Basis( H, "C'" )
returns a function which gives the C^prime-basis of the (one parameter
generic) Iwahori-Hecke algebra H (see cite[(5.1)]Lus85). This is
defined by
[ C_x^prime := sum_y leq x P_x,y(v^2)v^-l(x) T_y quad mbox for
every x in W.]
We have C_x^prime=Alt(C_x) for all x in W (see AltInvolution
in
section Operations for Hecke elements of the $T$ basis).
gap> v := X( Rationals );; v.name := "v";; gap> H := Hecke( CoxeterGroup( "B", 2 ), v ^ 2, v );; gap> h := Basis( H, "C'" )( 1 ); C'(1) gap> h2 := h * h; (v+v^-1)C'(1) gap> Basis( H, "T" )( h2 ); (1+v^-2)T()+(1+v^-2)T(1)
This function requires the package "chevie" (see RequirePackage).
GAP 3.4.4