Basis( H, "C" )
returns a function which gives the C-basis of the (one parameter
generic) Iwahori-Hecke algebra H. This is defined as follows (see
cite[(5.1)]Lus85, for example). Let W be the underlying finite
Coxeter group. For x,y in W let P_{x,y} be the corresponding
Kazhdan--Lusztig polynomial. If {T_w mid w in W} denotes the usual
T-basis and u=v^2 the parameter for H, then
[ C_x:=sum_y leq x (-1)^l(x)-l(y)P_x,y(v^-2)v^l(x)-2l(y)
T_y quad mbox for every x in W.]
For example, we have C_s=v^{-1}T_s-vT_1 for s in S. Thus, the
transformation matrix between the T-basis and the C-basis is lower
unitriangular, with powers of v along the diagonal. The multiplication
rules for this new basis are given as follows.
[ C_s cdot C_x =left{ beginarrayll
-(v+v^-1)C_x & mbox, if sx
We can also compute character values on elements in the C-basis as
follows:
This function requires the package "chevie" (see RequirePackage).
C_sx+sum_y mu(y,x)C_y & mbox, if sx>xendarrayright.]
where the sum is over all y such that y gap> W := CoxeterGroup( "B", 3 );;
gap> v := X( Rationals );; v.name := "v";;
gap> H := Hecke( W, v^2, v );
Hecke(CoxeterGroup("B", 3),[ v^2, v^2, v^2 ],[ v, v, v ])
gap> T := Basis( H, "T" );
function ( arg ) ... end
gap> C := Basis( H, "C" );
function ( arg ) ... end
gap> T( C( 1 ) );
-vT()+v^-1T(1)
gap> C( T( 1 ) );
v^2C()+vC(1)
gap> ref := HeckeReflectionRepresentation( H );;
gap> c := CharRepresentationWords( ref, CoxeterConjugacyClasses( W ) );
[ 3, 2*v^2 - 1, v^8 - 2*v^4, -3*v^12, 2*v^2 - 1, v^4, v^4 - 2*v^2,
-v^6, v^4 - v^2, 0*v^0 ]
gap> List( ChevieClassInfo( W ).classtext, i ->
> HeckeCharValues( C( i ), c ) );
[ 3*v^0, -v - v^(-1), 0*v^0, 0*v^0, -v - v^(-1), 2*v^0, 0*v^0, 0*v^0,
v^0, 0*v^0 ]
April 1997