57.2 PqHomomorphism

PqHomomorphism( G, images )

Let G be a p-quotient of F computed using Pq. If images is a list of images of F.generators under an automorphism of F, PqHomomorphism will return the corresponding automorphism of G.

    gap> F := FreeGroup (2, "F");
    Group( F.1, F.2 )
    gap> G := Pq (F, "Prime", 5, "Class", 2);
    Group( G.1, G.2, G.3, G.4, G.5 )
    gap> PqHomomorphism (G, [F.2, F.1]);
    GroupHomomorphismByImages( Group( G.1, G.2, G.3, G.4, G.5 ), Group(
    G.1, G.2, G.3, G.4, G.5 ), [ G.1, G.2, G.3, G.4, G.5 ],
    [ G.2, G.1, G.3^4, G.5, G.4 ] ) 

Previous Up Top Next
Index

GAP 3.4.4
April 1997