Basis( H, "D" )
returns a function which gives the D-basis of the (one parameter
generic) Iwahori-Hecke algebra H (see cite[(5.1)]Lus85). This can be
defined by
[
D_x := v^-NC_xw_0^prime T_w_0 mbox for every x in W,
]
where N denotes the number of positive roots in the root system of W
and w_0 is the longest element of W. The D-basis is dual to the
C-basis with respect to the non-degenerate form H times H rightarrow
{ZZ}[v,v^{-1}], (h_1,h_2) mapsto tau(h_1 cdot h_2) where tau
colon H rightarrow {ZZ}[v,v^{-1}] is the linear form such that
tau(T_1)=1 and tau(T_x)=0 for x neq 1. We have
D_x=beta(C_{w_0x}^prime) for all x in W (see BetaInvolution
in
section Operations for Hecke elements of the $T$ basis).
gap> W := CoxeterGroup( "B", 2 );; gap> v := X( Rationals );; v.name := "v";; gap> H := Hecke( W, v^2, v ); Hecke(CoxeterGroup("B", 2),[ v^2, v^2 ],[ v, v ]) gap> T := Basis( H, "T" ); function ( arg ) ... end gap> D := Basis( H, "D" ); function ( arg ) ... end gap> D( T( 1 ) ); vD(1)-v^2D(1,2)-v^2D(2,1)+v^3D(1,2,1)+v^3D(2,1,2)-v^4D(1,2,1,2) gap> BetaInvolution( D( 1 ) ); C'(2,1,2)
This function requires the package "chevie" (see RequirePackage).
GAP 3.4.4