71.18 AdjustmentMatrix

AdjustmentMatrix(dp, d)

James [J] noticed, and Geck [G] proved, that the decomposition matrices dp for Hecke algebras defined over fields of positive characteristic admit a factorization dp = d * a where d is a decomposition matrix for a suitable Hecke algebra defined over a field of characteristic zero, and a is the so--called adjustment matrix. This function returns the adjustment matrix a.

gap> H:=Specht(2);; Hp:=Specht(2,2);;
gap> d:=DecompositionMatrix(H,13);; dp:=DecompositionMatrix(Hp,13);;
gap> a:=AdjustmentMatrix(dp,d);
13     
|
 1
12,1   
|
 . 1
11,2   
|
 1 . 1
10,3   
|
 . . . 1
10,2,1 
|
 . . . . 1
9,4    
|
 1 . 1 . . 1
9,3,1  
|
 2 . . . . . 1
8,5    
|
 . 1 . . . . . 1
8,4,1  
|
 1 . . . . . . . 1
8,3,2  
|
 . 2 . . . . . 1 . 1
7,6    
|
 1 . . . . 1 . . . . 1
7,5,1  
|
 . . . . . . 1 . . . . 1
7,4,2  
|
 1 . 1 . . 1 . . . . 1 . 1
7,3,2,1
|
 . . . . . . . . . . . . . 1
6,5,2  
|
 . 1 . . . . . 1 . 1 . . . . 1
6,4,3  
|
 2 . . . 1 . . . . . . . . . . 1
6,4,2,1
|
 . 2 . 1 . . . . . . . . . . . . 1
5,4,3,1
|
 4 . 2 . . . . . . . . . . . . . . 1 
gap> MatrixDecompositionMatrix(dp)=
>           MatrixDecompositionMatrix(d)*MatrixDecompositionMatrix(a);
true 

In the last line we have checked our calculation.

See also DecompositionMatrix DecompositionMatrix, and CrystalDecompositionMatrix CrystalDecompositionMatrix. This function requires the package ``specht'' (see RequirePackage).

Previous Up Top Next
Index

GAP 3.4.4
April 1997