeGroup (2, "F");
Group( F.1, F.2 )
gap> G := Pq (F, "Prime", 5, "Class", 2);
Group( G.1, G.2, G.3, G.4, G.5 )
gap> PqHomomorphism (G, [F.2, F.1]);
GroupHomomorphismByImages( Group( G.1, G.2, G.3, G.4, G.5 ), Group(
G.1, G.2, G.3, G.4, G.5 ), [ G.1, G.2, G.3, G.4, G.5 ],
[ G.2, G.1, G.3^4, G.5, G.4 ] )
GAP 3.4.4