PqHomomorphism( G, images )
Let G be a p-quotient of F computed using Pq
. If images is a
list of images of F.generators
under an automorphism of F,
PqHomomorphism
will return the corresponding automorphism of G.
gap> F := FreeGroup (2, "F"); Group( F.1, F.2 ) gap> G := Pq (F, "Prime", 5, "Class", 2); Group( G.1, G.2, G.3, G.4, G.5 ) gap> PqHomomorphism (G, [F.2, F.1]); GroupHomomorphismByImages( Group( G.1, G.2, G.3, G.4, G.5 ), Group( G.1, G.2, G.3, G.4, G.5 ), [ G.1, G.2, G.3, G.4, G.5 ], [ G.2, G.1, G.3^4, G.5, G.4 ] )
GAP 3.4.4