AdjustmentMatrix(dp, d)
James [J] noticed, and Geck [G] proved, that the decomposition matrices dp for Hecke algebras defined over fields of positive characteristic admit a factorization dp = d * a where d is a decomposition matrix for a suitable Hecke algebra defined over a field of characteristic zero, and a is the so--called adjustment matrix. This function returns the adjustment matrix a.
gap> H:=Specht(2);; Hp:=Specht(2,2);; gap> d:=DecompositionMatrix(H,13);; dp:=DecompositionMatrix(Hp,13);; gap> a:=AdjustmentMatrix(dp,d); 13
|
1 12,1
|
. 1 11,2
|
1 . 1 10,3
|
. . . 1 10,2,1
|
. . . . 1 9,4
|
1 . 1 . . 1 9,3,1
|
2 . . . . . 1 8,5
|
. 1 . . . . . 1 8,4,1
|
1 . . . . . . . 1 8,3,2
|
. 2 . . . . . 1 . 1 7,6
|
1 . . . . 1 . . . . 1 7,5,1
|
. . . . . . 1 . . . . 1 7,4,2
|
1 . 1 . . 1 . . . . 1 . 1 7,3,2,1
|
. . . . . . . . . . . . . 1 6,5,2
|
. 1 . . . . . 1 . 1 . . . . 1 6,4,3
|
2 . . . 1 . . . . . . . . . . 1 6,4,2,1
|
. 2 . 1 . . . . . . . . . . . . 1 5,4,3,1
|
4 . 2 . . . . . . . . . . . . . . 1 gap> MatrixDecompositionMatrix(dp)= > MatrixDecompositionMatrix(d)*MatrixDecompositionMatrix(a); true
In the last line we have checked our calculation.
See also DecompositionMatrix
DecompositionMatrix, and
CrystalDecompositionMatrix
CrystalDecompositionMatrix. This
function requires the package ``specht'' (see RequirePackage).
GAP 3.4.4